Begin fleshing out a public HAL routine to export the per-chain

ctl/ext noise floor values.

This routine doesn't check to see whether the radio is MIMO
capable - instead, it simply returns either the raw values,
the "nominal" values if the raw values aren't yet available
or are invalid, or '0' values if there's no valid channel/
no valid MIMO values.

Callers are expected to verify the radio is a MIMO radio
(which for now means it's an 11n chipset, there are non-11n
MIMO chipsets out there but I don't think we support them,
at least in MIMO mode) before exporting the MIMO values.
This commit is contained in:
Adrian Chadd 2011-04-08 07:44:00 +00:00
parent f1ff114882
commit 82c30dc46e
2 changed files with 78 additions and 0 deletions

View File

@ -892,6 +892,76 @@ ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
}
/*
* Fetch the current setup of ctl/ext noise floor values.
*
* If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
* populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
*
* The caller must supply ctl/ext NF arrays which are at least
* AH_MIMO_MAX_CHAINS entries long.
*/
int
ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint8_t *nf_ctl,
uint8_t *nf_ext)
{
HAL_CHANNEL_INTERNAL *ichan;
int i;
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->ic_freq, chan->ic_flags);
for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
nf_ctl[i] = nf_ext[i] = 0;
}
return 0;
}
/* Return 0 if there's no valid MIMO values (yet) */
if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
nf_ctl[i] = nf_ext[i] = 0;
}
return 0;
}
if (ichan->rawNoiseFloor == 0) {
WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
HALASSERT(mode < WIRELESS_MODE_MAX);
/*
* See the comment below - this could cause issues for
* stations which have a very low RSSI, below the
* 'normalised' NF values in NOISE_FLOOR[].
*/
for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
ath_hal_getNfAdjust(ah, ichan);
}
return 1;
} else {
/*
* The value returned here from a MIMO radio is presumed to be
* "good enough" as a NF calculation. As RSSI values are calculated
* against this, an adjusted NF may be higher than the RSSI value
* returned from a vary weak station, resulting in an obscenely
* high signal strength calculation being returned.
*
* This should be re-evaluated at a later date, along with any
* signal strength calculations which are made. Quite likely the
* RSSI values will need to be adjusted to ensure the calculations
* don't "wrap" when RSSI is less than the "adjusted" NF value.
* ("Adjust" here is via ichan->noiseFloorAdjust.)
*/
for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
}
return 1;
}
}
/*
* Process all valid raw noise floors into the dBm noise floor values.
* Though our device has no reference for a dBm noise floor, we perform

View File

@ -950,6 +950,14 @@ extern HAL_STATUS __ahdecl ath_hal_set_channels(struct ath_hal *,
struct ieee80211_channel *chans, int nchans,
HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn);
/*
* Fetch the ctl/ext noise floor values reported by a MIMO
* radio. Returns 1 for valid results, 0 for invalid channel.
*/
extern int __ahdecl ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint8_t *nf_ctl,
uint8_t *nf_ext);
/*
* Calibrate noise floor data following a channel scan or similar.
* This must be called prior retrieving noise floor data.