Import compiler-rt release_34 branch r197381.

https://llvm.org/svn/llvm-project/compiler-rt/branches/release_34@197381
This commit is contained in:
Dimitry Andric 2014-11-06 22:49:13 +00:00
parent 11023dc647
commit 8ef50bf3d1
679 changed files with 36787 additions and 7869 deletions

View File

@ -15,6 +15,9 @@ include(LLVMParseArguments)
# runtime libraries.
cmake_minimum_required(VERSION 2.8.8)
# Top level target used to build all compiler-rt libraries.
add_custom_target(compiler-rt)
# Compute the Clang version from the LLVM version.
# FIXME: We should be able to reuse CLANG_VERSION variable calculated
# in Clang cmake files, instead of copying the rules here.
@ -36,21 +39,24 @@ set(CMAKE_MODULE_PATH
include(AddCompilerRT)
set(COMPILER_RT_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR})
set(COMPILER_RT_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
# Setup custom SDK sysroots.
set(COMPILER_RT_DARWIN_SDK_SYSROOT ${COMPILER_RT_SOURCE_DIR}/SDKs/darwin)
set(COMPILER_RT_LINUX_SDK_SYSROOT ${COMPILER_RT_SOURCE_DIR}/SDKs/linux)
include(SanitizerUtils)
# Detect whether the current target platform is 32-bit or 64-bit, and setup
# the correct commandline flags needed to attempt to target 32-bit and 64-bit.
if(CMAKE_SIZEOF_VOID_P EQUAL 4 OR LLVM_BUILD_32_BITS)
if (NOT CMAKE_SIZEOF_VOID_P EQUAL 4 AND
NOT CMAKE_SIZEOF_VOID_P EQUAL 8)
message(FATAL_ERROR "Please use architecture with 4 or 8 byte pointers.")
endif()
if (NOT MSVC)
set(TARGET_64_BIT_CFLAGS "-m64")
set(TARGET_32_BIT_CFLAGS "")
else()
if(NOT CMAKE_SIZEOF_VOID_P EQUAL 8)
message(FATAL_ERROR "Please use a sane architecture with 4 or 8 byte pointers.")
endif()
set(TARGET_64_BIT_CFLAGS "")
set(TARGET_32_BIT_CFLAGS "-m32")
else()
set(TARGET_64_BIT_CFLAGS "")
set(TARGET_32_BIT_CFLAGS "")
endif()
# List of architectures we can target.
@ -86,13 +92,12 @@ macro(test_target_arch arch)
endmacro()
if("${LLVM_NATIVE_ARCH}" STREQUAL "X86")
test_target_arch(x86_64 ${TARGET_64_BIT_CFLAGS})
if (NOT MSVC)
test_target_arch(x86_64 ${TARGET_64_BIT_CFLAGS})
endif()
test_target_arch(i386 ${TARGET_32_BIT_CFLAGS})
elseif("${LLVM_NATIVE_ARCH}" STREQUAL "PowerPC")
# Explicitly set -m flag on powerpc, because on ppc64 defaults for gcc and
# clang are different.
test_target_arch(powerpc64 "-m64")
test_target_arch(powerpc "-m32")
test_target_arch(powerpc64 ${TARGET_64_BIT_CFLAGS})
endif()
# We only support running instrumented tests when we're not cross compiling
@ -119,26 +124,43 @@ function(filter_available_targets out_var)
set(${out_var} ${archs} PARENT_SCOPE)
endfunction()
option(COMPILER_RT_DEBUG "Build runtimes with full debug info" OFF)
# COMPILER_RT_DEBUG_PYBOOL is used by lit.common.configured.in.
pythonize_bool(COMPILER_RT_DEBUG)
# Provide some common commmandline flags for Sanitizer runtimes.
set(SANITIZER_COMMON_CFLAGS
-fPIC
-fno-builtin
-fno-exceptions
-fomit-frame-pointer
-funwind-tables
-fno-stack-protector
-Wno-gnu # Variadic macros with 0 arguments for ...
-O3
)
if(NOT WIN32)
list(APPEND SANITIZER_COMMON_CFLAGS -fvisibility=hidden)
endif()
# Build sanitizer runtimes with debug info.
check_cxx_compiler_flag(-gline-tables-only SUPPORTS_GLINE_TABLES_ONLY_FLAG)
if(SUPPORTS_GLINE_TABLES_ONLY_FLAG)
list(APPEND SANITIZER_COMMON_CFLAGS -gline-tables-only)
if (NOT MSVC)
set(SANITIZER_COMMON_CFLAGS
-fPIC
-fno-builtin
-fno-exceptions
-fomit-frame-pointer
-funwind-tables
-fno-stack-protector
-Wno-gnu # Variadic macros with 0 arguments for ...
-fvisibility=hidden
)
if (NOT COMPILER_RT_DEBUG)
list(APPEND SANITIZER_COMMON_CFLAGS -O3)
endif()
else()
list(APPEND SANITIZER_COMMON_CFLAGS -g)
set(SANITIZER_COMMON_CFLAGS
/MT
/Zi
/Oy-
/GS-
/wd4722
)
endif()
# Build sanitizer runtimes with debug info. (MSVC gets /Zi above)
if (NOT MSVC)
check_cxx_compiler_flag(-gline-tables-only SUPPORTS_GLINE_TABLES_ONLY_FLAG)
if(SUPPORTS_GLINE_TABLES_ONLY_FLAG AND NOT COMPILER_RT_DEBUG)
list(APPEND SANITIZER_COMMON_CFLAGS -gline-tables-only)
else()
list(APPEND SANITIZER_COMMON_CFLAGS -g)
endif()
endif()
# Warnings suppressions.
check_cxx_compiler_flag(-Wno-variadic-macros SUPPORTS_NO_VARIADIC_MACROS_FLAG)
@ -155,30 +177,50 @@ check_cxx_compiler_flag(-Wno-non-virtual-dtor SUPPORTS_NO_NON_VIRTUAL_DTOR_FLAG)
if (SUPPORTS_NO_NON_VIRTUAL_DTOR_FLAG)
list(APPEND SANITIZER_COMMON_CFLAGS -Wno-non-virtual-dtor)
endif()
check_cxx_compiler_flag(-Wglobal-constructors SUPPORTS_GLOBAL_CONSTRUCTORS_FLAG)
# Not all sanitizers forbid global constructors.
# Setup min Mac OS X version.
if(APPLE)
# Obtain the iOS Simulator SDK path from xcodebuild.
execute_process(
COMMAND xcodebuild -version -sdk iphonesimulator Path
OUTPUT_VARIABLE IOSSIM_SDK_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(SANITIZER_COMMON_SUPPORTED_DARWIN_OS osx)
if (IOSSIM_SDK_DIR)
list(APPEND SANITIZER_COMMON_SUPPORTED_DARWIN_OS iossim)
endif()
if(COMPILER_RT_USES_LIBCXX)
set(SANITIZER_MIN_OSX_VERSION 10.7)
else()
set(SANITIZER_MIN_OSX_VERSION 10.5)
set(SANITIZER_MIN_OSX_VERSION 10.6)
endif()
list(APPEND SANITIZER_COMMON_CFLAGS
-mmacosx-version-min=${SANITIZER_MIN_OSX_VERSION})
set(DARWIN_osx_CFLAGS -mmacosx-version-min=${SANITIZER_MIN_OSX_VERSION})
set(DARWIN_iossim_CFLAGS
-mios-simulator-version-min=7.0 -isysroot ${IOSSIM_SDK_DIR})
set(DARWIN_osx_LINKFLAGS)
set(DARWIN_iossim_LINKFLAGS
-Wl,-ios_simulator_version_min,7.0.0
-mios-simulator-version-min=7.0
-isysroot ${IOSSIM_SDK_DIR})
endif()
# Architectures supported by Sanitizer runtimes. Specific sanitizers may
# support only subset of these (e.g. TSan works on x86_64 only).
filter_available_targets(SANITIZER_COMMON_SUPPORTED_ARCH
x86_64 i386 powerpc64 powerpc)
x86_64 i386 powerpc64)
# Add the public header's directory to the includes for all of compiler-rt.
include_directories(include)
add_subdirectory(include)
set(SANITIZER_COMMON_LIT_TEST_DEPS
clang clang-headers FileCheck count not llvm-nm llvm-symbolizer
compiler-rt-headers)
# Check code style when running lit tests for sanitizers.
if(UNIX)
list(APPEND SANITIZER_COMMON_LIT_TEST_DEPS SanitizerLintCheck)
endif()
add_subdirectory(lib)

View File

@ -0,0 +1,17 @@
/* ===-- errno.h - stub SDK header for compiler-rt --------------------------===
*
* The LLVM Compiler Infrastructure
*
* This file is dual licensed under the MIT and the University of Illinois Open
* Source Licenses. See LICENSE.TXT for details.
*
* ===-----------------------------------------------------------------------===
*
* This is a stub SDK header file. This file is not part of the interface of
* this library nor an official version of the appropriate SDK header. It is
* intended only to stub the features of this header required by compiler-rt.
*
* ===-----------------------------------------------------------------------===
*/
#include <sys/errno.h>

View File

@ -28,4 +28,25 @@ char *strdup(const char *);
size_t strlen(const char *);
char *strncpy(char *, const char *, size_t);
/* Determine the appropriate strerror() function. */
#if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__)
# if defined(__i386)
# define __STRERROR_NAME "_strerror$UNIX2003"
# elif defined(__x86_64__) || defined(__arm)
# define __STRERROR_NAME "_strerror"
# else
# error "unrecognized architecture for targetting OS X"
# endif
#elif defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__)
# if defined(__i386) || defined (__x86_64) || defined(__arm)
# define __STRERROR_NAME "_strerror"
# else
# error "unrecognized architecture for targetting iOS"
# endif
#else
# error "unrecognized architecture for targetting Darwin"
#endif
char *strerror(int) __asm(__STRERROR_NAME);
#endif /* __STRING_H__ */

View File

@ -0,0 +1,31 @@
/* ===-- errno.h - stub SDK header for compiler-rt --------------------------===
*
* The LLVM Compiler Infrastructure
*
* This file is dual licensed under the MIT and the University of Illinois Open
* Source Licenses. See LICENSE.TXT for details.
*
* ===-----------------------------------------------------------------------===
*
* This is a stub SDK header file. This file is not part of the interface of
* this library nor an official version of the appropriate SDK header. It is
* intended only to stub the features of this header required by compiler-rt.
*
* ===-----------------------------------------------------------------------===
*/
#ifndef _SYS_ERRNO_H_
#define _SYS_ERRNO_H_
#if defined(__cplusplus)
extern "C" {
#endif
extern int *__error(void);
#define errno (*__error())
#if defined(__cplusplus)
}
#endif
#endif

View File

@ -6,29 +6,35 @@ include(CompilerRTUtils)
# with name "<name>.<arch>" if architecture can be targeted.
# add_compiler_rt_object_library(<name> <arch>
# SOURCES <source files>
# CFLAGS <compile flags>)
# CFLAGS <compile flags>
# DEFS <compile definitions>)
macro(add_compiler_rt_object_library name arch)
if(CAN_TARGET_${arch})
parse_arguments(LIB "SOURCES;CFLAGS" "" ${ARGN})
parse_arguments(LIB "SOURCES;CFLAGS;DEFS" "" ${ARGN})
add_library(${name}.${arch} OBJECT ${LIB_SOURCES})
set_target_compile_flags(${name}.${arch}
${TARGET_${arch}_CFLAGS} ${LIB_CFLAGS})
set_property(TARGET ${name}.${arch} APPEND PROPERTY
COMPILE_DEFINITIONS ${LIB_DEFS})
else()
message(FATAL_ERROR "Archtecture ${arch} can't be targeted")
endif()
endmacro()
# Same as above, but adds universal osx library with name "<name>.osx"
# targeting multiple architectures.
# add_compiler_rt_osx_object_library(<name> ARCH <architectures>
# SOURCES <source files>
# CFLAGS <compile flags>)
macro(add_compiler_rt_osx_object_library name)
parse_arguments(LIB "ARCH;SOURCES;CFLAGS" "" ${ARGN})
set(libname "${name}.osx")
# Same as above, but adds universal osx library for either OSX or iOS simulator
# with name "<name>.<os>" targeting multiple architectures.
# add_compiler_rt_darwin_object_library(<name> <os> ARCH <architectures>
# SOURCES <source files>
# CFLAGS <compile flags>
# DEFS <compile definitions>)
macro(add_compiler_rt_darwin_object_library name os)
parse_arguments(LIB "ARCH;SOURCES;CFLAGS;DEFS" "" ${ARGN})
set(libname "${name}.${os}")
add_library(${libname} OBJECT ${LIB_SOURCES})
set_target_compile_flags(${libname} ${LIB_CFLAGS})
set_target_compile_flags(${libname} ${LIB_CFLAGS} ${DARWIN_${os}_CFLAGS})
set_target_properties(${libname} PROPERTIES OSX_ARCHITECTURES "${LIB_ARCH}")
set_property(TARGET ${libname} APPEND PROPERTY
COMPILE_DEFINITIONS ${LIB_DEFS})
endmacro()
# Adds static runtime for a given architecture and puts it in the proper
@ -36,11 +42,10 @@ endmacro()
# add_compiler_rt_static_runtime(<name> <arch>
# SOURCES <source files>
# CFLAGS <compile flags>
# DEFS <compile definitions>
# SYMS <symbols file>)
# DEFS <compile definitions>)
macro(add_compiler_rt_static_runtime name arch)
if(CAN_TARGET_${arch})
parse_arguments(LIB "SOURCES;CFLAGS;DEFS;SYMS" "" ${ARGN})
parse_arguments(LIB "SOURCES;CFLAGS;DEFS" "" ${ARGN})
add_library(${name} STATIC ${LIB_SOURCES})
# Setup compile flags and definitions.
set_target_compile_flags(${name}
@ -53,13 +58,7 @@ macro(add_compiler_rt_static_runtime name arch)
# Add installation command.
install(TARGETS ${name}
ARCHIVE DESTINATION ${COMPILER_RT_LIBRARY_INSTALL_DIR})
# Generate the .syms file if possible.
if(LIB_SYMS)
get_target_property(libfile ${name} LOCATION)
configure_file(${LIB_SYMS} ${libfile}.syms)
install(FILES ${libfile}.syms
DESTINATION ${COMPILER_RT_LIBRARY_INSTALL_DIR})
endif(LIB_SYMS)
add_dependencies(compiler-rt ${name})
else()
message(FATAL_ERROR "Archtecture ${arch} can't be targeted")
endif()
@ -82,19 +81,22 @@ macro(add_compiler_rt_osx_static_runtime name)
ARCHIVE_OUTPUT_DIRECTORY ${COMPILER_RT_LIBRARY_OUTPUT_DIR})
install(TARGETS ${name}
ARCHIVE DESTINATION ${COMPILER_RT_LIBRARY_INSTALL_DIR})
add_dependencies(compiler-rt ${name})
endmacro()
# Adds dynamic runtime library on osx, which supports multiple architectures.
# add_compiler_rt_osx_dynamic_runtime(<name> ARCH <architectures>
# SOURCES <source files>
# CFLAGS <compile flags>
# DEFS <compile definitions>
# LINKFLAGS <link flags>)
macro(add_compiler_rt_osx_dynamic_runtime name)
# Adds dynamic runtime library on osx/iossim, which supports multiple
# architectures.
# add_compiler_rt_darwin_dynamic_runtime(<name> <os>
# ARCH <architectures>
# SOURCES <source files>
# CFLAGS <compile flags>
# DEFS <compile definitions>
# LINKFLAGS <link flags>)
macro(add_compiler_rt_darwin_dynamic_runtime name os)
parse_arguments(LIB "ARCH;SOURCES;CFLAGS;DEFS;LINKFLAGS" "" ${ARGN})
add_library(${name} SHARED ${LIB_SOURCES})
set_target_compile_flags(${name} ${LIB_CFLAGS})
set_target_link_flags(${name} ${LIB_LINKFLAGS})
set_target_compile_flags(${name} ${LIB_CFLAGS} ${DARWIN_${os}_CFLAGS})
set_target_link_flags(${name} ${LIB_LINKFLAGS} ${DARWIN_${os}_LINKFLAGS})
set_property(TARGET ${name} APPEND PROPERTY
COMPILE_DEFINITIONS ${LIB_DEFS})
set_target_properties(${name} PROPERTIES
@ -102,14 +104,16 @@ macro(add_compiler_rt_osx_dynamic_runtime name)
LIBRARY_OUTPUT_DIRECTORY ${COMPILER_RT_LIBRARY_OUTPUT_DIR})
install(TARGETS ${name}
LIBRARY DESTINATION ${COMPILER_RT_LIBRARY_INSTALL_DIR})
add_dependencies(compiler-rt ${name})
endmacro()
# Unittests support.
set(COMPILER_RT_GTEST_PATH ${LLVM_MAIN_SRC_DIR}/utils/unittest/googletest)
set(COMPILER_RT_GTEST_SOURCE ${COMPILER_RT_GTEST_PATH}/gtest-all.cc)
set(COMPILER_RT_GTEST_SOURCE ${COMPILER_RT_GTEST_PATH}/src/gtest-all.cc)
set(COMPILER_RT_GTEST_INCLUDE_CFLAGS
-DGTEST_NO_LLVM_RAW_OSTREAM=1
-I${COMPILER_RT_GTEST_PATH}/include
-I${COMPILER_RT_GTEST_PATH}
)
# Use Clang to link objects into a single executable with just-built

View File

@ -26,3 +26,13 @@ function(find_flag_in_string flag_string flag out_var)
set(${out_var} FALSE PARENT_SCOPE)
endif()
endfunction()
# Set the variable var_PYBOOL to True if var holds a true-ish string,
# otherwise set it to False.
macro(pythonize_bool var)
if (${var})
set(${var}_PYBOOL True)
else()
set(${var}_PYBOOL False)
endif()
endmacro()

View File

@ -0,0 +1,42 @@
include(LLVMParseArguments)
set(SANITIZER_GEN_DYNAMIC_LIST
${COMPILER_RT_SOURCE_DIR}/lib/sanitizer_common/scripts/gen_dynamic_list.py)
set(SANITIZER_LINT_SCRIPT
${COMPILER_RT_SOURCE_DIR}/lib/sanitizer_common/scripts/check_lint.sh)
# Create a target "<name>-symbols" that would generate the list of symbols
# that need to be exported from sanitizer runtime "<name>". Function
# interceptors are exported automatically, user can also provide files with
# symbol names that should be exported as well.
# add_sanitizer_rt_symbols(<name> <files with extra symbols to export>)
macro(add_sanitizer_rt_symbols name)
get_target_property(libfile ${name} LOCATION)
set(symsfile "${libfile}.syms")
add_custom_command(OUTPUT ${symsfile}
COMMAND ${PYTHON_EXECUTABLE}
${SANITIZER_GEN_DYNAMIC_LIST} ${libfile} ${ARGN}
> ${symsfile}
DEPENDS ${name} ${SANITIZER_GEN_DYNAMIC_LIST} ${ARGN}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
COMMENT "Generating exported symbols for ${name}"
VERBATIM)
add_custom_target(${name}-symbols ALL
DEPENDS ${symsfile}
SOURCES ${SANITIZER_GEN_DYNAMIC_LIST} ${ARGN})
install(FILES ${symsfile} DESTINATION ${COMPILER_RT_LIBRARY_INSTALL_DIR})
add_dependencies(compiler-rt ${name}-symbols)
endmacro()
# Add target to check code style for sanitizer runtimes.
if(UNIX)
add_custom_target(SanitizerLintCheck
COMMAND LLVM_CHECKOUT=${LLVM_MAIN_SRC_DIR} SILENT=1 TMPDIR=
PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}
${SANITIZER_LINT_SCRIPT}
DEPENDS ${SANITIZER_LINT_SCRIPT}
COMMENT "Running lint check for sanitizer sources..."
VERBATIM)
endif()

View File

@ -1,7 +1,9 @@
set(SANITIZER_HEADERS
sanitizer/asan_interface.h
sanitizer/common_interface_defs.h
sanitizer/dfsan_interface.h
sanitizer/linux_syscall_hooks.h
sanitizer/lsan_interface.h
sanitizer/msan_interface.h)
set(output_dir ${LLVM_BINARY_DIR}/lib/clang/${CLANG_VERSION}/include)
@ -32,6 +34,7 @@ foreach( f ${SANITIZER_HEADERS} )
endforeach( f )
add_custom_target(compiler-rt-headers ALL DEPENDS ${out_files})
add_dependencies(compiler-rt compiler-rt-headers)
# Install sanitizer headers.
install(FILES ${SANITIZER_HEADERS}

View File

@ -27,10 +27,6 @@ extern "C" {
// Tell the tools to write their reports to "path.<pid>" instead of stderr.
void __sanitizer_set_report_path(const char *path);
// Tell the tools to write their reports to given file descriptor instead of
// stderr.
void __sanitizer_set_report_fd(int fd);
// Notify the tools that the sandbox is going to be turned on. The reserved
// parameter will be used in the future to hold a structure with functions
// that the tools may call to bypass the sandbox.
@ -51,6 +47,33 @@ extern "C" {
void __sanitizer_unaligned_store32(void *p, uint32_t x);
void __sanitizer_unaligned_store64(void *p, uint64_t x);
// Record and dump coverage info.
void __sanitizer_cov_dump();
// Annotate the current state of a contiguous container, such as
// std::vector, std::string or similar.
// A contiguous container is a container that keeps all of its elements
// in a contiguous region of memory. The container owns the region of memory
// [beg, end); the memory [beg, mid) is used to store the current elements
// and the memory [mid, end) is reserved for future elements;
// end <= mid <= end. For example, in "std::vector<> v"
// beg = &v[0];
// end = beg + v.capacity() * sizeof(v[0]);
// mid = beg + v.size() * sizeof(v[0]);
//
// This annotation tells the Sanitizer tool about the current state of the
// container so that the tool can report errors when memory from [mid, end)
// is accessed. Insert this annotation into methods like push_back/pop_back.
// Supply the old and the new values of mid (old_mid/new_mid).
// In the initial state mid == end and so should be the final
// state when the container is destroyed or when it reallocates the storage.
//
// Use with caution and don't use for anything other than vector-like classes.
//
// For AddressSanitizer, 'beg' should be 8-aligned.
void __sanitizer_annotate_contiguous_container(void *beg, void *end,
void *old_mid, void *new_mid);
#ifdef __cplusplus
} // extern "C"
#endif

View File

@ -0,0 +1,87 @@
//===-- dfsan_interface.h -------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of DataFlowSanitizer.
//
// Public interface header.
//===----------------------------------------------------------------------===//
#ifndef DFSAN_INTERFACE_H
#define DFSAN_INTERFACE_H
#include <stddef.h>
#include <stdint.h>
#include <sanitizer/common_interface_defs.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef uint16_t dfsan_label;
/// Stores information associated with a specific label identifier. A label
/// may be a base label created using dfsan_create_label, with associated
/// text description and user data, or an automatically created union label,
/// which represents the union of two label identifiers (which may themselves
/// be base or union labels).
struct dfsan_label_info {
// Fields for union labels, set to 0 for base labels.
dfsan_label l1;
dfsan_label l2;
// Fields for base labels.
const char *desc;
void *userdata;
};
/// Computes the union of \c l1 and \c l2, possibly creating a union label in
/// the process.
dfsan_label dfsan_union(dfsan_label l1, dfsan_label l2);
/// Creates and returns a base label with the given description and user data.
dfsan_label dfsan_create_label(const char *desc, void *userdata);
/// Sets the label for each address in [addr,addr+size) to \c label.
void dfsan_set_label(dfsan_label label, void *addr, size_t size);
/// Sets the label for each address in [addr,addr+size) to the union of the
/// current label for that address and \c label.
void dfsan_add_label(dfsan_label label, void *addr, size_t size);
/// Retrieves the label associated with the given data.
///
/// The type of 'data' is arbitrary. The function accepts a value of any type,
/// which can be truncated or extended (implicitly or explicitly) as necessary.
/// The truncation/extension operations will preserve the label of the original
/// value.
dfsan_label dfsan_get_label(long data);
/// Retrieves the label associated with the data at the given address.
dfsan_label dfsan_read_label(const void *addr, size_t size);
/// Retrieves a pointer to the dfsan_label_info struct for the given label.
const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label);
/// Returns whether the given label label contains the label elem.
int dfsan_has_label(dfsan_label label, dfsan_label elem);
/// If the given label label contains a label with the description desc, returns
/// that label, else returns 0.
dfsan_label dfsan_has_label_with_desc(dfsan_label label, const char *desc);
#ifdef __cplusplus
} // extern "C"
template <typename T>
void dfsan_set_label(dfsan_label label, T &data) { // NOLINT
dfsan_set_label(label, (void *)&data, sizeof(T));
}
#endif
#endif // DFSAN_INTERFACE_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,52 @@
//===-- sanitizer/lsan_interface.h ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
//
// Public interface header.
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_LSAN_INTERFACE_H
#define SANITIZER_LSAN_INTERFACE_H
#include <sanitizer/common_interface_defs.h>
#ifdef __cplusplus
extern "C" {
#endif
// Allocations made between calls to __lsan_disable() and __lsan_enable() will
// be treated as non-leaks. Disable/enable pairs may be nested.
void __lsan_disable();
void __lsan_enable();
// The heap object into which p points will be treated as a non-leak.
void __lsan_ignore_object(const void *p);
// The user may optionally provide this function to disallow leak checking
// for the program it is linked into (if the return value is non-zero). This
// function must be defined as returning a constant value; any behavior beyond
// that is unsupported.
int __lsan_is_turned_off();
// Calling this function makes LSan enter the leak checking phase immediately.
// Use this if normal end-of-process leak checking happens too late (e.g. if
// you have intentional memory leaks in your shutdown code). Calling this
// function overrides end-of-process leak checking; it must be called at
// most once per process. This function will terminate the process if there
// are memory leaks and the exit_code flag is non-zero.
void __lsan_do_leak_check();
#ifdef __cplusplus
} // extern "C"
namespace __lsan {
class ScopedDisabler {
public:
ScopedDisabler() { __lsan_disable(); }
~ScopedDisabler() { __lsan_enable(); }
};
} // namespace __lsan
#endif
#endif // SANITIZER_LSAN_INTERFACE_H

View File

@ -27,10 +27,10 @@ extern "C" {
/* Set raw origin for the memory range. */
void __msan_set_origin(const void *a, size_t size, uint32_t origin);
void __msan_set_origin(const volatile void *a, size_t size, uint32_t origin);
/* Get raw origin for an address. */
uint32_t __msan_get_origin(const void *a);
uint32_t __msan_get_origin(const volatile void *a);
/* Returns non-zero if tracking origins. */
int __msan_get_track_origins();
@ -39,18 +39,19 @@ extern "C" {
uint32_t __msan_get_umr_origin();
/* Make memory region fully initialized (without changing its contents). */
void __msan_unpoison(const void *a, size_t size);
void __msan_unpoison(const volatile void *a, size_t size);
/* Make memory region fully uninitialized (without changing its contents). */
void __msan_poison(const void *a, size_t size);
void __msan_poison(const volatile void *a, size_t size);
/* Make memory region partially uninitialized (without changing its contents).
*/
void __msan_partial_poison(const void* data, void* shadow, size_t size);
void __msan_partial_poison(const volatile void *data, void *shadow,
size_t size);
/* Returns the offset of the first (at least partially) poisoned byte in the
memory range, or -1 if the whole range is good. */
intptr_t __msan_test_shadow(const void *x, size_t size);
intptr_t __msan_test_shadow(const volatile void *x, size_t size);
/* Set exit code when error(s) were detected.
Value of 0 means don't change the program exit code. */
@ -63,9 +64,14 @@ extern "C" {
The last line will verify that a UMR happened. */
void __msan_set_expect_umr(int expect_umr);
/* Change the value of keep_going flag. Non-zero value means don't terminate
program execution when an error is detected. This will not affect error in
modules that were compiled without the corresponding compiler flag. */
void __msan_set_keep_going(int keep_going);
/* Print shadow and origin for the memory range to stdout in a human-readable
format. */
void __msan_print_shadow(const void *x, size_t size);
void __msan_print_shadow(const volatile void *x, size_t size);
/* Print current function arguments shadow and origin to stdout in a
human-readable format. */
@ -76,7 +82,58 @@ extern "C" {
/* Tell MSan about newly allocated memory (ex.: custom allocator).
Memory will be marked uninitialized, with origin at the call site. */
void __msan_allocated_memory(const void* data, size_t size);
void __msan_allocated_memory(const volatile void* data, size_t size);
/* This function may be optionally provided by user and should return
a string containing Msan runtime options. See msan_flags.h for details. */
const char* __msan_default_options();
/***********************************/
/* Allocator statistics interface. */
/* Returns the estimated number of bytes that will be reserved by allocator
for request of "size" bytes. If Msan allocator can't allocate that much
memory, returns the maximal possible allocation size, otherwise returns
"size". */
size_t __msan_get_estimated_allocated_size(size_t size);
/* Returns true if p was returned by the Msan allocator and
is not yet freed. */
int __msan_get_ownership(const volatile void *p);
/* Returns the number of bytes reserved for the pointer p.
Requires (get_ownership(p) == true) or (p == 0). */
size_t __msan_get_allocated_size(const volatile void *p);
/* Number of bytes, allocated and not yet freed by the application. */
size_t __msan_get_current_allocated_bytes();
/* Number of bytes, mmaped by msan allocator to fulfill allocation requests.
Generally, for request of X bytes, allocator can reserve and add to free
lists a large number of chunks of size X to use them for future requests.
All these chunks count toward the heap size. Currently, allocator never
releases memory to OS (instead, it just puts freed chunks to free
lists). */
size_t __msan_get_heap_size();
/* Number of bytes, mmaped by msan allocator, which can be used to fulfill
allocation requests. When a user program frees memory chunk, it can first
fall into quarantine and will count toward __msan_get_free_bytes()
later. */
size_t __msan_get_free_bytes();
/* Number of bytes in unmapped pages, that are released to OS. Currently,
always returns 0. */
size_t __msan_get_unmapped_bytes();
/* Malloc hooks that may be optionally provided by user.
__msan_malloc_hook(ptr, size) is called immediately after
allocation of "size" bytes, which returned "ptr".
__msan_free_hook(ptr) is called immediately before
deallocation of "ptr". */
void __msan_malloc_hook(const volatile void *ptr, size_t size);
void __msan_free_hook(const volatile void *ptr);
#else // __has_feature(memory_sanitizer)

View File

@ -1,22 +1,36 @@
# First, add the subdirectories which contain feature-based runtime libraries
# and several convenience helper libraries.
if(CMAKE_SYSTEM_NAME MATCHES "Darwin|Linux")
# Don't build sanitizers in the bootstrap build.
if(LLVM_USE_SANITIZER STREQUAL "")
# AddressSanitizer is supported on Linux and Mac OS X.
# Windows support is work in progress.
add_subdirectory(asan)
add_subdirectory(interception)
add_subdirectory(sanitizer_common)
if(NOT ANDROID)
# 32-bit Windows support is experimental.
if(CMAKE_SYSTEM_NAME MATCHES "Darwin|Linux")
set(SUPPORTS_BUILDING_ASAN TRUE)
elseif(CMAKE_SYSTEM_NAME MATCHES "Windows"
AND MSVC AND CMAKE_SIZEOF_VOID_P EQUAL 4)
set(SUPPORTS_BUILDING_ASAN TRUE)
else()
set(SUPPORTS_BUILDING_ASAN FALSE)
endif()
if(SUPPORTS_BUILDING_ASAN)
add_subdirectory(asan)
add_subdirectory(interception)
add_subdirectory(sanitizer_common)
endif()
if(CMAKE_SYSTEM_NAME MATCHES "Darwin|Linux" AND NOT ANDROID)
# LSan, UBsan and profile can be built on Mac OS and Linux.
add_subdirectory(lsan)
add_subdirectory(profile)
add_subdirectory(ubsan)
endif()
endif()
if("${CMAKE_SYSTEM_NAME}" STREQUAL "Linux" AND NOT ANDROID)
# ThreadSanitizer and MemorySanitizer are supported on Linux only.
add_subdirectory(tsan)
add_subdirectory(msan)
add_subdirectory(msandr)
add_subdirectory(lsan)
if(CMAKE_SYSTEM_NAME MATCHES "Linux" AND NOT ANDROID)
# ThreadSanitizer and MemorySanitizer are supported on Linux only.
add_subdirectory(tsan)
add_subdirectory(msan)
add_subdirectory(msandr)
add_subdirectory(dfsan)
endif()
endif()
# The top-level lib directory contains a large amount of C code which provides
@ -181,10 +195,22 @@ set(i386_SOURCES
i386/umoddi3.S
${GENERIC_SOURCES})
foreach(arch x86_64 i386)
if(CAN_TARGET_${arch})
add_compiler_rt_static_runtime(clang_rt.${arch} ${arch}
SOURCES ${${arch}_SOURCES}
CFLAGS "-std=c99")
endif()
endforeach()
if (NOT WIN32)
foreach(arch x86_64 i386)
if(CAN_TARGET_${arch})
add_compiler_rt_static_runtime(clang_rt.${arch} ${arch}
SOURCES ${${arch}_SOURCES}
CFLAGS "-std=c99")
endif()
endforeach()
endif()
# Generate configs for running lit and unit tests.
configure_lit_site_cfg(
${CMAKE_CURRENT_SOURCE_DIR}/lit.common.configured.in
${CMAKE_CURRENT_BINARY_DIR}/lit.common.configured)
configure_lit_site_cfg(
${CMAKE_CURRENT_SOURCE_DIR}/lit.common.unit.configured.in
${CMAKE_CURRENT_BINARY_DIR}/lit.common.unit.configured)

View File

@ -22,6 +22,7 @@ SubDirs += tsan
SubDirs += msan
SubDirs += ubsan
SubDirs += lsan
SubDirs += dfsan
# Define the variables for this specific directory.
Sources := $(foreach file,$(wildcard $(Dir)/*.c),$(notdir $(file)))

View File

@ -9,19 +9,20 @@
*/
#if __APPLE__
#if __arm__
#include <Availability.h>
#if __IPHONE_OS_VERSION_MIN_REQUIRED
#define NOT_HERE_BEFORE_10_6(sym)
#define NOT_HERE_IN_10_8_AND_EARLIER(sym)
#elif __ppc__
#define NOT_HERE_BEFORE_10_6(sym) \
extern const char sym##_tmp3 __asm("$ld$hide$os10.3$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp3 = 0; \
extern const char sym##_tmp4 __asm("$ld$hide$os10.4$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp4 = 0; \
extern const char sym##_tmp5 __asm("$ld$hide$os10.5$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp5 = 0;
#define NOT_HERE_IN_10_8_AND_EARLIER(sym) \
extern const char sym##_tmp61 __asm("$ld$hide$os6.1$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp61 = 0; \
extern const char sym##_tmp60 __asm("$ld$hide$os6.0$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp60 = 0; \
extern const char sym##_tmp51 __asm("$ld$hide$os5.1$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp51 = 0; \
extern const char sym##_tmp50 __asm("$ld$hide$os5.0$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp50 = 0;
#else
#define NOT_HERE_BEFORE_10_6(sym) \
extern const char sym##_tmp4 __asm("$ld$hide$os10.4$_" #sym ); \
@ -35,7 +36,7 @@
__attribute__((visibility("default"))) const char sym##_tmp7 = 0; \
extern const char sym##_tmp6 __asm("$ld$hide$os10.6$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp6 = 0;
#endif /* __ppc__ */
#endif
/* Symbols in libSystem.dylib in 10.6 and later,

View File

@ -9,7 +9,7 @@
ModuleName := builtins
SubDirs :=
OnlyArchs := armv5 armv6 armv7 armv7f armv7k armv7s
OnlyArchs := armv5 armv6 armv7 armv7f armv7k armv7m armv7em armv7s
AsmSources := $(foreach file,$(wildcard $(Dir)/*.S),$(notdir $(file)))
Sources := $(foreach file,$(wildcard $(Dir)/*.c),$(notdir $(file)))

View File

@ -59,12 +59,14 @@ DEFINE_COMPILERRT_FUNCTION(__nesf2)
// Next, we check if a and b have the same or different signs. If they have
// opposite signs, this eor will set the N flag.
it ne
eorsne r12, r0, r1
// If a and b are equal (either both zeros or bit identical; again, we're
// ignoring NaNs for now), this subtract will zero out r0. If they have the
// same sign, the flags are updated as they would be for a comparison of the
// absolute values of a and b.
it pl
subspl r0, r2, r3
// If a is smaller in magnitude than b and both have the same sign, place
@ -77,23 +79,27 @@ DEFINE_COMPILERRT_FUNCTION(__nesf2)
// still clear from the shift argument in orrs; if a is positive and b
// negative, this places 0 in r0; if a is negative and b positive, -1 is
// placed in r0.
it lo
mvnlo r0, r1, asr #31
// If a is greater in magnitude than b and both have the same sign, place
// the sign of b in r0. Thus, if both are negative and a < b, -1 is placed
// in r0, which is the desired result. Conversely, if both are positive
// and a > b, zero is placed in r0.
it hi
movhi r0, r1, asr #31
// If you've been keeping track, at this point r0 contains -1 if a < b and
// 0 if a >= b. All that remains to be done is to set it to 1 if a > b.
// If a == b, then the Z flag is set, so we can get the correct final value
// into r0 by simply or'ing with 1 if Z is clear.
orrne r0, r0, #1
it ne
orrne r0, r0, #1
// Finally, we need to deal with NaNs. If either argument is NaN, replace
// the value in r0 with 1.
cmp r2, #0xff000000
ite ls
cmpls r3, #0xff000000
movhi r0, #1
bx lr
@ -108,12 +114,18 @@ DEFINE_COMPILERRT_FUNCTION(__gtsf2)
mov r2, r0, lsl #1
mov r3, r1, lsl #1
orrs r12, r2, r3, lsr #1
it ne
eorsne r12, r0, r1
it pl
subspl r0, r2, r3
it lo
mvnlo r0, r1, asr #31
it hi
movhi r0, r1, asr #31
orrne r0, r0, #1
it ne
orrne r0, r0, #1
cmp r2, #0xff000000
ite ls
cmpls r3, #0xff000000
movhi r0, #-1
bx lr
@ -125,6 +137,7 @@ DEFINE_COMPILERRT_FUNCTION(__unordsf2)
mov r3, r1, lsl #1
mov r0, #0
cmp r2, #0xff000000
ite ls
cmpls r3, #0xff000000
movhi r0, #1
bx lr

View File

@ -24,7 +24,7 @@
.syntax unified
.align 3
DEFINE_COMPILERRT_FUNCTION(__divmodsi4)
#if __ARM_ARCH_7S__
#if __ARM_ARCH_EXT_IDIV__
tst r1, r1
beq LOCAL_LABEL(divzero)
mov r3, r0

View File

@ -25,7 +25,7 @@
// Ok, APCS and AAPCS agree on 32 bit args, so it's safe to use the same routine.
DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_idiv, __divsi3)
DEFINE_COMPILERRT_FUNCTION(__divsi3)
#if __ARM_ARCH_7S__
#if __ARM_ARCH_EXT_IDIV__
tst r1,r1
beq LOCAL_LABEL(divzero)
sdiv r0, r0, r1

View File

@ -23,7 +23,7 @@
.syntax unified
.align 3
DEFINE_COMPILERRT_FUNCTION(__modsi3)
#if __ARM_ARCH_7S__
#if __ARM_ARCH_EXT_IDIV__
tst r1, r1
beq LOCAL_LABEL(divzero)
sdiv r2, r0, r1

View File

@ -34,8 +34,9 @@ DEFINE_COMPILERRT_PRIVATE_FUNCTION(__switch16)
ldrh ip, [lr, #-1] // get first 16-bit word in table
cmp r0, ip // compare with index
add r0, lr, r0, lsl #1 // compute address of element in table
ldrshcc r0, [r0, #1] // load 16-bit element if r0 is in range
add ip, lr, ip, lsl #1 // compute address of last element in table
ite lo
ldrshlo r0, [r0, #1] // load 16-bit element if r0 is in range
ldrshhs r0, [ip, #1] // load 16-bit element if r0 out of range
add ip, lr, r0, lsl #1 // compute label = lr + element*2
bx ip // jump to computed label

View File

@ -34,9 +34,10 @@ DEFINE_COMPILERRT_PRIVATE_FUNCTION(__switch32)
ldr ip, [lr, #-1] // get first 32-bit word in table
cmp r0, ip // compare with index
add r0, lr, r0, lsl #2 // compute address of element in table
ldrcc r0, [r0, #3] // load 32-bit element if r0 is in range
add ip, lr, ip, lsl #2 // compute address of last element in table
ldrcs r0, [ip, #3] // load 32-bit element if r0 out of range
ite lo
ldrlo r0, [r0, #3] // load 32-bit element if r0 is in range
ldrhs r0, [ip, #3] // load 32-bit element if r0 out of range
add ip, lr, r0 // compute label = lr + element
bx ip // jump to computed label

View File

@ -33,7 +33,8 @@
DEFINE_COMPILERRT_PRIVATE_FUNCTION(__switch8)
ldrb ip, [lr, #-1] // get first byte in table
cmp r0, ip // signed compare with index
ldrsbcc r0, [lr, r0] // get indexed byte out of table
ite lo
ldrsblo r0, [lr, r0] // get indexed byte out of table
ldrsbhs r0, [lr, ip] // if out of range, use last entry in table
add ip, lr, r0, lsl #1 // compute label = lr + element*2
bx ip // jump to computed label

View File

@ -33,7 +33,8 @@
DEFINE_COMPILERRT_PRIVATE_FUNCTION(__switchu8)
ldrb ip, [lr, #-1] // get first byte in table
cmp r0, ip // compare with index
ldrbcc r0, [lr, r0] // get indexed byte out of table
ite lo
ldrblo r0, [lr, r0] // get indexed byte out of table
ldrbhs r0, [lr, ip] // if out of range, use last entry in table
add ip, lr, r0, lsl #1 // compute label = lr + element*2
bx ip // jump to computed label

View File

@ -31,7 +31,7 @@
.syntax unified
.align 3
DEFINE_COMPILERRT_FUNCTION(__udivmodsi4)
#if __ARM_ARCH_7S__
#if __ARM_ARCH_EXT_IDIV__
tst r1, r1
beq LOCAL_LABEL(divzero)
mov r3, r0
@ -74,14 +74,17 @@ LOCAL_LABEL(mainLoop):
// this way, we can merge the two branches which is a substantial win for
// such a tight loop on current ARM architectures.
subs r, a, b, lsl i
itt hs
orrhs q, q,one, lsl i
movhs a, r
it ne
subsne i, i, #1
bhi LOCAL_LABEL(mainLoop)
// Do the final test subtraction and update of quotient (i == 0), as it is
// not performed in the main loop.
subs r, a, b
itt hs
orrhs q, #1
movhs a, r

View File

@ -33,7 +33,7 @@
// Ok, APCS and AAPCS agree on 32 bit args, so it's safe to use the same routine.
DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_uidiv, __udivsi3)
DEFINE_COMPILERRT_FUNCTION(__udivsi3)
#if __ARM_ARCH_7S__
#if __ARM_ARCH_EXT_IDIV__
tst r1,r1
beq LOCAL_LABEL(divzero)
udiv r0, r0, r1
@ -73,14 +73,17 @@ LOCAL_LABEL(mainLoop):
// this way, we can merge the two branches which is a substantial win for
// such a tight loop on current ARM architectures.
subs r, a, b, lsl i
itt hs
orrhs q, q,one, lsl i
movhs a, r
it ne
subsne i, i, #1
bhi LOCAL_LABEL(mainLoop)
// Do the final test subtraction and update of quotient (i == 0), as it is
// not performed in the main loop.
subs r, a, b
it hs
orrhs q, #1
LOCAL_LABEL(return):

View File

@ -23,7 +23,7 @@
.syntax unified
.align 3
DEFINE_COMPILERRT_FUNCTION(__umodsi3)
#if __ARM_ARCH_7S__
#if __ARM_ARCH_EXT_IDIV__
tst r1, r1
beq LOCAL_LABEL(divzero)
udiv r2, r0, r1
@ -57,13 +57,16 @@ LOCAL_LABEL(mainLoop):
// this way, we can merge the two branches which is a substantial win for
// such a tight loop on current ARM architectures.
subs r, a, b, lsl i
it hs
movhs a, r
it ne
subsne i, i, #1
bhi LOCAL_LABEL(mainLoop)
// Do the final test subtraction and update of remainder (i == 0), as it is
// not performed in the main loop.
subs r, a, b
it hs
movhs a, r
bx lr
#endif

View File

@ -19,18 +19,19 @@ set(ASAN_SOURCES
asan_stack.cc
asan_stats.cc
asan_thread.cc
asan_win.cc
)
set(ASAN_DYLIB_SOURCES
${ASAN_SOURCES}
)
asan_win.cc)
include_directories(..)
set(ASAN_CFLAGS
${SANITIZER_COMMON_CFLAGS}
-fno-rtti)
if (NOT MSVC)
set(ASAN_CFLAGS
${SANITIZER_COMMON_CFLAGS}
-fno-rtti)
else()
set(ASAN_CFLAGS
${SANITIZER_COMMON_CFLAGS}
/GR-)
endif()
set(ASAN_COMMON_DEFINITIONS
ASAN_HAS_EXCEPTIONS=1)
@ -40,6 +41,10 @@ if(ANDROID)
ASAN_FLEXIBLE_MAPPING_AND_OFFSET=0
ASAN_NEEDS_SEGV=0
ASAN_LOW_MEMORY=1)
elseif(MSVC)
list(APPEND ASAN_COMMON_DEFINITIONS
ASAN_FLEXIBLE_MAPPING_AND_OFFSET=0
ASAN_NEEDS_SEGV=0)
else()
list(APPEND ASAN_COMMON_DEFINITIONS
ASAN_FLEXIBLE_MAPPING_AND_OFFSET=1
@ -48,29 +53,55 @@ endif()
# Architectures supported by ASan.
filter_available_targets(ASAN_SUPPORTED_ARCH
x86_64 i386 powerpc64 powerpc)
x86_64 i386 powerpc64)
# Compile ASan sources into an object library.
if(APPLE)
foreach(os ${SANITIZER_COMMON_SUPPORTED_DARWIN_OS})
add_compiler_rt_darwin_object_library(RTAsan ${os}
ARCH ${ASAN_SUPPORTED_ARCH}
SOURCES ${ASAN_SOURCES}
CFLAGS ${ASAN_CFLAGS}
DEFS ${ASAN_COMMON_DEFINITIONS})
endforeach()
elseif(ANDROID)
add_library(RTAsan.arm.android OBJECT ${ASAN_SOURCES})
set_target_compile_flags(RTAsan.arm.android ${ASAN_CFLAGS})
set_property(TARGET RTAsan.arm.android APPEND PROPERTY
COMPILE_DEFINITIONS ${ASAN_COMMON_DEFINITIONS})
else()
foreach(arch ${ASAN_SUPPORTED_ARCH})
add_compiler_rt_object_library(RTAsan ${arch}
SOURCES ${ASAN_SOURCES} CFLAGS ${ASAN_CFLAGS}
DEFS ${ASAN_COMMON_DEFINITIONS})
endforeach()
endif()
# Build ASan runtimes shipped with Clang.
set(ASAN_RUNTIME_LIBRARIES)
if(APPLE)
# Build universal binary on APPLE.
add_compiler_rt_osx_dynamic_runtime(clang_rt.asan_osx_dynamic
ARCH ${ASAN_SUPPORTED_ARCH}
SOURCES ${ASAN_DYLIB_SOURCES}
$<TARGET_OBJECTS:RTInterception.osx>
$<TARGET_OBJECTS:RTSanitizerCommon.osx>
CFLAGS ${ASAN_CFLAGS}
DEFS ${ASAN_COMMON_DEFINITIONS}
foreach (os ${SANITIZER_COMMON_SUPPORTED_DARWIN_OS})
# Dynamic lookup is needed because shadow scale and offset are
# provided by the instrumented modules.
LINKFLAGS "-framework Foundation"
"-undefined dynamic_lookup")
list(APPEND ASAN_RUNTIME_LIBRARIES clang_rt.asan_osx_dynamic)
set(ASAN_RUNTIME_LDFLAGS
"-undefined dynamic_lookup")
add_compiler_rt_darwin_dynamic_runtime(clang_rt.asan_${os}_dynamic ${os}
ARCH ${ASAN_SUPPORTED_ARCH}
SOURCES $<TARGET_OBJECTS:RTAsan.${os}>
$<TARGET_OBJECTS:RTInterception.${os}>
$<TARGET_OBJECTS:RTSanitizerCommon.${os}>
$<TARGET_OBJECTS:RTLSanCommon.${os}>
CFLAGS ${ASAN_CFLAGS}
DEFS ${ASAN_COMMON_DEFINITIONS}
LINKFLAGS ${ASAN_RUNTIME_LDFLAGS})
list(APPEND ASAN_RUNTIME_LIBRARIES clang_rt.asan_${os}_dynamic)
endforeach()
elseif(ANDROID)
add_library(clang_rt.asan-arm-android SHARED
${ASAN_SOURCES}
$<TARGET_OBJECTS:RTAsan.arm.android>
$<TARGET_OBJECTS:RTInterception.arm.android>
$<TARGET_OBJECTS:RTSanitizerCommon.arm.android>
)
$<TARGET_OBJECTS:RTSanitizerCommon.arm.android>)
set_target_compile_flags(clang_rt.asan-arm-android
${ASAN_CFLAGS})
set_property(TARGET clang_rt.asan-arm-android APPEND PROPERTY
@ -78,23 +109,44 @@ elseif(ANDROID)
target_link_libraries(clang_rt.asan-arm-android dl)
list(APPEND ASAN_RUNTIME_LIBRARIES clang_rt.asan-arm-android)
else()
# Otherwise, build separate libraries for each target.
# Build separate libraries for each target.
foreach(arch ${ASAN_SUPPORTED_ARCH})
set(ASAN_RUNTIME_OBJECTS
$<TARGET_OBJECTS:RTAsan.${arch}>
$<TARGET_OBJECTS:RTInterception.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommon.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommonLibc.${arch}>)
if (NOT WIN32)
# We can't build Leak Sanitizer on Windows yet.
list(APPEND ASAN_RUNTIME_OBJECTS $<TARGET_OBJECTS:RTLSanCommon.${arch}>)
endif()
add_compiler_rt_static_runtime(clang_rt.asan-${arch} ${arch}
SOURCES ${ASAN_SOURCES}
$<TARGET_OBJECTS:RTInterception.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommon.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommonLibc.${arch}>
$<TARGET_OBJECTS:RTLSanCommon.${arch}>
SOURCES ${ASAN_RUNTIME_OBJECTS}
CFLAGS ${ASAN_CFLAGS}
DEFS ${ASAN_COMMON_DEFINITIONS}
SYMS asan.syms)
DEFS ${ASAN_COMMON_DEFINITIONS})
list(APPEND ASAN_RUNTIME_LIBRARIES clang_rt.asan-${arch})
if (UNIX AND NOT ${arch} STREQUAL "i386")
add_sanitizer_rt_symbols(clang_rt.asan-${arch} asan.syms.extra)
list(APPEND ASAN_RUNTIME_LIBRARIES clang_rt.asan-${arch}-symbols)
endif()
if (WIN32)
add_compiler_rt_static_runtime(clang_rt.asan_dll_thunk-${arch} ${arch}
SOURCES asan_dll_thunk.cc
CFLAGS ${ASAN_CFLAGS} -DASAN_DLL_THUNK
DEFS ${ASAN_COMMON_DEFINITIONS})
list(APPEND ASAN_RUNTIME_LIBRARIES clang_rt.asan_dll_thunk-${arch})
endif()
endforeach()
endif()
add_compiler_rt_resource_file(asan_blacklist asan_blacklist.txt)
# All ASan runtime dependencies.
add_custom_target(asan_runtime_libraries
DEPENDS asan_blacklist ${ASAN_RUNTIME_LIBRARIES})
if(LLVM_INCLUDE_TESTS)
add_subdirectory(tests)
endif()

View File

@ -1,5 +0,0 @@
{
__asan_*;
__sanitizer_syscall_pre_*;
__sanitizer_syscall_post_*;
};

3
lib/asan/asan.syms.extra Normal file
View File

@ -0,0 +1,3 @@
__asan_*
__lsan_*
__ubsan_*

View File

@ -35,10 +35,11 @@ void InitializeAllocator();
class AsanChunkView {
public:
explicit AsanChunkView(AsanChunk *chunk) : chunk_(chunk) {}
bool IsValid() { return chunk_ != 0; }
uptr Beg(); // first byte of user memory.
uptr End(); // last byte of user memory.
uptr UsedSize(); // size requested by the user.
bool IsValid(); // Checks if AsanChunkView points to a valid allocated
// or quarantined chunk.
uptr Beg(); // First byte of user memory.
uptr End(); // Last byte of user memory.
uptr UsedSize(); // Size requested by the user.
uptr AllocTid();
uptr FreeTid();
void GetAllocStack(StackTrace *stack);
@ -114,7 +115,7 @@ void *asan_pvalloc(uptr size, StackTrace *stack);
int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack);
uptr asan_malloc_usable_size(void *ptr, StackTrace *stack);
uptr asan_malloc_usable_size(void *ptr, uptr pc, uptr bp);
uptr asan_mz_size(const void *ptr);
void asan_mz_force_lock();

View File

@ -94,7 +94,7 @@ AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
static Allocator allocator;
static const uptr kMaxAllowedMallocSize =
FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
static const uptr kMaxThreadLocalQuarantine =
FIRST_32_SECOND_64(1 << 18, 1 << 20);
@ -146,14 +146,15 @@ static uptr ComputeRZLog(uptr user_requested_size) {
// ChunkBase consists of ChunkHeader and other bytes that overlap with user
// memory.
// If a memory chunk is allocated by memalign and we had to increase the
// allocation size to achieve the proper alignment, then we store this magic
// If the left redzone is greater than the ChunkHeader size we store a magic
// value in the first uptr word of the memory block and store the address of
// ChunkBase in the next uptr.
// M B ? ? ? L L L L L L H H U U U U U U
// M -- magic value kMemalignMagic
// M B L L L L L L L L L H H U U U U U U
// | ^
// ---------------------|
// M -- magic value kAllocBegMagic
// B -- address of ChunkHeader pointing to the first 'H'
static const uptr kMemalignMagic = 0xCC6E96B9;
static const uptr kAllocBegMagic = 0xCC6E96B9;
struct ChunkHeader {
// 1-st 8 bytes.
@ -185,14 +186,19 @@ COMPILER_CHECK(kChunkHeader2Size <= 16);
struct AsanChunk: ChunkBase {
uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
uptr UsedSize() {
uptr UsedSize(bool locked_version = false) {
if (user_requested_size != SizeClassMap::kMaxSize)
return user_requested_size;
return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
return *reinterpret_cast<uptr *>(
allocator.GetMetaData(AllocBeg(locked_version)));
}
void *AllocBeg() {
if (from_memalign)
void *AllocBeg(bool locked_version = false) {
if (from_memalign) {
if (locked_version)
return allocator.GetBlockBeginFastLocked(
reinterpret_cast<void *>(this));
return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
}
return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
}
// If we don't use stack depot, we store the alloc/free stack traces
@ -212,11 +218,14 @@ struct AsanChunk: ChunkBase {
uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
return (available - kChunkHeader2Size) / sizeof(u32);
}
bool AddrIsInside(uptr addr) {
return (addr >= Beg()) && (addr < Beg() + UsedSize());
bool AddrIsInside(uptr addr, bool locked_version = false) {
return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
}
};
bool AsanChunkView::IsValid() {
return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
}
uptr AsanChunkView::Beg() { return chunk_->Beg(); }
uptr AsanChunkView::End() { return Beg() + UsedSize(); }
uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
@ -227,25 +236,16 @@ static void GetStackTraceFromId(u32 id, StackTrace *stack) {
CHECK(id);
uptr size = 0;
const uptr *trace = StackDepotGet(id, &size);
CHECK_LT(size, kStackTraceMax);
internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
stack->size = size;
CHECK(trace);
stack->CopyFrom(trace, size);
}
void AsanChunkView::GetAllocStack(StackTrace *stack) {
if (flags()->use_stack_depot)
GetStackTraceFromId(chunk_->alloc_context_id, stack);
else
StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
chunk_->AllocStackSize());
GetStackTraceFromId(chunk_->alloc_context_id, stack);
}
void AsanChunkView::GetFreeStack(StackTrace *stack) {
if (flags()->use_stack_depot)
GetStackTraceFromId(chunk_->free_context_id, stack);
else
StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
chunk_->FreeStackSize());
GetStackTraceFromId(chunk_->free_context_id, stack);
}
struct QuarantineCallback;
@ -276,10 +276,13 @@ struct QuarantineCallback {
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
kAsanHeapLeftRedzoneMagic);
void *p = reinterpret_cast<void *>(m->AllocBeg());
if (m->from_memalign) {
uptr *memalign_magic = reinterpret_cast<uptr *>(p);
CHECK_EQ(memalign_magic[0], kMemalignMagic);
CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
if (p != m) {
uptr *alloc_magic = reinterpret_cast<uptr *>(p);
CHECK_EQ(alloc_magic[0], kAllocBegMagic);
// Clear the magic value, as allocator internals may overwrite the
// contents of deallocated chunk, confusing GetAsanChunk lookup.
alloc_magic[0] = 0;
CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
}
// Statistics.
@ -341,7 +344,7 @@ static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
(void*)size);
return 0;
return AllocatorReturnNull();
}
AsanThread *t = GetCurrentThread();
@ -355,8 +358,6 @@ static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
allocated = allocator.Allocate(cache, needed_size, 8, false);
}
uptr alloc_beg = reinterpret_cast<uptr>(allocated);
// Clear the first allocated word (an old kMemalignMagic may still be there).
reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
uptr alloc_end = alloc_beg + needed_size;
uptr beg_plus_redzone = alloc_beg + rz_size;
uptr user_beg = beg_plus_redzone;
@ -373,11 +374,10 @@ static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
m->free_tid = kInvalidTid;
m->from_memalign = user_beg != beg_plus_redzone;
if (m->from_memalign) {
CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
memalign_magic[0] = kMemalignMagic;
memalign_magic[1] = chunk_beg;
if (alloc_beg != chunk_beg) {
CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
}
if (using_primary_allocator) {
CHECK(size);
@ -391,12 +391,7 @@ static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
meta[1] = chunk_beg;
}
if (fl.use_stack_depot) {
m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
} else {
m->alloc_context_id = 0;
StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
}
m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
// Unpoison the bulk of the memory region.
@ -405,7 +400,7 @@ static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
// Deal with the end of the region if size is not aligned to granularity.
if (size != size_rounded_down_to_granularity && fl.poison_heap) {
u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
*shadow = size & (SHADOW_GRANULARITY - 1);
*shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
}
AsanStats &thread_stats = GetCurrentThreadStats();
@ -422,23 +417,30 @@ static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
REAL(memset)(res, fl.malloc_fill_byte, fill_size);
}
#if CAN_SANITIZE_LEAKS
m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
: __lsan::kDirectlyLeaked;
#endif
// Must be the last mutation of metadata in this function.
atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
ASAN_MALLOC_HOOK(res, size);
return res;
}
static void ReportInvalidFree(void *ptr, u8 chunk_state, StackTrace *stack) {
if (chunk_state == CHUNK_QUARANTINE)
ReportDoubleFree((uptr)ptr, stack);
else
ReportFreeNotMalloced((uptr)ptr, stack);
}
static void AtomicallySetQuarantineFlag(AsanChunk *m,
void *ptr, StackTrace *stack) {
u8 old_chunk_state = CHUNK_ALLOCATED;
// Flip the chunk_state atomically to avoid race on double-free.
if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
CHUNK_QUARANTINE, memory_order_acquire)) {
if (old_chunk_state == CHUNK_QUARANTINE)
ReportDoubleFree((uptr)ptr, stack);
else
ReportFreeNotMalloced((uptr)ptr, stack);
}
CHUNK_QUARANTINE, memory_order_acquire))
ReportInvalidFree(ptr, old_chunk_state, stack);
CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
}
@ -448,12 +450,6 @@ static void QuarantineChunk(AsanChunk *m, void *ptr,
StackTrace *stack, AllocType alloc_type) {
CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
// FIXME: if the free hook produces an ASan report (e.g. due to a bug),
// printing the report may crash as the AsanChunk free-related fields have not
// been updated yet. We might need to introduce yet another chunk state to
// handle this correctly, but don't want to yet.
ASAN_FREE_HOOK(ptr);
if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
ReportAllocTypeMismatch((uptr)ptr, stack,
(AllocType)m->alloc_type, (AllocType)alloc_type);
@ -463,12 +459,7 @@ static void QuarantineChunk(AsanChunk *m, void *ptr,
CHECK_EQ(m->free_tid, kInvalidTid);
AsanThread *t = GetCurrentThread();
m->free_tid = t ? t->tid() : 0;
if (flags()->use_stack_depot) {
m->free_context_id = StackDepotPut(stack->trace, stack->size);
} else {
m->free_context_id = 0;
StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
}
m->free_context_id = StackDepotPut(stack->trace, stack->size);
// Poison the region.
PoisonShadow(m->Beg(),
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
@ -498,6 +489,7 @@ static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
uptr chunk_beg = p - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
ASAN_FREE_HOOK(ptr);
// Must mark the chunk as quarantined before any changes to its metadata.
AtomicallySetQuarantineFlag(m, ptr, stack);
QuarantineChunk(m, ptr, stack, alloc_type);
@ -513,50 +505,45 @@ static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
thread_stats.reallocs++;
thread_stats.realloced += new_size;
// Must mark the chunk as quarantined before any changes to its metadata.
// This also ensures that other threads can't deallocate it in the meantime.
AtomicallySetQuarantineFlag(m, old_ptr, stack);
uptr old_size = m->UsedSize();
uptr memcpy_size = Min(new_size, old_size);
void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
if (new_ptr) {
u8 chunk_state = m->chunk_state;
if (chunk_state != CHUNK_ALLOCATED)
ReportInvalidFree(old_ptr, chunk_state, stack);
CHECK_NE(REAL(memcpy), (void*)0);
uptr memcpy_size = Min(new_size, m->UsedSize());
// If realloc() races with free(), we may start copying freed memory.
// However, we will report racy double-free later anyway.
REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
QuarantineChunk(m, old_ptr, stack, FROM_MALLOC);
Deallocate(old_ptr, stack, FROM_MALLOC);
}
return new_ptr;
}
static AsanChunk *GetAsanChunkByAddr(uptr p) {
void *ptr = reinterpret_cast<void *>(p);
uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
// Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
static AsanChunk *GetAsanChunk(void *alloc_beg) {
if (!alloc_beg) return 0;
uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
if (memalign_magic[0] == kMemalignMagic) {
AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
CHECK(m->from_memalign);
return m;
}
if (!allocator.FromPrimary(ptr)) {
uptr *meta = reinterpret_cast<uptr *>(
allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
if (!allocator.FromPrimary(alloc_beg)) {
uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
return m;
}
uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
CHECK_LE(actual_size, SizeClassMap::kMaxSize);
// We know the actually allocted size, but we don't know the redzone size.
// Just try all possible redzone sizes.
for (u32 rz_log = 0; rz_log < 8; rz_log++) {
u32 rz_size = RZLog2Size(rz_log);
uptr max_possible_size = actual_size - rz_size;
if (ComputeRZLog(max_possible_size) != rz_log)
continue;
return reinterpret_cast<AsanChunk *>(
alloc_beg + rz_size - kChunkHeaderSize);
}
return 0;
uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
if (alloc_magic[0] == kAllocBegMagic)
return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
return reinterpret_cast<AsanChunk *>(alloc_beg);
}
static AsanChunk *GetAsanChunkByAddr(uptr p) {
void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
return GetAsanChunk(alloc_beg);
}
// Allocator must be locked when this function is called.
static AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
void *alloc_beg =
allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
return GetAsanChunk(alloc_beg);
}
static uptr AllocationSize(uptr p) {
@ -621,24 +608,22 @@ void PrintInternalAllocatorStats() {
allocator.PrintStats();
}
SANITIZER_INTERFACE_ATTRIBUTE
void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
AllocType alloc_type) {
return Allocate(size, alignment, stack, alloc_type, true);
}
SANITIZER_INTERFACE_ATTRIBUTE
void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
Deallocate(ptr, stack, alloc_type);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *asan_malloc(uptr size, StackTrace *stack) {
return Allocate(size, 8, stack, FROM_MALLOC, true);
}
void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
if (CallocShouldReturnNullDueToOverflow(size, nmemb))
return AllocatorReturnNull();
void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
// If the memory comes from the secondary allocator no need to clear it
// as it comes directly from mmap.
@ -679,12 +664,13 @@ int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
return 0;
}
uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
CHECK(stack);
uptr asan_malloc_usable_size(void *ptr, uptr pc, uptr bp) {
if (ptr == 0) return 0;
uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
if (flags()->check_malloc_usable_size && (usable_size == 0))
ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
if (flags()->check_malloc_usable_size && (usable_size == 0)) {
GET_STACK_TRACE_FATAL(pc, bp);
ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
}
return usable_size;
}
@ -719,25 +705,26 @@ void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
*end = *begin + sizeof(__asan::allocator);
}
void *PointsIntoChunk(void* p) {
uptr PointsIntoChunk(void* p) {
uptr addr = reinterpret_cast<uptr>(p);
__asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
__asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
if (!m) return 0;
uptr chunk = m->Beg();
if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr))
return reinterpret_cast<void *>(chunk);
if ((m->chunk_state == __asan::CHUNK_ALLOCATED) &&
m->AddrIsInside(addr, /*locked_version=*/true))
return chunk;
return 0;
}
void *GetUserBegin(void *p) {
__asan::AsanChunk *m = __asan::GetAsanChunkByAddr(reinterpret_cast<uptr>(p));
uptr GetUserBegin(uptr chunk) {
__asan::AsanChunk *m =
__asan::GetAsanChunkByAddrFastLocked(chunk);
CHECK(m);
return reinterpret_cast<void *>(m->Beg());
return m->Beg();
}
LsanMetadata::LsanMetadata(void *chunk) {
uptr addr = reinterpret_cast<uptr>(chunk);
metadata_ = reinterpret_cast<void *>(addr - __asan::kChunkHeaderSize);
LsanMetadata::LsanMetadata(uptr chunk) {
metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
}
bool LsanMetadata::allocated() const {
@ -757,7 +744,7 @@ void LsanMetadata::set_tag(ChunkTag value) {
uptr LsanMetadata::requested_size() const {
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
return m->UsedSize();
return m->UsedSize(/*locked_version=*/true);
}
u32 LsanMetadata::stack_trace_id() const {
@ -765,18 +752,23 @@ u32 LsanMetadata::stack_trace_id() const {
return m->alloc_context_id;
}
template <typename Callable> void ForEachChunk(Callable const &callback) {
__asan::allocator.ForEachChunk(callback);
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
__asan::allocator.ForEachChunk(callback, arg);
}
IgnoreObjectResult IgnoreObjectLocked(const void *p) {
uptr addr = reinterpret_cast<uptr>(p);
__asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
if (!m) return kIgnoreObjectInvalid;
if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
if (m->lsan_tag == kIgnored)
return kIgnoreObjectAlreadyIgnored;
m->lsan_tag = __lsan::kIgnored;
return kIgnoreObjectSuccess;
} else {
return kIgnoreObjectInvalid;
}
}
#if CAN_SANITIZE_LEAKS
template void ForEachChunk<ProcessPlatformSpecificAllocationsCb>(
ProcessPlatformSpecificAllocationsCb const &callback);
template void ForEachChunk<PrintLeakedCb>(PrintLeakedCb const &callback);
template void ForEachChunk<CollectLeaksCb>(CollectLeaksCb const &callback);
template void ForEachChunk<MarkIndirectlyLeakedCb>(
MarkIndirectlyLeakedCb const &callback);
template void ForEachChunk<ClearTagCb>(ClearTagCb const &callback);
#endif // CAN_SANITIZE_LEAKS
} // namespace __lsan
// ---------------------- Interface ---------------- {{{1
@ -808,12 +800,12 @@ uptr __asan_get_allocated_size(const void *p) {
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
extern "C" {
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __asan_malloc_hook(void *ptr, uptr size) {
(void)ptr;
(void)size;
}
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __asan_free_hook(void *ptr) {
(void)ptr;
}

View File

@ -6,5 +6,5 @@
# fun:*bad_function_name*
# src:file_with_tricky_code.cc
# global:*global_with_bad_access_or_initialization*
# global-init:*global_with_initialization_issues*
# global-init-type:*Namespace::ClassName*
# global:*global_with_initialization_issues*=init
# type:*Namespace::ClassName*=init

196
lib/asan/asan_dll_thunk.cc Normal file
View File

@ -0,0 +1,196 @@
//===-- asan_dll_thunk.cc -------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// This file defines a family of thunks that should be statically linked into
// the DLLs that have ASan instrumentation in order to delegate the calls to the
// shared runtime that lives in the main binary.
// See https://code.google.com/p/address-sanitizer/issues/detail?id=209 for the
// details.
//===----------------------------------------------------------------------===//
// Only compile this code when buidling asan_dll_thunk.lib
// Using #ifdef rather than relying on Makefiles etc.
// simplifies the build procedure.
#ifdef ASAN_DLL_THUNK
// ----------------- Helper functions and macros --------------------- {{{1
extern "C" {
void *__stdcall GetModuleHandleA(const char *module_name);
void *__stdcall GetProcAddress(void *module, const char *proc_name);
void abort();
}
static void *getRealProcAddressOrDie(const char *name) {
void *ret = GetProcAddress(GetModuleHandleA(0), name);
if (!ret)
abort();
return ret;
}
#define WRAP_V_V(name) \
extern "C" void name() { \
typedef void (*fntype)(); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
fn(); \
}
#define WRAP_V_W(name) \
extern "C" void name(void *arg) { \
typedef void (*fntype)(void *arg); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
fn(arg); \
}
#define WRAP_V_WW(name) \
extern "C" void name(void *arg1, void *arg2) { \
typedef void (*fntype)(void *, void *); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
fn(arg1, arg2); \
}
#define WRAP_V_WWW(name) \
extern "C" void name(void *arg1, void *arg2, void *arg3) { \
typedef void *(*fntype)(void *, void *, void *); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
fn(arg1, arg2, arg3); \
}
#define WRAP_W_V(name) \
extern "C" void *name() { \
typedef void *(*fntype)(); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
return fn(); \
}
#define WRAP_W_W(name) \
extern "C" void *name(void *arg) { \
typedef void *(*fntype)(void *arg); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
return fn(arg); \
}
#define WRAP_W_WW(name) \
extern "C" void *name(void *arg1, void *arg2) { \
typedef void *(*fntype)(void *, void *); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
return fn(arg1, arg2); \
}
#define WRAP_W_WWW(name) \
extern "C" void *name(void *arg1, void *arg2, void *arg3) { \
typedef void *(*fntype)(void *, void *, void *); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
return fn(arg1, arg2, arg3); \
}
#define WRAP_W_WWWW(name) \
extern "C" void *name(void *arg1, void *arg2, void *arg3, void *arg4) { \
typedef void *(*fntype)(void *, void *, void *, void *); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
return fn(arg1, arg2, arg3, arg4); \
}
#define WRAP_W_WWWWW(name) \
extern "C" void *name(void *arg1, void *arg2, void *arg3, void *arg4, \
void *arg5) { \
typedef void *(*fntype)(void *, void *, void *, void *, void *); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
return fn(arg1, arg2, arg3, arg4, arg5); \
}
#define WRAP_W_WWWWWW(name) \
extern "C" void *name(void *arg1, void *arg2, void *arg3, void *arg4, \
void *arg5, void *arg6) { \
typedef void *(*fntype)(void *, void *, void *, void *, void *, void *); \
static fntype fn = (fntype)getRealProcAddressOrDie(#name); \
return fn(arg1, arg2, arg3, arg4, arg5, arg6); \
}
// }}}
// ----------------- ASan own interface functions --------------------
WRAP_W_V(__asan_should_detect_stack_use_after_return)
extern "C" {
int __asan_option_detect_stack_use_after_return;
// Manually wrap __asan_init as we need to initialize
// __asan_option_detect_stack_use_after_return afterwards.
void __asan_init_v3() {
typedef void (*fntype)();
static fntype fn = (fntype)getRealProcAddressOrDie("__asan_init_v3");
fn();
__asan_option_detect_stack_use_after_return =
(__asan_should_detect_stack_use_after_return() != 0);
}
}
WRAP_V_W(__asan_report_store1)
WRAP_V_W(__asan_report_store2)
WRAP_V_W(__asan_report_store4)
WRAP_V_W(__asan_report_store8)
WRAP_V_W(__asan_report_store16)
WRAP_V_WW(__asan_report_store_n)
WRAP_V_W(__asan_report_load1)
WRAP_V_W(__asan_report_load2)
WRAP_V_W(__asan_report_load4)
WRAP_V_W(__asan_report_load8)
WRAP_V_W(__asan_report_load16)
WRAP_V_WW(__asan_report_load_n)
WRAP_V_WW(__asan_register_globals)
WRAP_V_WW(__asan_unregister_globals)
WRAP_W_WW(__asan_stack_malloc_0)
WRAP_W_WW(__asan_stack_malloc_1)
WRAP_W_WW(__asan_stack_malloc_2)
WRAP_W_WW(__asan_stack_malloc_3)
WRAP_W_WW(__asan_stack_malloc_4)
WRAP_W_WW(__asan_stack_malloc_5)
WRAP_W_WW(__asan_stack_malloc_6)
WRAP_W_WW(__asan_stack_malloc_7)
WRAP_W_WW(__asan_stack_malloc_8)
WRAP_W_WW(__asan_stack_malloc_9)
WRAP_W_WW(__asan_stack_malloc_10)
WRAP_V_WWW(__asan_stack_free_0)
WRAP_V_WWW(__asan_stack_free_1)
WRAP_V_WWW(__asan_stack_free_2)
WRAP_V_WWW(__asan_stack_free_4)
WRAP_V_WWW(__asan_stack_free_5)
WRAP_V_WWW(__asan_stack_free_6)
WRAP_V_WWW(__asan_stack_free_7)
WRAP_V_WWW(__asan_stack_free_8)
WRAP_V_WWW(__asan_stack_free_9)
WRAP_V_WWW(__asan_stack_free_10)
// TODO(timurrrr): Add more interface functions on the as-needed basis.
// ----------------- Memory allocation functions ---------------------
WRAP_V_W(free)
WRAP_V_WW(_free_dbg)
WRAP_W_W(malloc)
WRAP_W_WWWW(_malloc_dbg)
WRAP_W_WW(calloc)
WRAP_W_WWWWW(_calloc_dbg)
WRAP_W_WWW(_calloc_impl)
WRAP_W_WW(realloc)
WRAP_W_WWW(_realloc_dbg)
WRAP_W_WWW(_recalloc)
WRAP_W_W(_msize)
// TODO(timurrrr): Do we need to add _Crt* stuff here? (see asan_malloc_win.cc).
#endif // ASAN_DLL_THUNK

View File

@ -17,167 +17,204 @@
namespace __asan {
FakeStack::FakeStack() {
CHECK(REAL(memset));
REAL(memset)(this, 0, sizeof(*this));
}
static const u64 kMagic1 = kAsanStackAfterReturnMagic;
static const u64 kMagic2 = (kMagic1 << 8) | kMagic1;
static const u64 kMagic4 = (kMagic2 << 16) | kMagic2;
static const u64 kMagic8 = (kMagic4 << 32) | kMagic4;
bool FakeStack::AddrIsInSizeClass(uptr addr, uptr size_class) {
uptr mem = allocated_size_classes_[size_class];
uptr size = ClassMmapSize(size_class);
bool res = mem && addr >= mem && addr < mem + size;
return res;
}
uptr FakeStack::AddrIsInFakeStack(uptr addr) {
for (uptr size_class = 0; size_class < kNumberOfSizeClasses; size_class++) {
if (!AddrIsInSizeClass(addr, size_class)) continue;
uptr size_class_first_ptr = allocated_size_classes_[size_class];
uptr size = ClassSize(size_class);
CHECK_LE(size_class_first_ptr, addr);
CHECK_GT(size_class_first_ptr + ClassMmapSize(size_class), addr);
return size_class_first_ptr + ((addr - size_class_first_ptr) / size) * size;
}
return 0;
}
// We may want to compute this during compilation.
ALWAYS_INLINE uptr FakeStack::ComputeSizeClass(uptr alloc_size) {
uptr rounded_size = RoundUpToPowerOfTwo(alloc_size);
uptr log = Log2(rounded_size);
CHECK_LE(alloc_size, (1UL << log));
CHECK_GT(alloc_size, (1UL << (log-1)));
uptr res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
CHECK_LT(res, kNumberOfSizeClasses);
CHECK_GE(ClassSize(res), rounded_size);
return res;
}
void FakeFrameFifo::FifoPush(FakeFrame *node) {
CHECK(node);
node->next = 0;
if (first_ == 0 && last_ == 0) {
first_ = last_ = node;
// For small size classes inline PoisonShadow for better performance.
ALWAYS_INLINE void SetShadow(uptr ptr, uptr size, uptr class_id, u64 magic) {
CHECK_EQ(SHADOW_SCALE, 3); // This code expects SHADOW_SCALE=3.
u64 *shadow = reinterpret_cast<u64*>(MemToShadow(ptr));
if (class_id <= 6) {
for (uptr i = 0; i < (1U << class_id); i++)
shadow[i] = magic;
} else {
CHECK(first_);
CHECK(last_);
last_->next = node;
last_ = node;
// The size class is too big, it's cheaper to poison only size bytes.
PoisonShadow(ptr, size, static_cast<u8>(magic));
}
}
FakeFrame *FakeFrameFifo::FifoPop() {
CHECK(first_ && last_ && "Exhausted fake stack");
FakeFrame *res = 0;
if (first_ == last_) {
res = first_;
first_ = last_ = 0;
} else {
res = first_;
first_ = first_->next;
FakeStack *FakeStack::Create(uptr stack_size_log) {
static uptr kMinStackSizeLog = 16;
static uptr kMaxStackSizeLog = FIRST_32_SECOND_64(24, 28);
if (stack_size_log < kMinStackSizeLog)
stack_size_log = kMinStackSizeLog;
if (stack_size_log > kMaxStackSizeLog)
stack_size_log = kMaxStackSizeLog;
FakeStack *res = reinterpret_cast<FakeStack *>(
MmapOrDie(RequiredSize(stack_size_log), "FakeStack"));
res->stack_size_log_ = stack_size_log;
if (common_flags()->verbosity) {
u8 *p = reinterpret_cast<u8 *>(res);
Report("T%d: FakeStack created: %p -- %p stack_size_log: %zd \n",
GetCurrentTidOrInvalid(), p,
p + FakeStack::RequiredSize(stack_size_log), stack_size_log);
}
return res;
}
void FakeStack::Init(uptr stack_size) {
stack_size_ = stack_size;
alive_ = true;
void FakeStack::Destroy() {
PoisonAll(0);
UnmapOrDie(this, RequiredSize(stack_size_log_));
}
void FakeStack::Cleanup() {
alive_ = false;
for (uptr i = 0; i < kNumberOfSizeClasses; i++) {
uptr mem = allocated_size_classes_[i];
if (mem) {
PoisonShadow(mem, ClassMmapSize(i), 0);
allocated_size_classes_[i] = 0;
UnmapOrDie((void*)mem, ClassMmapSize(i));
void FakeStack::PoisonAll(u8 magic) {
PoisonShadow(reinterpret_cast<uptr>(this), RequiredSize(stack_size_log()),
magic);
}
ALWAYS_INLINE USED
FakeFrame *FakeStack::Allocate(uptr stack_size_log, uptr class_id,
uptr real_stack) {
CHECK_LT(class_id, kNumberOfSizeClasses);
if (needs_gc_)
GC(real_stack);
uptr &hint_position = hint_position_[class_id];
const int num_iter = NumberOfFrames(stack_size_log, class_id);
u8 *flags = GetFlags(stack_size_log, class_id);
for (int i = 0; i < num_iter; i++) {
uptr pos = ModuloNumberOfFrames(stack_size_log, class_id, hint_position++);
// This part is tricky. On one hand, checking and setting flags[pos]
// should be atomic to ensure async-signal safety. But on the other hand,
// if the signal arrives between checking and setting flags[pos], the
// signal handler's fake stack will start from a different hint_position
// and so will not touch this particular byte. So, it is safe to do this
// with regular non-atimic load and store (at least I was not able to make
// this code crash).
if (flags[pos]) continue;
flags[pos] = 1;
FakeFrame *res = reinterpret_cast<FakeFrame *>(
GetFrame(stack_size_log, class_id, pos));
res->real_stack = real_stack;
*SavedFlagPtr(reinterpret_cast<uptr>(res), class_id) = &flags[pos];
return res;
}
return 0; // We are out of fake stack.
}
uptr FakeStack::AddrIsInFakeStack(uptr ptr) {
uptr stack_size_log = this->stack_size_log();
uptr beg = reinterpret_cast<uptr>(GetFrame(stack_size_log, 0, 0));
uptr end = reinterpret_cast<uptr>(this) + RequiredSize(stack_size_log);
if (ptr < beg || ptr >= end) return 0;
uptr class_id = (ptr - beg) >> stack_size_log;
uptr base = beg + (class_id << stack_size_log);
CHECK_LE(base, ptr);
CHECK_LT(ptr, base + (1UL << stack_size_log));
uptr pos = (ptr - base) >> (kMinStackFrameSizeLog + class_id);
return base + pos * BytesInSizeClass(class_id);
}
void FakeStack::HandleNoReturn() {
needs_gc_ = true;
}
// When throw, longjmp or some such happens we don't call OnFree() and
// as the result may leak one or more fake frames, but the good news is that
// we are notified about all such events by HandleNoReturn().
// If we recently had such no-return event we need to collect garbage frames.
// We do it based on their 'real_stack' values -- everything that is lower
// than the current real_stack is garbage.
NOINLINE void FakeStack::GC(uptr real_stack) {
uptr collected = 0;
for (uptr class_id = 0; class_id < kNumberOfSizeClasses; class_id++) {
u8 *flags = GetFlags(stack_size_log(), class_id);
for (uptr i = 0, n = NumberOfFrames(stack_size_log(), class_id); i < n;
i++) {
if (flags[i] == 0) continue; // not allocated.
FakeFrame *ff = reinterpret_cast<FakeFrame *>(
GetFrame(stack_size_log(), class_id, i));
if (ff->real_stack < real_stack) {
flags[i] = 0;
collected++;
}
}
}
needs_gc_ = false;
}
void FakeStack::ForEachFakeFrame(RangeIteratorCallback callback, void *arg) {
for (uptr class_id = 0; class_id < kNumberOfSizeClasses; class_id++) {
u8 *flags = GetFlags(stack_size_log(), class_id);
for (uptr i = 0, n = NumberOfFrames(stack_size_log(), class_id); i < n;
i++) {
if (flags[i] == 0) continue; // not allocated.
FakeFrame *ff = reinterpret_cast<FakeFrame *>(
GetFrame(stack_size_log(), class_id, i));
uptr begin = reinterpret_cast<uptr>(ff);
callback(begin, begin + FakeStack::BytesInSizeClass(class_id), arg);
}
}
}
uptr FakeStack::ClassMmapSize(uptr size_class) {
return RoundUpToPowerOfTwo(stack_size_);
#if SANITIZER_LINUX && !SANITIZER_ANDROID
static THREADLOCAL FakeStack *fake_stack_tls;
FakeStack *GetTLSFakeStack() {
return fake_stack_tls;
}
void SetTLSFakeStack(FakeStack *fs) {
fake_stack_tls = fs;
}
#else
FakeStack *GetTLSFakeStack() { return 0; }
void SetTLSFakeStack(FakeStack *fs) { }
#endif // SANITIZER_LINUX && !SANITIZER_ANDROID
static FakeStack *GetFakeStack() {
AsanThread *t = GetCurrentThread();
if (!t) return 0;
return t->fake_stack();
}
void FakeStack::AllocateOneSizeClass(uptr size_class) {
CHECK(ClassMmapSize(size_class) >= GetPageSizeCached());
uptr new_mem = (uptr)MmapOrDie(
ClassMmapSize(size_class), __FUNCTION__);
// Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",
// GetCurrentThread()->tid(),
// size_class, new_mem, new_mem + ClassMmapSize(size_class),
// ClassMmapSize(size_class));
uptr i;
for (i = 0; i < ClassMmapSize(size_class);
i += ClassSize(size_class)) {
size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
}
CHECK(i == ClassMmapSize(size_class));
allocated_size_classes_[size_class] = new_mem;
static FakeStack *GetFakeStackFast() {
if (FakeStack *fs = GetTLSFakeStack())
return fs;
if (!__asan_option_detect_stack_use_after_return)
return 0;
return GetFakeStack();
}
ALWAYS_INLINE uptr FakeStack::AllocateStack(uptr size, uptr real_stack) {
if (!alive_) return real_stack;
CHECK(size <= kMaxStackMallocSize && size > 1);
uptr size_class = ComputeSizeClass(size);
if (!allocated_size_classes_[size_class]) {
AllocateOneSizeClass(size_class);
}
FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
CHECK(fake_frame);
fake_frame->size_minus_one = size - 1;
fake_frame->real_stack = real_stack;
while (FakeFrame *top = call_stack_.top()) {
if (top->real_stack > real_stack) break;
call_stack_.LifoPop();
DeallocateFrame(top);
}
call_stack_.LifoPush(fake_frame);
uptr ptr = (uptr)fake_frame;
PoisonShadow(ptr, size, 0);
ALWAYS_INLINE uptr OnMalloc(uptr class_id, uptr size, uptr real_stack) {
FakeStack *fs = GetFakeStackFast();
if (!fs) return real_stack;
FakeFrame *ff = fs->Allocate(fs->stack_size_log(), class_id, real_stack);
if (!ff)
return real_stack; // Out of fake stack, return the real one.
uptr ptr = reinterpret_cast<uptr>(ff);
SetShadow(ptr, size, class_id, 0);
return ptr;
}
ALWAYS_INLINE void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
CHECK(alive_);
uptr size = fake_frame->size_minus_one + 1;
uptr size_class = ComputeSizeClass(size);
CHECK(allocated_size_classes_[size_class]);
uptr ptr = (uptr)fake_frame;
CHECK(AddrIsInSizeClass(ptr, size_class));
CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
size_classes_[size_class].FifoPush(fake_frame);
}
ALWAYS_INLINE void FakeStack::OnFree(uptr ptr, uptr size, uptr real_stack) {
FakeFrame *fake_frame = (FakeFrame*)ptr;
CHECK_EQ(fake_frame->magic, kRetiredStackFrameMagic);
CHECK_NE(fake_frame->descr, 0);
CHECK_EQ(fake_frame->size_minus_one, size - 1);
PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
ALWAYS_INLINE void OnFree(uptr ptr, uptr class_id, uptr size, uptr real_stack) {
if (ptr == real_stack)
return;
FakeStack::Deallocate(ptr, class_id);
SetShadow(ptr, size, class_id, kMagic8);
}
} // namespace __asan
// ---------------------- Interface ---------------- {{{1
using namespace __asan; // NOLINT
uptr __asan_stack_malloc(uptr size, uptr real_stack) {
if (!flags()->use_fake_stack) return real_stack;
AsanThread *t = GetCurrentThread();
if (!t) {
// TSD is gone, use the real stack.
return real_stack;
#define DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(class_id) \
extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr \
__asan_stack_malloc_##class_id(uptr size, uptr real_stack) { \
return __asan::OnMalloc(class_id, size, real_stack); \
} \
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __asan_stack_free_##class_id( \
uptr ptr, uptr size, uptr real_stack) { \
__asan::OnFree(ptr, class_id, size, real_stack); \
}
uptr ptr = t->fake_stack().AllocateStack(size, real_stack);
// Printf("__asan_stack_malloc %p %zu %p\n", ptr, size, real_stack);
return ptr;
}
void __asan_stack_free(uptr ptr, uptr size, uptr real_stack) {
if (!flags()->use_fake_stack) return;
if (ptr != real_stack) {
FakeStack::OnFree(ptr, size, real_stack);
}
}
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(0)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(1)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(2)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(3)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(4)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(5)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(6)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(7)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(8)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(9)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(10)

View File

@ -9,12 +9,14 @@
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// ASan-private header for asan_fake_stack.cc
// ASan-private header for asan_fake_stack.cc, implements FakeStack.
//===----------------------------------------------------------------------===//
#ifndef ASAN_FAKE_STACK_H
#define ASAN_FAKE_STACK_H
#include "sanitizer_common/sanitizer_common.h"
namespace __asan {
// Fake stack frame contains local variables of one function.
@ -22,96 +24,148 @@ struct FakeFrame {
uptr magic; // Modified by the instrumented code.
uptr descr; // Modified by the instrumented code.
uptr pc; // Modified by the instrumented code.
u64 real_stack : 48;
u64 size_minus_one : 16;
// End of the first 32 bytes.
// The rest should not be used when the frame is active.
FakeFrame *next;
};
struct FakeFrameFifo {
public:
void FifoPush(FakeFrame *node);
FakeFrame *FifoPop();
private:
FakeFrame *first_, *last_;
};
template<uptr kMaxNumberOfFrames>
class FakeFrameLifo {
public:
explicit FakeFrameLifo(LinkerInitialized) {}
FakeFrameLifo() : n_frames_(0) {}
void LifoPush(FakeFrame *node) {
CHECK_LT(n_frames_, kMaxNumberOfFrames);
frames_[n_frames_++] = node;
}
void LifoPop() {
CHECK(n_frames_);
n_frames_--;
}
FakeFrame *top() {
if (n_frames_ == 0)
return 0;
return frames_[n_frames_ - 1];
}
private:
uptr n_frames_;
FakeFrame *frames_[kMaxNumberOfFrames];
uptr real_stack;
};
// For each thread we create a fake stack and place stack objects on this fake
// stack instead of the real stack. The fake stack is not really a stack but
// a fast malloc-like allocator so that when a function exits the fake stack
// is not poped but remains there for quite some time until gets used again.
// is not popped but remains there for quite some time until gets used again.
// So, we poison the objects on the fake stack when function returns.
// It helps us find use-after-return bugs.
// We can not rely on __asan_stack_free being called on every function exit,
// so we maintain a lifo list of all current fake frames and update it on every
// call to __asan_stack_malloc.
//
// The FakeStack objects is allocated by a single mmap call and has no other
// pointers. The size of the fake stack depends on the actual thread stack size
// and thus can not be a constant.
// stack_size is a power of two greater or equal to the thread's stack size;
// we store it as its logarithm (stack_size_log).
// FakeStack has kNumberOfSizeClasses (11) size classes, each size class
// is a power of two, starting from 64 bytes. Each size class occupies
// stack_size bytes and thus can allocate
// NumberOfFrames=(stack_size/BytesInSizeClass) fake frames (also a power of 2).
// For each size class we have NumberOfFrames allocation flags,
// each flag indicates whether the given frame is currently allocated.
// All flags for size classes 0 .. 10 are stored in a single contiguous region
// followed by another contiguous region which contains the actual memory for
// size classes. The addresses are computed by GetFlags and GetFrame without
// any memory accesses solely based on 'this' and stack_size_log.
// Allocate() flips the appropriate allocation flag atomically, thus achieving
// async-signal safety.
// This allocator does not have quarantine per se, but it tries to allocate the
// frames in round robin fasion to maximize the delay between a deallocation
// and the next allocation.
class FakeStack {
public:
FakeStack();
explicit FakeStack(LinkerInitialized x) : call_stack_(x) {}
void Init(uptr stack_size);
void StopUsingFakeStack() { alive_ = false; }
void Cleanup();
uptr AllocateStack(uptr size, uptr real_stack);
static void OnFree(uptr ptr, uptr size, uptr real_stack);
// Return the bottom of the maped region.
uptr AddrIsInFakeStack(uptr addr);
bool StackSize() { return stack_size_; }
private:
static const uptr kMinStackFrameSizeLog = 9; // Min frame is 512B.
static const uptr kMinStackFrameSizeLog = 6; // Min frame is 64B.
static const uptr kMaxStackFrameSizeLog = 16; // Max stack frame is 64K.
static const uptr kMaxStackMallocSize = 1 << kMaxStackFrameSizeLog;
public:
static const uptr kNumberOfSizeClasses =
kMaxStackFrameSizeLog - kMinStackFrameSizeLog + 1;
static const uptr kMaxRecursionDepth = 1023;
kMaxStackFrameSizeLog - kMinStackFrameSizeLog + 1;
bool AddrIsInSizeClass(uptr addr, uptr size_class);
// CTOR: create the FakeStack as a single mmap-ed object.
static FakeStack *Create(uptr stack_size_log);
// Each size class should be large enough to hold all frames.
uptr ClassMmapSize(uptr size_class);
void Destroy();
uptr ClassSize(uptr size_class) {
return 1UL << (size_class + kMinStackFrameSizeLog);
// stack_size_log is at least 15 (stack_size >= 32K).
static uptr SizeRequiredForFlags(uptr stack_size_log) {
return 1UL << (stack_size_log + 1 - kMinStackFrameSizeLog);
}
void DeallocateFrame(FakeFrame *fake_frame);
// Each size class occupies stack_size bytes.
static uptr SizeRequiredForFrames(uptr stack_size_log) {
return (1ULL << stack_size_log) * kNumberOfSizeClasses;
}
uptr ComputeSizeClass(uptr alloc_size);
void AllocateOneSizeClass(uptr size_class);
// Number of bytes requires for the whole object.
static uptr RequiredSize(uptr stack_size_log) {
return kFlagsOffset + SizeRequiredForFlags(stack_size_log) +
SizeRequiredForFrames(stack_size_log);
}
uptr stack_size_;
bool alive_;
// Offset of the given flag from the first flag.
// The flags for class 0 begin at offset 000000000
// The flags for class 1 begin at offset 100000000
// ....................2................ 110000000
// ....................3................ 111000000
// and so on.
static uptr FlagsOffset(uptr stack_size_log, uptr class_id) {
uptr t = kNumberOfSizeClasses - 1 - class_id;
const uptr all_ones = (1 << (kNumberOfSizeClasses - 1)) - 1;
return ((all_ones >> t) << t) << (stack_size_log - 15);
}
uptr allocated_size_classes_[kNumberOfSizeClasses];
FakeFrameFifo size_classes_[kNumberOfSizeClasses];
FakeFrameLifo<kMaxRecursionDepth> call_stack_;
static uptr NumberOfFrames(uptr stack_size_log, uptr class_id) {
return 1UL << (stack_size_log - kMinStackFrameSizeLog - class_id);
}
// Divide n by the numbe of frames in size class.
static uptr ModuloNumberOfFrames(uptr stack_size_log, uptr class_id, uptr n) {
return n & (NumberOfFrames(stack_size_log, class_id) - 1);
}
// The the pointer to the flags of the given class_id.
u8 *GetFlags(uptr stack_size_log, uptr class_id) {
return reinterpret_cast<u8 *>(this) + kFlagsOffset +
FlagsOffset(stack_size_log, class_id);
}
// Get frame by class_id and pos.
u8 *GetFrame(uptr stack_size_log, uptr class_id, uptr pos) {
return reinterpret_cast<u8 *>(this) + kFlagsOffset +
SizeRequiredForFlags(stack_size_log) +
(1 << stack_size_log) * class_id + BytesInSizeClass(class_id) * pos;
}
// Allocate the fake frame.
FakeFrame *Allocate(uptr stack_size_log, uptr class_id, uptr real_stack);
// Deallocate the fake frame: read the saved flag address and write 0 there.
static void Deallocate(uptr x, uptr class_id) {
**SavedFlagPtr(x, class_id) = 0;
}
// Poison the entire FakeStack's shadow with the magic value.
void PoisonAll(u8 magic);
// Return the beginning of the FakeFrame or 0 if the address is not ours.
uptr AddrIsInFakeStack(uptr addr);
// Number of bytes in a fake frame of this size class.
static uptr BytesInSizeClass(uptr class_id) {
return 1UL << (class_id + kMinStackFrameSizeLog);
}
// The fake frame is guaranteed to have a right redzone.
// We use the last word of that redzone to store the address of the flag
// that corresponds to the current frame to make faster deallocation.
static u8 **SavedFlagPtr(uptr x, uptr class_id) {
return reinterpret_cast<u8 **>(x + BytesInSizeClass(class_id) - sizeof(x));
}
uptr stack_size_log() const { return stack_size_log_; }
void HandleNoReturn();
void GC(uptr real_stack);
void ForEachFakeFrame(RangeIteratorCallback callback, void *arg);
private:
FakeStack() { }
static const uptr kFlagsOffset = 4096; // This is were the flags begin.
// Must match the number of uses of DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID
COMPILER_CHECK(kNumberOfSizeClasses == 11);
static const uptr kMaxStackMallocSize = 1 << kMaxStackFrameSizeLog;
uptr hint_position_[kNumberOfSizeClasses];
uptr stack_size_log_;
// a bit is set if something was allocated from the corresponding size class.
bool needs_gc_;
};
FakeStack *GetTLSFakeStack();
void SetTLSFakeStack(FakeStack *fs);
} // namespace __asan
#endif // ASAN_FAKE_STACK_H

View File

@ -32,8 +32,6 @@ struct Flags {
// Lower value may reduce memory usage but increase the chance of
// false negatives.
int quarantine_size;
// Verbosity level (0 - silent, 1 - a bit of output, 2+ - more output).
int verbosity;
// Size (in bytes) of redzones around heap objects.
// Requirement: redzone >= 32, is a power of two.
int redzone;
@ -52,8 +50,10 @@ struct Flags {
bool replace_intrin;
// Used on Mac only.
bool mac_ignore_invalid_free;
// ASan allocator flag.
bool use_fake_stack;
// Enables stack-use-after-return checking at run-time.
bool detect_stack_use_after_return;
// The minimal fake stack size log.
int uar_stack_size_log;
// ASan allocator flag. max_malloc_fill_size is the maximal amount of bytes
// that will be filled with malloc_fill_byte on malloc.
int max_malloc_fill_size, malloc_fill_byte;
@ -83,6 +83,9 @@ struct Flags {
bool print_legend;
// If set, prints ASan exit stats even after program terminates successfully.
bool atexit;
// If set, coverage information will be dumped at shutdown time if the
// appropriate instrumentation was enabled.
bool coverage;
// By default, disable core dumper on 64-bit - it makes little sense
// to dump 16T+ core.
bool disable_core;
@ -93,23 +96,20 @@ struct Flags {
// but also thread creation stacks for threads that created those threads,
// etc. up to main thread.
bool print_full_thread_history;
// ASan will write logs to "log_path.pid" instead of stderr.
const char *log_path;
// Poison (or not) the heap memory on [de]allocation. Zero value is useful
// for benchmarking the allocator or instrumentator.
bool poison_heap;
// If true, poison partially addressable 8-byte aligned words (default=true).
// This flag affects heap and global buffers, but not stack buffers.
bool poison_partial;
// Report errors on malloc/delete, new/free, new/delete[], etc.
bool alloc_dealloc_mismatch;
// Use stack depot instead of storing stacks in the redzones.
bool use_stack_depot;
// If true, assume that memcmp(p1, p2, n) always reads n bytes before
// comparing p1 and p2.
bool strict_memcmp;
// If true, assume that dynamic initializers can never access globals from
// other modules, even if the latter are already initialized.
bool strict_init_order;
// Invoke LeakSanitizer at process exit.
bool detect_leaks;
};
extern Flags asan_flags_dont_use_directly;

View File

@ -41,7 +41,7 @@ struct DynInitGlobal {
Global g;
bool initialized;
};
typedef InternalVector<DynInitGlobal> VectorOfGlobals;
typedef InternalMmapVector<DynInitGlobal> VectorOfGlobals;
// Lazy-initialized and never deleted.
static VectorOfGlobals *dynamic_init_globals;
@ -94,15 +94,13 @@ static void RegisterGlobal(const Global *g) {
CHECK(AddrIsAlignedByGranularity(g->size_with_redzone));
if (flags()->poison_heap)
PoisonRedZones(*g);
ListOfGlobals *l =
(ListOfGlobals*)allocator_for_globals.Allocate(sizeof(ListOfGlobals));
ListOfGlobals *l = new(allocator_for_globals) ListOfGlobals;
l->g = g;
l->next = list_of_all_globals;
list_of_all_globals = l;
if (g->has_dynamic_init) {
if (dynamic_init_globals == 0) {
void *mem = allocator_for_globals.Allocate(sizeof(VectorOfGlobals));
dynamic_init_globals = new(mem)
dynamic_init_globals = new(allocator_for_globals)
VectorOfGlobals(kDynamicInitGlobalsInitialCapacity);
}
DynInitGlobal dyn_global = { *g, false };

View File

@ -14,15 +14,8 @@
#ifndef ASAN_INTERCEPTED_FUNCTIONS_H
#define ASAN_INTERCEPTED_FUNCTIONS_H
#include "asan_internal.h"
#include "interception/interception.h"
#include "sanitizer_common/sanitizer_platform_interceptors.h"
#include <stdarg.h>
#include <stddef.h>
using __sanitizer::uptr;
// Use macro to describe if specific function should be
// intercepted on a given platform.
#if !SANITIZER_WINDOWS
@ -83,32 +76,4 @@ using __sanitizer::uptr;
# define ASAN_INTERCEPT___CXA_ATEXIT 0
#endif
# if SANITIZER_WINDOWS
extern "C" {
// Windows threads.
__declspec(dllimport)
void* __stdcall CreateThread(void *sec, uptr st, void* start,
void *arg, DWORD fl, DWORD *id);
int memcmp(const void *a1, const void *a2, uptr size);
void memmove(void *to, const void *from, uptr size);
void* memset(void *block, int c, uptr size);
void* memcpy(void *to, const void *from, uptr size);
char* strcat(char *to, const char* from); // NOLINT
char* strchr(const char *str, int c);
int strcmp(const char *s1, const char* s2);
char* strcpy(char *to, const char* from); // NOLINT
uptr strlen(const char *s);
char* strncat(char *to, const char* from, uptr size);
int strncmp(const char *s1, const char* s2, uptr size);
char* strncpy(char *to, const char* from, uptr size);
uptr strnlen(const char *s, uptr maxlen);
int atoi(const char *nptr);
long atol(const char *nptr); // NOLINT
long strtol(const char *nptr, char **endptr, int base); // NOLINT
void longjmp(void *env, int value);
double frexp(double x, int *expptr);
}
# endif
#endif // ASAN_INTERCEPTED_FUNCTIONS_H

View File

@ -53,7 +53,7 @@ static inline bool QuickCheckForUnpoisonedRegion(uptr beg, uptr size) {
} while (0)
#define ASAN_READ_RANGE(offset, size) ACCESS_MEMORY_RANGE(offset, size, false)
#define ASAN_WRITE_RANGE(offset, size) ACCESS_MEMORY_RANGE(offset, size, true);
#define ASAN_WRITE_RANGE(offset, size) ACCESS_MEMORY_RANGE(offset, size, true)
// Behavior of functions like "memcpy" or "strcpy" is undefined
// if memory intervals overlap. We report error in this case.
@ -94,9 +94,9 @@ void SetThreadName(const char *name) {
asanThreadRegistry().SetThreadName(t->tid(), name);
}
static void DisableStrictInitOrderChecker() {
if (flags()->strict_init_order)
flags()->check_initialization_order = false;
int OnExit() {
// FIXME: ask frontend whether we need to return failure.
return 0;
}
} // namespace __asan
@ -104,26 +104,69 @@ static void DisableStrictInitOrderChecker() {
// ---------------------- Wrappers ---------------- {{{1
using namespace __asan; // NOLINT
DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr)
DECLARE_REAL_AND_INTERCEPTOR(void, free, void *)
#if !SANITIZER_MAC
#define ASAN_INTERCEPT_FUNC(name) \
do { \
if ((!INTERCEPT_FUNCTION(name) || !REAL(name)) && \
common_flags()->verbosity > 0) \
Report("AddressSanitizer: failed to intercept '" #name "'\n"); \
} while (0)
#else
// OS X interceptors don't need to be initialized with INTERCEPT_FUNCTION.
#define ASAN_INTERCEPT_FUNC(name)
#endif // SANITIZER_MAC
#define COMMON_INTERCEPT_FUNCTION(name) ASAN_INTERCEPT_FUNC(name)
#define COMMON_INTERCEPTOR_UNPOISON_PARAM(ctx, count) \
do { \
} while (false)
#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
ASAN_WRITE_RANGE(ptr, size)
#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) ASAN_READ_RANGE(ptr, size)
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
do { \
if (asan_init_is_running) \
return REAL(func)(__VA_ARGS__); \
ctx = 0; \
(void)ctx; \
ENSURE_ASAN_INITED(); \
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
do { \
if (asan_init_is_running) return REAL(func)(__VA_ARGS__); \
ctx = 0; \
(void) ctx; \
if (SANITIZER_MAC && !asan_inited) return REAL(func)(__VA_ARGS__); \
ENSURE_ASAN_INITED(); \
} while (false)
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
do { \
} while (false)
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
do { \
} while (false)
#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
do { \
} while (false)
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) do { } while (false)
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) do { } while (false)
#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) SetThreadName(name)
// Should be asanThreadRegistry().SetThreadNameByUserId(thread, name)
// But asan does not remember UserId's for threads (pthread_t);
// and remembers all ever existed threads, so the linear search by UserId
// can be slow.
#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
do { \
} while (false)
#define COMMON_INTERCEPTOR_BLOCK_REAL(name) REAL(name)
#define COMMON_INTERCEPTOR_ON_EXIT(ctx) OnExit()
#include "sanitizer_common/sanitizer_common_interceptors.inc"
#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) ASAN_READ_RANGE(p, s)
#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) ASAN_WRITE_RANGE(p, s)
#define COMMON_SYSCALL_POST_READ_RANGE(p, s)
#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s)
#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#include "sanitizer_common/sanitizer_common_syscalls.inc"
static thread_return_t THREAD_CALLING_CONV asan_thread_start(void *arg) {
@ -133,16 +176,16 @@ static thread_return_t THREAD_CALLING_CONV asan_thread_start(void *arg) {
}
#if ASAN_INTERCEPT_PTHREAD_CREATE
extern "C" int pthread_attr_getdetachstate(void *attr, int *v);
INTERCEPTOR(int, pthread_create, void *thread,
void *attr, void *(*start_routine)(void*), void *arg) {
EnsureMainThreadIDIsCorrect();
// Strict init-order checking in thread-hostile.
DisableStrictInitOrderChecker();
if (flags()->strict_init_order)
StopInitOrderChecking();
GET_STACK_TRACE_THREAD;
int detached = 0;
if (attr != 0)
pthread_attr_getdetachstate(attr, &detached);
REAL(pthread_attr_getdetachstate)(attr, &detached);
u32 current_tid = GetCurrentTidOrInvalid();
AsanThread *t = AsanThread::Create(start_routine, arg);
@ -170,7 +213,7 @@ INTERCEPTOR(int, sigaction, int signum, const struct sigaction *act,
#elif SANITIZER_POSIX
// We need to have defined REAL(sigaction) on posix systems.
DEFINE_REAL(int, sigaction, int signum, const struct sigaction *act,
struct sigaction *oldact);
struct sigaction *oldact)
#endif // ASAN_INTERCEPT_SIGNAL_AND_SIGACTION
#if ASAN_INTERCEPT_SWAPCONTEXT
@ -240,13 +283,15 @@ INTERCEPTOR(void, __cxa_throw, void *a, void *b, void *c) {
// Since asan maps 16T of RAM, mlock is completely unfriendly to asan.
// All functions return 0 (success).
static void MlockIsUnsupported() {
static bool printed = 0;
static bool printed = false;
if (printed) return;
printed = true;
Printf("INFO: AddressSanitizer ignores mlock/mlockall/munlock/munlockall\n");
if (common_flags()->verbosity > 0) {
Printf("INFO: AddressSanitizer ignores "
"mlock/mlockall/munlock/munlockall\n");
}
}
extern "C" {
INTERCEPTOR(int, mlock, const void *addr, uptr len) {
MlockIsUnsupported();
return 0;
@ -266,7 +311,6 @@ INTERCEPTOR(int, munlockall, void) {
MlockIsUnsupported();
return 0;
}
} // extern "C"
static inline int CharCmp(unsigned char c1, unsigned char c2) {
return (c1 == c2) ? 0 : (c1 < c2) ? -1 : 1;
@ -300,7 +344,23 @@ INTERCEPTOR(int, memcmp, const void *a1, const void *a2, uptr size) {
return REAL(memcmp(a1, a2, size));
}
#define MEMMOVE_BODY { \
if (!asan_inited) return internal_memmove(to, from, size); \
if (asan_init_is_running) { \
return REAL(memmove)(to, from, size); \
} \
ENSURE_ASAN_INITED(); \
if (flags()->replace_intrin) { \
ASAN_READ_RANGE(from, size); \
ASAN_WRITE_RANGE(to, size); \
} \
return internal_memmove(to, from, size); \
}
INTERCEPTOR(void*, memmove, void *to, const void *from, uptr size) MEMMOVE_BODY
INTERCEPTOR(void*, memcpy, void *to, const void *from, uptr size) {
#if !SANITIZER_MAC
if (!asan_inited) return internal_memcpy(to, from, size);
// memcpy is called during __asan_init() from the internals
// of printf(...).
@ -317,24 +377,19 @@ INTERCEPTOR(void*, memcpy, void *to, const void *from, uptr size) {
ASAN_READ_RANGE(from, size);
ASAN_WRITE_RANGE(to, size);
}
// Interposing of resolver functions is broken on Mac OS 10.7 and 10.8.
// Interposing of resolver functions is broken on Mac OS 10.7 and 10.8, so
// calling REAL(memcpy) here leads to infinite recursion.
// See also http://code.google.com/p/address-sanitizer/issues/detail?id=116.
return internal_memcpy(to, from, size);
}
INTERCEPTOR(void*, memmove, void *to, const void *from, uptr size) {
if (!asan_inited) return internal_memmove(to, from, size);
if (asan_init_is_running) {
return REAL(memmove)(to, from, size);
}
ENSURE_ASAN_INITED();
if (flags()->replace_intrin) {
ASAN_READ_RANGE(from, size);
ASAN_WRITE_RANGE(to, size);
}
// Interposing of resolver functions is broken on Mac OS 10.7 and 10.8.
// See also http://code.google.com/p/address-sanitizer/issues/detail?id=116.
return internal_memmove(to, from, size);
#else
// At least on 10.7 and 10.8 both memcpy() and memmove() are being replaced
// with WRAP(memcpy). As a result, false positives are reported for memmove()
// calls. If we just disable error reporting with
// ASAN_OPTIONS=replace_intrin=0, memmove() is still replaced with
// internal_memcpy(), which may lead to crashes, see
// http://llvm.org/bugs/show_bug.cgi?id=16362.
MEMMOVE_BODY
#endif // !SANITIZER_MAC
}
INTERCEPTOR(void*, memset, void *block, int c, uptr size) {
@ -375,7 +430,7 @@ INTERCEPTOR(char*, index, const char *string, int c)
DECLARE_REAL(char*, index, const char *string, int c)
OVERRIDE_FUNCTION(index, strchr);
# else
DEFINE_REAL(char*, index, const char *string, int c);
DEFINE_REAL(char*, index, const char *string, int c)
# endif
# endif
#endif // ASAN_INTERCEPT_INDEX
@ -418,24 +473,6 @@ INTERCEPTOR(char*, strncat, char *to, const char *from, uptr size) {
return REAL(strncat)(to, from, size);
}
INTERCEPTOR(int, strcmp, const char *s1, const char *s2) {
if (!asan_inited) return internal_strcmp(s1, s2);
if (asan_init_is_running) {
return REAL(strcmp)(s1, s2);
}
ENSURE_ASAN_INITED();
unsigned char c1, c2;
uptr i;
for (i = 0; ; i++) {
c1 = (unsigned char)s1[i];
c2 = (unsigned char)s2[i];
if (c1 != c2 || c1 == '\0') break;
}
ASAN_READ_RANGE(s1, i + 1);
ASAN_READ_RANGE(s2, i + 1);
return CharCmp(c1, c2);
}
INTERCEPTOR(char*, strcpy, char *to, const char *from) { // NOLINT
#if SANITIZER_MAC
if (!asan_inited) return REAL(strcpy)(to, from); // NOLINT
@ -457,21 +494,16 @@ INTERCEPTOR(char*, strcpy, char *to, const char *from) { // NOLINT
#if ASAN_INTERCEPT_STRDUP
INTERCEPTOR(char*, strdup, const char *s) {
#if SANITIZER_MAC
// FIXME: because internal_strdup() uses InternalAlloc(), which currently
// just calls malloc() on Mac, we can't use internal_strdup() with the
// dynamic runtime. We can remove the call to REAL(strdup) once InternalAlloc
// starts using mmap() instead.
// See also http://code.google.com/p/address-sanitizer/issues/detail?id=123.
if (!asan_inited) return REAL(strdup)(s);
#endif
if (!asan_inited) return internal_strdup(s);
ENSURE_ASAN_INITED();
uptr length = REAL(strlen)(s);
if (flags()->replace_str) {
uptr length = REAL(strlen)(s);
ASAN_READ_RANGE(s, length + 1);
}
return REAL(strdup)(s);
GET_STACK_TRACE_MALLOC;
void *new_mem = asan_malloc(length + 1, &stack);
REAL(memcpy)(new_mem, s, length + 1);
return reinterpret_cast<char*>(new_mem);
}
#endif
@ -490,24 +522,13 @@ INTERCEPTOR(uptr, strlen, const char *s) {
return length;
}
INTERCEPTOR(int, strncmp, const char *s1, const char *s2, uptr size) {
if (!asan_inited) return internal_strncmp(s1, s2, size);
// strncmp is called from malloc_default_purgeable_zone()
// in __asan::ReplaceSystemAlloc() on Mac.
if (asan_init_is_running) {
return REAL(strncmp)(s1, s2, size);
INTERCEPTOR(uptr, wcslen, const wchar_t *s) {
uptr length = REAL(wcslen)(s);
if (!asan_init_is_running) {
ENSURE_ASAN_INITED();
ASAN_READ_RANGE(s, (length + 1) * sizeof(wchar_t));
}
ENSURE_ASAN_INITED();
unsigned char c1 = 0, c2 = 0;
uptr i;
for (i = 0; i < size; i++) {
c1 = (unsigned char)s1[i];
c2 = (unsigned char)s2[i];
if (c1 != c2 || c1 == '\0') break;
}
ASAN_READ_RANGE(s1, Min(i + 1, size));
ASAN_READ_RANGE(s2, Min(i + 1, size));
return CharCmp(c1, c2);
return length;
}
INTERCEPTOR(char*, strncpy, char *to, const char *from, uptr size) {
@ -644,6 +665,9 @@ static void AtCxaAtexit(void *unused) {
#if ASAN_INTERCEPT___CXA_ATEXIT
INTERCEPTOR(int, __cxa_atexit, void (*func)(void *), void *arg,
void *dso_handle) {
#if SANITIZER_MAC
if (!asan_inited) return REAL(__cxa_atexit)(func, arg, dso_handle);
#endif
ENSURE_ASAN_INITED();
int res = REAL(__cxa_atexit)(func, arg, dso_handle);
REAL(__cxa_atexit)(AtCxaAtexit, 0, 0);
@ -651,26 +675,22 @@ INTERCEPTOR(int, __cxa_atexit, void (*func)(void *), void *arg,
}
#endif // ASAN_INTERCEPT___CXA_ATEXIT
#define ASAN_INTERCEPT_FUNC(name) do { \
if (!INTERCEPT_FUNCTION(name) && flags()->verbosity > 0) \
Report("AddressSanitizer: failed to intercept '" #name "'\n"); \
} while (0)
#if SANITIZER_WINDOWS
INTERCEPTOR_WINAPI(DWORD, CreateThread,
void* security, uptr stack_size,
DWORD (__stdcall *start_routine)(void*), void* arg,
DWORD flags, void* tid) {
DWORD thr_flags, void* tid) {
// Strict init-order checking in thread-hostile.
DisableStrictInitOrderChecker();
if (flags()->strict_init_order)
StopInitOrderChecking();
GET_STACK_TRACE_THREAD;
u32 current_tid = GetCurrentTidOrInvalid();
AsanThread *t = AsanThread::Create(start_routine, arg);
CreateThreadContextArgs args = { t, &stack };
int detached = 0; // FIXME: how can we determine it on Windows?
bool detached = false; // FIXME: how can we determine it on Windows?
asanThreadRegistry().CreateThread(*(uptr*)t, detached, current_tid, &args);
return REAL(CreateThread)(security, stack_size,
asan_thread_start, t, flags, tid);
asan_thread_start, t, thr_flags, tid);
}
namespace __asan {
@ -687,9 +707,6 @@ void InitializeAsanInterceptors() {
static bool was_called_once;
CHECK(was_called_once == false);
was_called_once = true;
#if SANITIZER_MAC
return;
#else
SANITIZER_COMMON_INTERCEPTORS_INIT;
// Intercept mem* functions.
@ -703,11 +720,10 @@ void InitializeAsanInterceptors() {
// Intercept str* functions.
ASAN_INTERCEPT_FUNC(strcat); // NOLINT
ASAN_INTERCEPT_FUNC(strchr);
ASAN_INTERCEPT_FUNC(strcmp);
ASAN_INTERCEPT_FUNC(strcpy); // NOLINT
ASAN_INTERCEPT_FUNC(strlen);
ASAN_INTERCEPT_FUNC(wcslen);
ASAN_INTERCEPT_FUNC(strncat);
ASAN_INTERCEPT_FUNC(strncmp);
ASAN_INTERCEPT_FUNC(strncpy);
#if ASAN_INTERCEPT_STRDUP
ASAN_INTERCEPT_FUNC(strdup);
@ -771,10 +787,9 @@ void InitializeAsanInterceptors() {
InitializeWindowsInterceptors();
#endif
if (flags()->verbosity > 0) {
if (common_flags()->verbosity > 0) {
Report("AddressSanitizer: libc interceptors initialized\n");
}
#endif // SANITIZER_MAC
}
} // namespace __asan

View File

@ -30,7 +30,7 @@ extern "C" {
// v2=>v3: stack frame description (created by the compiler)
// contains the function PC as the 3-rd field (see
// DescribeAddressIfStack).
void __asan_init_v3() SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE void __asan_init_v3();
#define __asan_init __asan_init_v3
// This structure describes an instrumented global variable.
@ -46,96 +46,85 @@ extern "C" {
// These two functions should be called by the instrumented code.
// 'globals' is an array of structures describing 'n' globals.
void __asan_register_globals(__asan_global *globals, uptr n)
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_unregister_globals(__asan_global *globals, uptr n)
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_register_globals(__asan_global *globals, uptr n);
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_unregister_globals(__asan_global *globals, uptr n);
// These two functions should be called before and after dynamic initializers
// of a single module run, respectively.
void __asan_before_dynamic_init(const char *module_name)
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_after_dynamic_init()
SANITIZER_INTERFACE_ATTRIBUTE;
// These two functions are used by the instrumented code in the
// use-after-return mode. __asan_stack_malloc allocates size bytes of
// fake stack and __asan_stack_free poisons it. real_stack is a pointer to
// the real stack region.
uptr __asan_stack_malloc(uptr size, uptr real_stack)
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_stack_free(uptr ptr, uptr size, uptr real_stack)
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_before_dynamic_init(const char *module_name);
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_after_dynamic_init();
// These two functions are used by instrumented code in the
// use-after-scope mode. They mark memory for local variables as
// unaddressable when they leave scope and addressable before the
// function exits.
void __asan_poison_stack_memory(uptr addr, uptr size)
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_unpoison_stack_memory(uptr addr, uptr size)
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_poison_stack_memory(uptr addr, uptr size);
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_unpoison_stack_memory(uptr addr, uptr size);
// Performs cleanup before a NoReturn function. Must be called before things
// like _exit and execl to avoid false positives on stack.
void __asan_handle_no_return() SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE void __asan_handle_no_return();
void __asan_poison_memory_region(void const volatile *addr, uptr size)
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_unpoison_memory_region(void const volatile *addr, uptr size)
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_poison_memory_region(void const volatile *addr, uptr size);
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_unpoison_memory_region(void const volatile *addr, uptr size);
bool __asan_address_is_poisoned(void const volatile *addr)
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
bool __asan_address_is_poisoned(void const volatile *addr);
uptr __asan_region_is_poisoned(uptr beg, uptr size)
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
uptr __asan_region_is_poisoned(uptr beg, uptr size);
void __asan_describe_address(uptr addr)
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_describe_address(uptr addr);
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_report_error(uptr pc, uptr bp, uptr sp,
uptr addr, bool is_write, uptr access_size)
SANITIZER_INTERFACE_ATTRIBUTE;
uptr addr, bool is_write, uptr access_size);
int __asan_set_error_exit_code(int exit_code)
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_set_death_callback(void (*callback)(void))
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_set_error_report_callback(void (*callback)(const char*))
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
int __asan_set_error_exit_code(int exit_code);
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_set_death_callback(void (*callback)(void));
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_set_error_report_callback(void (*callback)(const char*));
/* OPTIONAL */ void __asan_on_error()
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
/* OPTIONAL */ void __asan_on_error();
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
/* OPTIONAL */ bool __asan_symbolize(const void *pc, char *out_buffer,
int out_size)
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE;
int out_size);
uptr __asan_get_estimated_allocated_size(uptr size)
SANITIZER_INTERFACE_ATTRIBUTE;
bool __asan_get_ownership(const void *p)
SANITIZER_INTERFACE_ATTRIBUTE;
uptr __asan_get_allocated_size(const void *p)
SANITIZER_INTERFACE_ATTRIBUTE;
uptr __asan_get_current_allocated_bytes()
SANITIZER_INTERFACE_ATTRIBUTE;
uptr __asan_get_heap_size()
SANITIZER_INTERFACE_ATTRIBUTE;
uptr __asan_get_free_bytes()
SANITIZER_INTERFACE_ATTRIBUTE;
uptr __asan_get_unmapped_bytes()
SANITIZER_INTERFACE_ATTRIBUTE;
void __asan_print_accumulated_stats()
SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE
uptr __asan_get_estimated_allocated_size(uptr size);
/* OPTIONAL */ const char* __asan_default_options()
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE bool __asan_get_ownership(const void *p);
SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_get_allocated_size(const void *p);
SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_get_current_allocated_bytes();
SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_get_heap_size();
SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_get_free_bytes();
SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_get_unmapped_bytes();
SANITIZER_INTERFACE_ATTRIBUTE void __asan_print_accumulated_stats();
/* OPTIONAL */ void __asan_malloc_hook(void *ptr, uptr size)
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE;
/* OPTIONAL */ void __asan_free_hook(void *ptr)
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE;
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
/* OPTIONAL */ const char* __asan_default_options();
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
/* OPTIONAL */ void __asan_malloc_hook(void *ptr, uptr size);
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
/* OPTIONAL */ void __asan_free_hook(void *ptr);
// Global flag, copy of ASAN_OPTIONS=detect_stack_use_after_return
SANITIZER_INTERFACE_ATTRIBUTE
extern int __asan_option_detect_stack_use_after_return;
} // extern "C"
#endif // ASAN_INTERFACE_INTERNAL_H

View File

@ -98,6 +98,7 @@ void StopInitOrderChecking();
void AsanTSDInit(void (*destructor)(void *tsd));
void *AsanTSDGet();
void AsanTSDSet(void *tsd);
void PlatformTSDDtor(void *tsd);
void AppendToErrorMessageBuffer(const char *buffer);

View File

@ -58,6 +58,12 @@ void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) {
*pc = ucontext->uc_mcontext.arm_pc;
*bp = ucontext->uc_mcontext.arm_fp;
*sp = ucontext->uc_mcontext.arm_sp;
# elif defined(__hppa__)
ucontext_t *ucontext = (ucontext_t*)context;
*pc = ucontext->uc_mcontext.sc_iaoq[0];
/* GCC uses %r3 whenever a frame pointer is needed. */
*bp = ucontext->uc_mcontext.sc_gr[3];
*sp = ucontext->uc_mcontext.sc_gr[30];
# elif defined(__x86_64__)
ucontext_t *ucontext = (ucontext_t*)context;
*pc = ucontext->uc_mcontext.gregs[REG_RIP];
@ -89,6 +95,11 @@ void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) {
stk_ptr = (uptr *) *sp;
*bp = stk_ptr[15];
# endif
# elif defined(__mips__)
ucontext_t *ucontext = (ucontext_t*)context;
*pc = ucontext->uc_mcontext.gregs[31];
*bp = ucontext->uc_mcontext.gregs[30];
*sp = ucontext->uc_mcontext.gregs[29];
#else
# error "Unsupported arch"
#endif

View File

@ -21,6 +21,7 @@
#include "asan_mapping.h"
#include "asan_stack.h"
#include "asan_thread.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_libc.h"
#include <crt_externs.h> // for _NSGetArgv
@ -52,7 +53,9 @@ void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) {
# endif // SANITIZER_WORDSIZE
}
int GetMacosVersion() {
MacosVersion cached_macos_version = MACOS_VERSION_UNINITIALIZED;
MacosVersion GetMacosVersionInternal() {
int mib[2] = { CTL_KERN, KERN_OSRELEASE };
char version[100];
uptr len = 0, maxlen = sizeof(version) / sizeof(version[0]);
@ -68,6 +71,7 @@ int GetMacosVersion() {
case '0': return MACOS_VERSION_SNOW_LEOPARD;
case '1': return MACOS_VERSION_LION;
case '2': return MACOS_VERSION_MOUNTAIN_LION;
case '3': return MACOS_VERSION_MAVERICKS;
default: return MACOS_VERSION_UNKNOWN;
}
}
@ -75,6 +79,18 @@ int GetMacosVersion() {
}
}
MacosVersion GetMacosVersion() {
atomic_uint32_t *cache =
reinterpret_cast<atomic_uint32_t*>(&cached_macos_version);
MacosVersion result =
static_cast<MacosVersion>(atomic_load(cache, memory_order_acquire));
if (result == MACOS_VERSION_UNINITIALIZED) {
result = GetMacosVersionInternal();
atomic_store(cache, result, memory_order_release);
}
return result;
}
bool PlatformHasDifferentMemcpyAndMemmove() {
// On OS X 10.7 memcpy() and memmove() are both resolved
// into memmove$VARIANT$sse42.
@ -158,7 +174,7 @@ void MaybeReexec() {
// Set DYLD_INSERT_LIBRARIES equal to the runtime dylib name.
setenv(kDyldInsertLibraries, info.dli_fname, /*overwrite*/0);
}
if (flags()->verbosity >= 1) {
if (common_flags()->verbosity >= 1) {
Report("exec()-ing the program with\n");
Report("%s=%s\n", kDyldInsertLibraries, new_env);
Report("to enable ASan wrappers.\n");
@ -295,7 +311,7 @@ extern "C"
void asan_dispatch_call_block_and_release(void *block) {
GET_STACK_TRACE_THREAD;
asan_block_context_t *context = (asan_block_context_t*)block;
if (flags()->verbosity >= 2) {
if (common_flags()->verbosity >= 2) {
Report("asan_dispatch_call_block_and_release(): "
"context: %p, pthread_self: %p\n",
block, pthread_self());
@ -330,7 +346,7 @@ asan_block_context_t *alloc_asan_context(void *ctxt, dispatch_function_t func,
dispatch_function_t func) { \
GET_STACK_TRACE_THREAD; \
asan_block_context_t *asan_ctxt = alloc_asan_context(ctxt, func, &stack); \
if (flags()->verbosity >= 2) { \
if (common_flags()->verbosity >= 2) { \
Report(#dispatch_x_f "(): context: %p, pthread_self: %p\n", \
asan_ctxt, pthread_self()); \
PRINT_CURRENT_STACK(); \
@ -348,7 +364,7 @@ INTERCEPTOR(void, dispatch_after_f, dispatch_time_t when,
dispatch_function_t func) {
GET_STACK_TRACE_THREAD;
asan_block_context_t *asan_ctxt = alloc_asan_context(ctxt, func, &stack);
if (flags()->verbosity >= 2) {
if (common_flags()->verbosity >= 2) {
Report("dispatch_after_f: %p\n", asan_ctxt);
PRINT_CURRENT_STACK();
}
@ -361,7 +377,7 @@ INTERCEPTOR(void, dispatch_group_async_f, dispatch_group_t group,
dispatch_function_t func) {
GET_STACK_TRACE_THREAD;
asan_block_context_t *asan_ctxt = alloc_asan_context(ctxt, func, &stack);
if (flags()->verbosity >= 2) {
if (common_flags()->verbosity >= 2) {
Report("dispatch_group_async_f(): context: %p, pthread_self: %p\n",
asan_ctxt, pthread_self());
PRINT_CURRENT_STACK();

View File

@ -12,7 +12,7 @@
// Mac-specific ASan definitions.
//===----------------------------------------------------------------------===//
#ifndef ASAN_MAC_H
#define ASAN__MAC_H
#define ASAN_MAC_H
// CF_RC_BITS, the layout of CFRuntimeBase and __CFStrIsConstant are internal
// and subject to change in further CoreFoundation versions. Apple does not
@ -36,12 +36,14 @@ typedef struct __CFRuntimeBase {
#endif
} CFRuntimeBase;
enum {
MACOS_VERSION_UNKNOWN = 0,
enum MacosVersion {
MACOS_VERSION_UNINITIALIZED = 0,
MACOS_VERSION_UNKNOWN,
MACOS_VERSION_LEOPARD,
MACOS_VERSION_SNOW_LEOPARD,
MACOS_VERSION_LION,
MACOS_VERSION_MOUNTAIN_LION
MACOS_VERSION_MOUNTAIN_LION,
MACOS_VERSION_MAVERICKS
};
// Used by asan_malloc_mac.cc and asan_mac.cc
@ -49,7 +51,7 @@ extern "C" void __CFInitialize();
namespace __asan {
int GetMacosVersion();
MacosVersion GetMacosVersion();
void MaybeReplaceCFAllocator();
} // namespace __asan

View File

@ -105,8 +105,9 @@ INTERCEPTOR(void*, __libc_memalign, uptr align, uptr s)
ALIAS("memalign");
INTERCEPTOR(uptr, malloc_usable_size, void *ptr) {
GET_STACK_TRACE_MALLOC;
return asan_malloc_usable_size(ptr, &stack);
GET_CURRENT_PC_BP_SP;
(void)sp;
return asan_malloc_usable_size(ptr, pc, bp);
}
// We avoid including malloc.h for portability reasons.

View File

@ -19,6 +19,7 @@
#include <CoreFoundation/CFBase.h>
#include <dlfcn.h>
#include <malloc/malloc.h>
#include <sys/mman.h>
#include "asan_allocator.h"
#include "asan_interceptors.h"
@ -42,10 +43,19 @@ INTERCEPTOR(malloc_zone_t *, malloc_create_zone,
vm_size_t start_size, unsigned zone_flags) {
if (!asan_inited) __asan_init();
GET_STACK_TRACE_MALLOC;
uptr page_size = GetPageSizeCached();
uptr allocated_size = RoundUpTo(sizeof(asan_zone), page_size);
malloc_zone_t *new_zone =
(malloc_zone_t*)asan_malloc(sizeof(asan_zone), &stack);
(malloc_zone_t*)asan_memalign(page_size, allocated_size,
&stack, FROM_MALLOC);
internal_memcpy(new_zone, &asan_zone, sizeof(asan_zone));
new_zone->zone_name = NULL; // The name will be changed anyway.
if (GetMacosVersion() >= MACOS_VERSION_LION) {
// Prevent the client app from overwriting the zone contents.
// Library functions that need to modify the zone will set PROT_WRITE on it.
// This matches the behavior of malloc_create_zone() on OSX 10.7 and higher.
mprotect(new_zone, allocated_size, PROT_READ);
}
return new_zone;
}

View File

@ -32,11 +32,13 @@ using namespace __asan; // NOLINT
// revisited in the future.
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void free(void *ptr) {
GET_STACK_TRACE_FREE;
return asan_free(ptr, &stack, FROM_MALLOC);
}
SANITIZER_INTERFACE_ATTRIBUTE
void _free_dbg(void* ptr, int) {
free(ptr);
}
@ -45,38 +47,46 @@ void cfree(void *ptr) {
CHECK(!"cfree() should not be used on Windows?");
}
SANITIZER_INTERFACE_ATTRIBUTE
void *malloc(size_t size) {
GET_STACK_TRACE_MALLOC;
return asan_malloc(size, &stack);
}
SANITIZER_INTERFACE_ATTRIBUTE
void* _malloc_dbg(size_t size, int , const char*, int) {
return malloc(size);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *calloc(size_t nmemb, size_t size) {
GET_STACK_TRACE_MALLOC;
return asan_calloc(nmemb, size, &stack);
}
SANITIZER_INTERFACE_ATTRIBUTE
void* _calloc_dbg(size_t n, size_t size, int, const char*, int) {
return calloc(n, size);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *_calloc_impl(size_t nmemb, size_t size, int *errno_tmp) {
return calloc(nmemb, size);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *realloc(void *ptr, size_t size) {
GET_STACK_TRACE_MALLOC;
return asan_realloc(ptr, size, &stack);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *_realloc_dbg(void *ptr, size_t size, int) {
CHECK(!"_realloc_dbg should not exist!");
return 0;
}
SANITIZER_INTERFACE_ATTRIBUTE
void* _recalloc(void* p, size_t n, size_t elem_size) {
if (!p)
return calloc(n, elem_size);
@ -86,9 +96,11 @@ void* _recalloc(void* p, size_t n, size_t elem_size) {
return realloc(p, size);
}
SANITIZER_INTERFACE_ATTRIBUTE
size_t _msize(void *ptr) {
GET_STACK_TRACE_MALLOC;
return asan_malloc_usable_size(ptr, &stack);
GET_CURRENT_PC_BP_SP;
(void)sp;
return asan_malloc_usable_size(ptr, pc, bp);
}
int _CrtDbgReport(int, const char*, int,

View File

@ -49,6 +49,20 @@
// || `[0x24000000, 0x27ffffff]` || ShadowGap ||
// || `[0x20000000, 0x23ffffff]` || LowShadow ||
// || `[0x00000000, 0x1fffffff]` || LowMem ||
//
// Default Linux/MIPS mapping:
// || `[0x2aaa8000, 0xffffffff]` || HighMem ||
// || `[0x0fffd000, 0x2aaa7fff]` || HighShadow ||
// || `[0x0bffd000, 0x0fffcfff]` || ShadowGap ||
// || `[0x0aaa8000, 0x0bffcfff]` || LowShadow ||
// || `[0x00000000, 0x0aaa7fff]` || LowMem ||
static const u64 kDefaultShadowScale = 3;
static const u64 kDefaultShadowOffset32 = 1ULL << 29;
static const u64 kDefaultShadowOffset64 = 1ULL << 44;
static const u64 kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G.
static const u64 kPPC64_ShadowOffset64 = 1ULL << 41;
static const u64 kMIPS32_ShadowOffset32 = 0x0aaa8000;
#if ASAN_FLEXIBLE_MAPPING_AND_OFFSET == 1
extern SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_mapping_scale;
@ -56,22 +70,23 @@ extern SANITIZER_INTERFACE_ATTRIBUTE uptr __asan_mapping_offset;
# define SHADOW_SCALE (__asan_mapping_scale)
# define SHADOW_OFFSET (__asan_mapping_offset)
#else
# define SHADOW_SCALE kDefaultShadowScale
# if SANITIZER_ANDROID
# define SHADOW_SCALE (3)
# define SHADOW_OFFSET (0)
# else
# define SHADOW_SCALE (3)
# if SANITIZER_WORDSIZE == 32
# define SHADOW_OFFSET (1 << 29)
# if defined(__mips__)
# define SHADOW_OFFSET kMIPS32_ShadowOffset32
# else
# define SHADOW_OFFSET kDefaultShadowOffset32
# endif
# else
# if defined(__powerpc64__)
# define SHADOW_OFFSET (1ULL << 41)
# define SHADOW_OFFSET kPPC64_ShadowOffset64
# elif SANITIZER_MAC
# define SHADOW_OFFSET kDefaultShadowOffset64
# else
# if SANITIZER_MAC
# define SHADOW_OFFSET (1ULL << 44)
# else
# define SHADOW_OFFSET 0x7fff8000ULL
# endif
# define SHADOW_OFFSET kDefaultShort64bitShadowOffset
# endif
# endif
# endif
@ -133,7 +148,6 @@ static uptr kHighMemEnd = 0x7fffffffffffULL;
static uptr kMidMemBeg = 0x3000000000ULL;
static uptr kMidMemEnd = 0x4fffffffffULL;
#else
SANITIZER_INTERFACE_ATTRIBUTE
extern uptr kHighMemEnd, kMidMemBeg, kMidMemEnd; // Initialized in __asan_init.
#endif

View File

@ -14,6 +14,7 @@
#include "asan_poisoning.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_flags.h"
namespace __asan {
@ -68,7 +69,7 @@ void __asan_poison_memory_region(void const volatile *addr, uptr size) {
if (!flags()->allow_user_poisoning || size == 0) return;
uptr beg_addr = (uptr)addr;
uptr end_addr = beg_addr + size;
if (flags()->verbosity >= 1) {
if (common_flags()->verbosity >= 1) {
Printf("Trying to poison memory region [%p, %p)\n",
(void*)beg_addr, (void*)end_addr);
}
@ -110,7 +111,7 @@ void __asan_unpoison_memory_region(void const volatile *addr, uptr size) {
if (!flags()->allow_user_poisoning || size == 0) return;
uptr beg_addr = (uptr)addr;
uptr end_addr = beg_addr + size;
if (flags()->verbosity >= 1) {
if (common_flags()->verbosity >= 1) {
Printf("Trying to unpoison memory region [%p, %p)\n",
(void*)beg_addr, (void*)end_addr);
}
@ -183,37 +184,37 @@ uptr __asan_region_is_poisoned(uptr beg, uptr size) {
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u16 __sanitizer_unaligned_load16(const u16 *p) {
u16 __sanitizer_unaligned_load16(const uu16 *p) {
CHECK_SMALL_REGION(p, sizeof(*p), false);
return *p;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u32 __sanitizer_unaligned_load32(const u32 *p) {
u32 __sanitizer_unaligned_load32(const uu32 *p) {
CHECK_SMALL_REGION(p, sizeof(*p), false);
return *p;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u64 __sanitizer_unaligned_load64(const u64 *p) {
u64 __sanitizer_unaligned_load64(const uu64 *p) {
CHECK_SMALL_REGION(p, sizeof(*p), false);
return *p;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store16(u16 *p, u16 x) {
void __sanitizer_unaligned_store16(uu16 *p, u16 x) {
CHECK_SMALL_REGION(p, sizeof(*p), true);
*p = x;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store32(u32 *p, u32 x) {
void __sanitizer_unaligned_store32(uu32 *p, u32 x) {
CHECK_SMALL_REGION(p, sizeof(*p), true);
*p = x;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store64(u64 *p, u64 x) {
void __sanitizer_unaligned_store64(uu64 *p, u64 x) {
CHECK_SMALL_REGION(p, sizeof(*p), true);
*p = x;
}
@ -244,13 +245,55 @@ static void PoisonAlignedStackMemory(uptr addr, uptr size, bool do_poison) {
}
void __asan_poison_stack_memory(uptr addr, uptr size) {
if (flags()->verbosity > 0)
if (common_flags()->verbosity > 0)
Report("poisoning: %p %zx\n", (void*)addr, size);
PoisonAlignedStackMemory(addr, size, true);
}
void __asan_unpoison_stack_memory(uptr addr, uptr size) {
if (flags()->verbosity > 0)
if (common_flags()->verbosity > 0)
Report("unpoisoning: %p %zx\n", (void*)addr, size);
PoisonAlignedStackMemory(addr, size, false);
}
void __sanitizer_annotate_contiguous_container(void *beg_p, void *end_p,
void *old_mid_p,
void *new_mid_p) {
uptr beg = reinterpret_cast<uptr>(beg_p);
uptr end= reinterpret_cast<uptr>(end_p);
uptr old_mid = reinterpret_cast<uptr>(old_mid_p);
uptr new_mid = reinterpret_cast<uptr>(new_mid_p);
uptr granularity = SHADOW_GRANULARITY;
CHECK(beg <= end && beg <= old_mid && beg <= new_mid && old_mid <= end &&
new_mid <= end && IsAligned(beg, granularity));
CHECK_LE(end - beg,
FIRST_32_SECOND_64(1UL << 30, 1UL << 34)); // Sanity check.
uptr a = RoundDownTo(Min(old_mid, new_mid), granularity);
uptr c = RoundUpTo(Max(old_mid, new_mid), granularity);
uptr b = new_mid;
uptr b1 = RoundDownTo(b, granularity);
uptr b2 = RoundUpTo(b, granularity);
uptr d = old_mid;
uptr d1 = RoundDownTo(d, granularity);
uptr d2 = RoundUpTo(d, granularity);
// Currently we should be in this state:
// [a, d1) is good, [d2, c) is bad, [d1, d2) is partially good.
// Make a quick sanity check that we are indeed in this state.
if (d1 != d2)
CHECK_EQ(*(u8*)MemToShadow(d1), d - d1);
if (a + granularity <= d1)
CHECK_EQ(*(u8*)MemToShadow(a), 0);
if (d2 + granularity <= c && c <= end)
CHECK_EQ(*(u8 *)MemToShadow(c - granularity), kAsanUserPoisonedMemoryMagic);
// New state:
// [a, b1) is good, [b2, c) is bad, [b1, b2) is partially good.
// FIXME: we may want to have a separate poison magic value.
PoisonShadow(a, b1 - a, 0);
PoisonShadow(b2, c - b2, kAsanUserPoisonedMemoryMagic);
if (b1 != b2) {
CHECK_EQ(b2 - b1, granularity);
*(u8*)MemToShadow(b1) = static_cast<u8>(b - b1);
}
}

View File

@ -43,6 +43,7 @@ ALWAYS_INLINE void FastPoisonShadow(uptr aligned_beg, uptr aligned_size,
ALWAYS_INLINE void FastPoisonShadowPartialRightRedzone(
uptr aligned_addr, uptr size, uptr redzone_size, u8 value) {
DCHECK(flags()->poison_heap);
bool poison_partial = flags()->poison_partial;
u8 *shadow = (u8*)MEM_TO_SHADOW(aligned_addr);
for (uptr i = 0; i < redzone_size; i += SHADOW_GRANULARITY, shadow++) {
if (i + SHADOW_GRANULARITY <= size) {
@ -50,7 +51,8 @@ ALWAYS_INLINE void FastPoisonShadowPartialRightRedzone(
} else if (i >= size) {
*shadow = (SHADOW_GRANULARITY == 128) ? 0xff : value; // unaddressable
} else {
*shadow = size - i; // first size-i bytes are addressable
// first size-i bytes are addressable
*shadow = poison_partial ? static_cast<u8>(size - i) : 0;
}
}
}

View File

@ -1,4 +1,4 @@
//===-- asan_linux.cc -----------------------------------------------------===//
//===-- asan_posix.cc -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
@ -44,7 +44,7 @@ static void MaybeInstallSigaction(int signum,
sigact.sa_flags = SA_SIGINFO;
if (flags()->use_sigaltstack) sigact.sa_flags |= SA_ONSTACK;
CHECK_EQ(0, REAL(sigaction)(signum, &sigact, 0));
if (flags()->verbosity >= 1) {
if (common_flags()->verbosity >= 1) {
Report("Installed the sigaction for signal %d\n", signum);
}
}
@ -71,7 +71,7 @@ void SetAlternateSignalStack() {
altstack.ss_flags = 0;
altstack.ss_size = kAltStackSize;
CHECK_EQ(0, sigaltstack(&altstack, 0));
if (flags()->verbosity > 0) {
if (common_flags()->verbosity > 0) {
Report("Alternative stack for T%d set: [%p,%p)\n",
GetCurrentTidOrInvalid(),
altstack.ss_sp, (char*)altstack.ss_sp + altstack.ss_size);
@ -116,6 +116,15 @@ void AsanTSDSet(void *tsd) {
pthread_setspecific(tsd_key, tsd);
}
void PlatformTSDDtor(void *tsd) {
AsanThreadContext *context = (AsanThreadContext*)tsd;
if (context->destructor_iterations > 1) {
context->destructor_iterations--;
CHECK_EQ(0, pthread_setspecific(tsd_key, tsd));
return;
}
AsanThread::TSDDtor(tsd);
}
} // namespace __asan
#endif // SANITIZER_LINUX || SANITIZER_MAC

View File

@ -20,6 +20,7 @@
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
namespace __asan {
@ -44,15 +45,6 @@ void AppendToErrorMessageBuffer(const char *buffer) {
}
// ---------------------- Decorator ------------------------------ {{{1
bool PrintsToTtyCached() {
static int cached = 0;
static bool prints_to_tty;
if (!cached) { // Ok wrt threads since we are printing only from one thread.
prints_to_tty = PrintsToTty();
cached = 1;
}
return prints_to_tty;
}
class Decorator: private __sanitizer::AnsiColorDecorator {
public:
Decorator() : __sanitizer::AnsiColorDecorator(PrintsToTtyCached()) { }
@ -113,7 +105,7 @@ static void PrintShadowBytes(const char *before, u8 *bytes,
for (uptr i = 0; i < n; i++) {
u8 *p = bytes + i;
const char *before = p == guilty ? "[" :
p - 1 == guilty ? "" : " ";
(p - 1 == guilty && i != 0) ? "" : " ";
const char *after = p == guilty ? "]" : "";
PrintShadowByte(before, *p, after);
}
@ -125,7 +117,7 @@ static void PrintLegend() {
"application bytes):\n", (int)SHADOW_GRANULARITY);
PrintShadowByte(" Addressable: ", 0);
Printf(" Partially addressable: ");
for (uptr i = 1; i < SHADOW_GRANULARITY; i++)
for (u8 i = 1; i < SHADOW_GRANULARITY; i++)
PrintShadowByte("", i, " ");
Printf("\n");
PrintShadowByte(" Heap left redzone: ", kAsanHeapLeftRedzoneMagic);
@ -175,6 +167,11 @@ static void PrintZoneForPointer(uptr ptr, uptr zone_ptr,
}
}
static void DescribeThread(AsanThread *t) {
if (t)
DescribeThread(t->context());
}
// ---------------------- Address Descriptions ------------------- {{{1
static bool IsASCII(unsigned char c) {
@ -184,7 +181,9 @@ static bool IsASCII(unsigned char c) {
static const char *MaybeDemangleGlobalName(const char *name) {
// We can spoil names of globals with C linkage, so use an heuristic
// approach to check if the name should be demangled.
return (name[0] == '_' && name[1] == 'Z') ? Demangle(name) : name;
return (name[0] == '_' && name[1] == 'Z')
? Symbolizer::Get()->Demangle(name)
: name;
}
// Check if the global is a zero-terminated ASCII string. If so, print it.
@ -264,10 +263,53 @@ const char *ThreadNameWithParenthesis(u32 tid, char buff[],
return ThreadNameWithParenthesis(t, buff, buff_len);
}
void PrintAccessAndVarIntersection(const char *var_name,
uptr var_beg, uptr var_size,
uptr addr, uptr access_size,
uptr prev_var_end, uptr next_var_beg) {
uptr var_end = var_beg + var_size;
uptr addr_end = addr + access_size;
const char *pos_descr = 0;
// If the variable [var_beg, var_end) is the nearest variable to the
// current memory access, indicate it in the log.
if (addr >= var_beg) {
if (addr_end <= var_end)
pos_descr = "is inside"; // May happen if this is a use-after-return.
else if (addr < var_end)
pos_descr = "partially overflows";
else if (addr_end <= next_var_beg &&
next_var_beg - addr_end >= addr - var_end)
pos_descr = "overflows";
} else {
if (addr_end > var_beg)
pos_descr = "partially underflows";
else if (addr >= prev_var_end &&
addr - prev_var_end >= var_beg - addr_end)
pos_descr = "underflows";
}
Printf(" [%zd, %zd) '%s'", var_beg, var_beg + var_size, var_name);
if (pos_descr) {
Decorator d;
// FIXME: we may want to also print the size of the access here,
// but in case of accesses generated by memset it may be confusing.
Printf("%s <== Memory access at offset %zd %s this variable%s\n",
d.Location(), addr, pos_descr, d.EndLocation());
} else {
Printf("\n");
}
}
struct StackVarDescr {
uptr beg;
uptr size;
const char *name_pos;
uptr name_len;
};
bool DescribeAddressIfStack(uptr addr, uptr access_size) {
AsanThread *t = FindThreadByStackAddress(addr);
if (!t) return false;
const sptr kBufSize = 4095;
const uptr kBufSize = 4095;
char buf[kBufSize];
uptr offset = 0;
uptr frame_pc = 0;
@ -306,31 +348,44 @@ bool DescribeAddressIfStack(uptr addr, uptr access_size) {
PrintStack(&alloca_stack);
// Report the number of stack objects.
char *p;
uptr n_objects = internal_simple_strtoll(frame_descr, &p, 10);
uptr n_objects = (uptr)internal_simple_strtoll(frame_descr, &p, 10);
CHECK_GT(n_objects, 0);
Printf(" This frame has %zu object(s):\n", n_objects);
// Report all objects in this frame.
InternalScopedBuffer<StackVarDescr> vars(n_objects);
for (uptr i = 0; i < n_objects; i++) {
uptr beg, size;
sptr len;
beg = internal_simple_strtoll(p, &p, 10);
size = internal_simple_strtoll(p, &p, 10);
len = internal_simple_strtoll(p, &p, 10);
if (beg <= 0 || size <= 0 || len < 0 || *p != ' ') {
uptr len;
beg = (uptr)internal_simple_strtoll(p, &p, 10);
size = (uptr)internal_simple_strtoll(p, &p, 10);
len = (uptr)internal_simple_strtoll(p, &p, 10);
if (beg == 0 || size == 0 || *p != ' ') {
Printf("AddressSanitizer can't parse the stack frame "
"descriptor: |%s|\n", frame_descr);
break;
}
p++;
buf[0] = 0;
internal_strncat(buf, p, Min(kBufSize, len));
vars[i].beg = beg;
vars[i].size = size;
vars[i].name_pos = p;
vars[i].name_len = len;
p += len;
Printf(" [%zu, %zu) '%s'\n", beg, beg + size, buf);
}
for (uptr i = 0; i < n_objects; i++) {
buf[0] = 0;
internal_strncat(buf, vars[i].name_pos,
static_cast<uptr>(Min(kBufSize, vars[i].name_len)));
uptr prev_var_end = i ? vars[i - 1].beg + vars[i - 1].size : 0;
uptr next_var_beg = i + 1 < n_objects ? vars[i + 1].beg : ~(0UL);
PrintAccessAndVarIntersection(buf, vars[i].beg, vars[i].size,
offset, access_size,
prev_var_end, next_var_beg);
}
Printf("HINT: this may be a false positive if your program uses "
"some custom stack unwind mechanism or swapcontext\n"
" (longjmp and C++ exceptions *are* supported)\n");
DescribeThread(t->context());
DescribeThread(t);
return true;
}
@ -360,7 +415,11 @@ static void DescribeAccessToHeapChunk(AsanChunkView chunk, uptr addr,
void DescribeHeapAddress(uptr addr, uptr access_size) {
AsanChunkView chunk = FindHeapChunkByAddress(addr);
if (!chunk.IsValid()) return;
if (!chunk.IsValid()) {
Printf("AddressSanitizer can not describe address in more detail "
"(wild memory access suspected).\n");
return;
}
DescribeAccessToHeapChunk(chunk, addr, access_size);
CHECK(chunk.AllocTid() != kInvalidTid);
asanThreadRegistry().CheckLocked();
@ -368,13 +427,11 @@ void DescribeHeapAddress(uptr addr, uptr access_size) {
GetThreadContextByTidLocked(chunk.AllocTid());
StackTrace alloc_stack;
chunk.GetAllocStack(&alloc_stack);
AsanThread *t = GetCurrentThread();
CHECK(t);
char tname[128];
Decorator d;
AsanThreadContext *free_thread = 0;
if (chunk.FreeTid() != kInvalidTid) {
AsanThreadContext *free_thread =
GetThreadContextByTidLocked(chunk.FreeTid());
free_thread = GetThreadContextByTidLocked(chunk.FreeTid());
Printf("%sfreed by thread T%d%s here:%s\n", d.Allocation(),
free_thread->tid,
ThreadNameWithParenthesis(free_thread, tname, sizeof(tname)),
@ -386,19 +443,17 @@ void DescribeHeapAddress(uptr addr, uptr access_size) {
d.Allocation(), alloc_thread->tid,
ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)),
d.EndAllocation());
PrintStack(&alloc_stack);
DescribeThread(t->context());
DescribeThread(free_thread);
DescribeThread(alloc_thread);
} else {
Printf("%sallocated by thread T%d%s here:%s\n", d.Allocation(),
alloc_thread->tid,
ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)),
d.EndAllocation());
PrintStack(&alloc_stack);
DescribeThread(t->context());
DescribeThread(alloc_thread);
}
PrintStack(&alloc_stack);
DescribeThread(GetCurrentThread());
if (free_thread)
DescribeThread(free_thread);
DescribeThread(alloc_thread);
}
void DescribeAddress(uptr addr, uptr access_size) {
@ -431,7 +486,9 @@ void DescribeThread(AsanThreadContext *context) {
context->parent_tid,
ThreadNameWithParenthesis(context->parent_tid,
tname, sizeof(tname)));
PrintStack(&context->stack);
uptr stack_size;
const uptr *stack_trace = StackDepotGet(context->stack_id, &stack_size);
PrintStack(stack_trace, stack_size);
// Recursively described parent thread if needed.
if (flags()->print_full_thread_history) {
AsanThreadContext *parent_context =
@ -476,21 +533,11 @@ class ScopedInErrorReport {
reporting_thread_tid = GetCurrentTidOrInvalid();
Printf("===================================================="
"=============\n");
if (reporting_thread_tid != kInvalidTid) {
// We started reporting an error message. Stop using the fake stack
// in case we call an instrumented function from a symbolizer.
AsanThread *curr_thread = GetCurrentThread();
CHECK(curr_thread);
curr_thread->fake_stack().StopUsingFakeStack();
}
}
// Destructor is NORETURN, as functions that report errors are.
NORETURN ~ScopedInErrorReport() {
// Make sure the current thread is announced.
AsanThread *curr_thread = GetCurrentThread();
if (curr_thread) {
DescribeThread(curr_thread->context());
}
DescribeThread(GetCurrentThread());
// Print memory stats.
if (flags()->print_stats)
__asan_print_accumulated_stats();
@ -502,22 +549,6 @@ class ScopedInErrorReport {
}
};
static void ReportSummary(const char *error_type, StackTrace *stack) {
if (!stack->size) return;
if (IsSymbolizerAvailable()) {
AddressInfo ai;
// Currently, we include the first stack frame into the report summary.
// Maybe sometimes we need to choose another frame (e.g. skip memcpy/etc).
uptr pc = StackTrace::GetPreviousInstructionPc(stack->trace[0]);
SymbolizeCode(pc, &ai, 1);
ReportErrorSummary(error_type,
StripPathPrefix(ai.file,
common_flags()->strip_path_prefix),
ai.line, ai.function);
}
// FIXME: do we need to print anything at all if there is no symbolizer?
}
void ReportSIGSEGV(uptr pc, uptr sp, uptr bp, uptr addr) {
ScopedInErrorReport in_report;
Decorator d;
@ -527,13 +558,13 @@ void ReportSIGSEGV(uptr pc, uptr sp, uptr bp, uptr addr) {
(void*)addr, (void*)pc, (void*)sp, (void*)bp,
GetCurrentTidOrInvalid());
Printf("%s", d.EndWarning());
Printf("AddressSanitizer can not provide additional info.\n");
GET_STACK_TRACE_FATAL(pc, bp);
PrintStack(&stack);
ReportSummary("SEGV", &stack);
Printf("AddressSanitizer can not provide additional info.\n");
ReportErrorSummary("SEGV", &stack);
}
void ReportDoubleFree(uptr addr, StackTrace *stack) {
void ReportDoubleFree(uptr addr, StackTrace *free_stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
@ -543,14 +574,15 @@ void ReportDoubleFree(uptr addr, StackTrace *stack) {
"thread T%d%s:\n",
addr, curr_tid,
ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)));
Printf("%s", d.EndWarning());
PrintStack(stack);
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
PrintStack(&stack);
DescribeHeapAddress(addr, 1);
ReportSummary("double-free", stack);
ReportErrorSummary("double-free", &stack);
}
void ReportFreeNotMalloced(uptr addr, StackTrace *stack) {
void ReportFreeNotMalloced(uptr addr, StackTrace *free_stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
@ -560,12 +592,14 @@ void ReportFreeNotMalloced(uptr addr, StackTrace *stack) {
"which was not malloc()-ed: %p in thread T%d%s\n", addr,
curr_tid, ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)));
Printf("%s", d.EndWarning());
PrintStack(stack);
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
PrintStack(&stack);
DescribeHeapAddress(addr, 1);
ReportSummary("bad-free", stack);
ReportErrorSummary("bad-free", &stack);
}
void ReportAllocTypeMismatch(uptr addr, StackTrace *stack,
void ReportAllocTypeMismatch(uptr addr, StackTrace *free_stack,
AllocType alloc_type,
AllocType dealloc_type) {
static const char *alloc_names[] =
@ -579,9 +613,11 @@ void ReportAllocTypeMismatch(uptr addr, StackTrace *stack,
Report("ERROR: AddressSanitizer: alloc-dealloc-mismatch (%s vs %s) on %p\n",
alloc_names[alloc_type], dealloc_names[dealloc_type], addr);
Printf("%s", d.EndWarning());
PrintStack(stack);
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
PrintStack(&stack);
DescribeHeapAddress(addr, 1);
ReportSummary("alloc-dealloc-mismatch", stack);
ReportErrorSummary("alloc-dealloc-mismatch", &stack);
Report("HINT: if you don't care about these warnings you may set "
"ASAN_OPTIONS=alloc_dealloc_mismatch=0\n");
}
@ -596,7 +632,7 @@ void ReportMallocUsableSizeNotOwned(uptr addr, StackTrace *stack) {
Printf("%s", d.EndWarning());
PrintStack(stack);
DescribeHeapAddress(addr, 1);
ReportSummary("bad-malloc_usable_size", stack);
ReportErrorSummary("bad-malloc_usable_size", stack);
}
void ReportAsanGetAllocatedSizeNotOwned(uptr addr, StackTrace *stack) {
@ -609,7 +645,7 @@ void ReportAsanGetAllocatedSizeNotOwned(uptr addr, StackTrace *stack) {
Printf("%s", d.EndWarning());
PrintStack(stack);
DescribeHeapAddress(addr, 1);
ReportSummary("bad-__asan_get_allocated_size", stack);
ReportErrorSummary("bad-__asan_get_allocated_size", stack);
}
void ReportStringFunctionMemoryRangesOverlap(
@ -627,7 +663,7 @@ void ReportStringFunctionMemoryRangesOverlap(
PrintStack(stack);
DescribeAddress((uptr)offset1, length1);
DescribeAddress((uptr)offset2, length2);
ReportSummary(bug_type, stack);
ReportErrorSummary(bug_type, stack);
}
// ----------------------- Mac-specific reports ----------------- {{{1
@ -737,7 +773,7 @@ void __asan_report_error(uptr pc, uptr bp, uptr sp,
PrintStack(&stack);
DescribeAddress(addr, access_size);
ReportSummary(bug_descr, &stack);
ReportErrorSummary(bug_descr, &stack);
PrintShadowMemoryForAddress(addr);
}
@ -758,6 +794,6 @@ void __asan_describe_address(uptr addr) {
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default implementation of __asan_on_error that does nothing
// and may be overriden by user.
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE NOINLINE
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE NOINLINE
void __asan_on_error() {}
#endif

View File

@ -33,9 +33,9 @@ void DescribeThread(AsanThreadContext *context);
// Different kinds of error reports.
void NORETURN ReportSIGSEGV(uptr pc, uptr sp, uptr bp, uptr addr);
void NORETURN ReportDoubleFree(uptr addr, StackTrace *stack);
void NORETURN ReportFreeNotMalloced(uptr addr, StackTrace *stack);
void NORETURN ReportAllocTypeMismatch(uptr addr, StackTrace *stack,
void NORETURN ReportDoubleFree(uptr addr, StackTrace *free_stack);
void NORETURN ReportFreeNotMalloced(uptr addr, StackTrace *free_stack);
void NORETURN ReportAllocTypeMismatch(uptr addr, StackTrace *free_stack,
AllocType alloc_type,
AllocType dealloc_type);
void NORETURN ReportMallocUsableSizeNotOwned(uptr addr,

View File

@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#include "asan_interceptors.h"
#include "asan_interface_internal.h"
#include "asan_internal.h"
#include "asan_mapping.h"
#include "asan_poisoning.h"
@ -26,6 +27,8 @@
#include "sanitizer_common/sanitizer_symbolizer.h"
#include "lsan/lsan_common.h"
int __asan_option_detect_stack_use_after_return; // Global interface symbol.
namespace __asan {
uptr AsanMappingProfile[kAsanMappingProfileSize];
@ -89,7 +92,6 @@ static void ParseFlagsFromString(Flags *f, const char *str) {
CHECK((uptr)common_flags()->malloc_context_size <= kStackTraceMax);
ParseFlag(str, &f->quarantine_size, "quarantine_size");
ParseFlag(str, &f->verbosity, "verbosity");
ParseFlag(str, &f->redzone, "redzone");
CHECK_GE(f->redzone, 16);
CHECK(IsPowerOfTwo(f->redzone));
@ -101,7 +103,9 @@ static void ParseFlagsFromString(Flags *f, const char *str) {
ParseFlag(str, &f->replace_str, "replace_str");
ParseFlag(str, &f->replace_intrin, "replace_intrin");
ParseFlag(str, &f->mac_ignore_invalid_free, "mac_ignore_invalid_free");
ParseFlag(str, &f->use_fake_stack, "use_fake_stack");
ParseFlag(str, &f->detect_stack_use_after_return,
"detect_stack_use_after_return");
ParseFlag(str, &f->uar_stack_size_log, "uar_stack_size_log");
ParseFlag(str, &f->max_malloc_fill_size, "max_malloc_fill_size");
ParseFlag(str, &f->malloc_fill_byte, "malloc_fill_byte");
ParseFlag(str, &f->exitcode, "exitcode");
@ -116,30 +120,25 @@ static void ParseFlagsFromString(Flags *f, const char *str) {
ParseFlag(str, &f->print_stats, "print_stats");
ParseFlag(str, &f->print_legend, "print_legend");
ParseFlag(str, &f->atexit, "atexit");
ParseFlag(str, &f->coverage, "coverage");
ParseFlag(str, &f->disable_core, "disable_core");
ParseFlag(str, &f->allow_reexec, "allow_reexec");
ParseFlag(str, &f->print_full_thread_history, "print_full_thread_history");
ParseFlag(str, &f->log_path, "log_path");
ParseFlag(str, &f->poison_heap, "poison_heap");
ParseFlag(str, &f->poison_partial, "poison_partial");
ParseFlag(str, &f->alloc_dealloc_mismatch, "alloc_dealloc_mismatch");
ParseFlag(str, &f->use_stack_depot, "use_stack_depot");
ParseFlag(str, &f->strict_memcmp, "strict_memcmp");
ParseFlag(str, &f->strict_init_order, "strict_init_order");
ParseFlag(str, &f->detect_leaks, "detect_leaks");
}
void InitializeFlags(Flags *f, const char *env) {
CommonFlags *cf = common_flags();
SetCommonFlagDefaults();
cf->external_symbolizer_path = GetEnv("ASAN_SYMBOLIZER_PATH");
cf->symbolize = true;
cf->malloc_context_size = kDefaultMallocContextSize;
cf->fast_unwind_on_fatal = false;
cf->fast_unwind_on_malloc = true;
cf->strip_path_prefix = "";
internal_memset(f, 0, sizeof(*f));
f->quarantine_size = (ASAN_LOW_MEMORY) ? 1UL << 26 : 1UL << 28;
f->verbosity = 0;
f->redzone = 16;
f->debug = false;
f->report_globals = 1;
@ -147,7 +146,8 @@ void InitializeFlags(Flags *f, const char *env) {
f->replace_str = true;
f->replace_intrin = true;
f->mac_ignore_invalid_free = false;
f->use_fake_stack = true;
f->detect_stack_use_after_return = false; // Also needs the compiler flag.
f->uar_stack_size_log = 0;
f->max_malloc_fill_size = 0x1000; // By default, fill only the first 4K.
f->malloc_fill_byte = 0xbe;
f->exitcode = ASAN_DEFAULT_FAILURE_EXITCODE;
@ -162,25 +162,24 @@ void InitializeFlags(Flags *f, const char *env) {
f->print_stats = false;
f->print_legend = true;
f->atexit = false;
f->coverage = false;
f->disable_core = (SANITIZER_WORDSIZE == 64);
f->allow_reexec = true;
f->print_full_thread_history = true;
f->log_path = 0;
f->poison_heap = true;
// Turn off alloc/dealloc mismatch checker on Mac for now.
// TODO(glider): Fix known issues and enable this back.
f->alloc_dealloc_mismatch = (SANITIZER_MAC == 0);;
f->use_stack_depot = true;
f->poison_partial = true;
// Turn off alloc/dealloc mismatch checker on Mac and Windows for now.
// TODO(glider,timurrrr): Fix known issues and enable this back.
f->alloc_dealloc_mismatch = (SANITIZER_MAC == 0) && (SANITIZER_WINDOWS == 0);
f->strict_memcmp = true;
f->strict_init_order = false;
f->detect_leaks = false;
// Override from compile definition.
ParseFlagsFromString(f, MaybeUseAsanDefaultOptionsCompileDefiniton());
// Override from user-specified string.
ParseFlagsFromString(f, MaybeCallAsanDefaultOptions());
if (flags()->verbosity) {
if (common_flags()->verbosity) {
Report("Using the defaults from __asan_default_options: %s\n",
MaybeCallAsanDefaultOptions());
}
@ -189,17 +188,17 @@ void InitializeFlags(Flags *f, const char *env) {
ParseFlagsFromString(f, env);
#if !CAN_SANITIZE_LEAKS
if (f->detect_leaks) {
if (cf->detect_leaks) {
Report("%s: detect_leaks is not supported on this platform.\n",
SanitizerToolName);
f->detect_leaks = false;
cf->detect_leaks = false;
}
#endif
if (f->detect_leaks && !f->use_stack_depot) {
Report("%s: detect_leaks is ignored (requires use_stack_depot).\n",
SanitizerToolName);
f->detect_leaks = false;
// Make "strict_init_order" imply "check_initialization_order".
// TODO(samsonov): Use a single runtime flag for an init-order checker.
if (f->strict_init_order) {
f->check_initialization_order = true;
}
}
@ -305,8 +304,6 @@ static NOINLINE void force_interface_symbols() {
case 25: __asan_poison_memory_region(0, 0); break;
case 26: __asan_unpoison_memory_region(0, 0); break;
case 27: __asan_set_error_exit_code(0); break;
case 28: __asan_stack_free(0, 0, 0); break;
case 29: __asan_stack_malloc(0, 0); break;
case 30: __asan_before_dynamic_init(0); break;
case 31: __asan_after_dynamic_init(); break;
case 32: __asan_poison_stack_memory(0, 0); break;
@ -328,22 +325,12 @@ static void asan_atexit() {
static void InitializeHighMemEnd() {
#if !ASAN_FIXED_MAPPING
#if SANITIZER_WORDSIZE == 64
# if defined(__powerpc64__)
// FIXME:
// On PowerPC64 we have two different address space layouts: 44- and 46-bit.
// We somehow need to figure our which one we are using now and choose
// one of 0x00000fffffffffffUL and 0x00003fffffffffffUL.
// Note that with 'ulimit -s unlimited' the stack is moved away from the top
// of the address space, so simply checking the stack address is not enough.
kHighMemEnd = (1ULL << 44) - 1; // 0x00000fffffffffffUL
# else
kHighMemEnd = (1ULL << 47) - 1; // 0x00007fffffffffffUL;
# endif
#else // SANITIZER_WORDSIZE == 32
kHighMemEnd = (1ULL << 32) - 1; // 0xffffffff;
#endif // SANITIZER_WORDSIZE
kHighMemEnd = GetMaxVirtualAddress();
// Increase kHighMemEnd to make sure it's properly
// aligned together with kHighMemBeg:
kHighMemEnd |= SHADOW_GRANULARITY * GetPageSizeCached() - 1;
#endif // !ASAN_FIXED_MAPPING
CHECK_EQ((kHighMemBeg % GetPageSizeCached()), 0);
}
static void ProtectGap(uptr a, uptr size) {
@ -385,6 +372,7 @@ static void PrintAddressSpaceLayout() {
}
Printf("\n");
Printf("red_zone=%zu\n", (uptr)flags()->redzone);
Printf("quarantine_size=%zuM\n", (uptr)flags()->quarantine_size >> 20);
Printf("malloc_context_size=%zu\n",
(uptr)common_flags()->malloc_context_size);
@ -405,7 +393,7 @@ using namespace __asan; // NOLINT
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
extern "C" {
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
const char* __asan_default_options() { return ""; }
} // extern "C"
#endif
@ -438,6 +426,8 @@ void NOINLINE __asan_handle_no_return() {
return;
}
PoisonShadow(bottom, top - bottom, 0);
if (curr_thread->has_fake_stack())
curr_thread->fake_stack()->HandleNoReturn();
}
void NOINLINE __asan_set_death_callback(void (*callback)(void)) {
@ -463,9 +453,11 @@ void __asan_init() {
// initialization steps look at flags().
const char *options = GetEnv("ASAN_OPTIONS");
InitializeFlags(flags(), options);
__sanitizer_set_report_path(flags()->log_path);
__sanitizer_set_report_path(common_flags()->log_path);
__asan_option_detect_stack_use_after_return =
flags()->detect_stack_use_after_return;
if (flags()->verbosity && options) {
if (common_flags()->verbosity && options) {
Report("Parsed ASAN_OPTIONS: %s\n", options);
}
@ -475,21 +467,16 @@ void __asan_init() {
// Setup internal allocator callback.
SetLowLevelAllocateCallback(OnLowLevelAllocate);
if (flags()->atexit) {
Atexit(asan_atexit);
}
// interceptors
InitializeAsanInterceptors();
ReplaceSystemMalloc();
ReplaceOperatorsNewAndDelete();
uptr shadow_start = kLowShadowBeg;
if (kLowShadowBeg) shadow_start -= GetMmapGranularity();
uptr shadow_end = kHighShadowEnd;
if (kLowShadowBeg)
shadow_start -= GetMmapGranularity();
bool full_shadow_is_available =
MemoryRangeIsAvailable(shadow_start, shadow_end);
MemoryRangeIsAvailable(shadow_start, kHighShadowEnd);
#if SANITIZER_LINUX && defined(__x86_64__) && !ASAN_FIXED_MAPPING
if (!full_shadow_is_available) {
@ -498,7 +485,7 @@ void __asan_init() {
}
#endif
if (flags()->verbosity)
if (common_flags()->verbosity)
PrintAddressSpaceLayout();
if (flags()->disable_core) {
@ -515,7 +502,7 @@ void __asan_init() {
ProtectGap(kShadowGapBeg, kShadowGapEnd - kShadowGapBeg + 1);
} else if (kMidMemBeg &&
MemoryRangeIsAvailable(shadow_start, kMidMemBeg - 1) &&
MemoryRangeIsAvailable(kMidMemEnd + 1, shadow_end)) {
MemoryRangeIsAvailable(kMidMemEnd + 1, kHighShadowEnd)) {
CHECK(kLowShadowBeg != kLowShadowEnd);
// mmap the low shadow plus at least one page at the left.
ReserveShadowMemoryRange(shadow_start, kLowShadowEnd);
@ -534,12 +521,18 @@ void __asan_init() {
Die();
}
AsanTSDInit(PlatformTSDDtor);
InstallSignalHandlers();
// Allocator should be initialized before starting external symbolizer, as
// fork() on Mac locks the allocator.
InitializeAllocator();
// Start symbolizer process if necessary.
const char* external_symbolizer = common_flags()->external_symbolizer_path;
if (common_flags()->symbolize && external_symbolizer &&
external_symbolizer[0]) {
InitializeExternalSymbolizer(external_symbolizer);
if (common_flags()->symbolize) {
Symbolizer::Init(common_flags()->external_symbolizer_path);
} else {
Symbolizer::Disable();
}
// On Linux AsanThread::ThreadStart() calls malloc() that's why asan_inited
@ -547,8 +540,16 @@ void __asan_init() {
asan_inited = 1;
asan_init_is_running = false;
if (flags()->atexit)
Atexit(asan_atexit);
if (flags()->coverage)
Atexit(__sanitizer_cov_dump);
// interceptors
InitTlsSize();
// Create main thread.
AsanTSDInit(AsanThread::TSDDtor);
AsanThread *main_thread = AsanThread::Create(0, 0);
CreateThreadContextArgs create_main_args = { main_thread, 0 };
u32 main_tid = asanThreadRegistry().CreateThread(
@ -558,16 +559,14 @@ void __asan_init() {
main_thread->ThreadStart(internal_getpid());
force_interface_symbols(); // no-op.
InitializeAllocator();
#if CAN_SANITIZE_LEAKS
__lsan::InitCommonLsan();
if (flags()->detect_leaks) {
if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
Atexit(__lsan::DoLeakCheck);
}
#endif // CAN_SANITIZE_LEAKS
if (flags()->verbosity) {
if (common_flags()->verbosity) {
Report("AddressSanitizer Init done\n");
}
}

View File

@ -24,9 +24,12 @@ static bool MaybeCallAsanSymbolize(const void *pc, char *out_buffer,
: false;
}
void PrintStack(const uptr *trace, uptr size) {
StackTrace::PrintStack(trace, size, MaybeCallAsanSymbolize);
}
void PrintStack(StackTrace *stack) {
stack->PrintStack(stack->trace, stack->size, common_flags()->symbolize,
common_flags()->strip_path_prefix, MaybeCallAsanSymbolize);
PrintStack(stack->trace, stack->size);
}
} // namespace __asan
@ -37,7 +40,7 @@ void PrintStack(StackTrace *stack) {
// and may be overriden by user if he wants to use his own symbolization.
// ASan on Windows has its own implementation of this.
#if !SANITIZER_WINDOWS && !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE NOINLINE
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE NOINLINE
bool __asan_symbolize(const void *pc, char *out_buffer, int out_size) {
return false;
}

View File

@ -22,6 +22,7 @@
namespace __asan {
void PrintStack(StackTrace *stack);
void PrintStack(const uptr *trace, uptr size);
} // namespace __asan
@ -29,21 +30,21 @@ void PrintStack(StackTrace *stack);
// The pc will be in the position 0 of the resulting stack trace.
// The bp may refer to the current frame or to the caller's frame.
#if SANITIZER_WINDOWS
#define GET_STACK_TRACE_WITH_PC_AND_BP(max_s, pc, bp, fast) \
StackTrace stack; \
GetStackTrace(&stack, max_s, pc, bp, 0, 0, fast)
#define GET_STACK_TRACE_WITH_PC_AND_BP(max_s, pc, bp, fast) \
StackTrace stack; \
stack.Unwind(max_s, pc, bp, 0, 0, fast)
#else
#define GET_STACK_TRACE_WITH_PC_AND_BP(max_s, pc, bp, fast) \
StackTrace stack; \
{ \
uptr stack_top = 0, stack_bottom = 0; \
AsanThread *t; \
if (asan_inited && (t = GetCurrentThread())) { \
stack_top = t->stack_top(); \
stack_bottom = t->stack_bottom(); \
} \
GetStackTrace(&stack, max_s, pc, bp, \
stack_top, stack_bottom, fast); \
#define GET_STACK_TRACE_WITH_PC_AND_BP(max_s, pc, bp, fast) \
StackTrace stack; \
{ \
AsanThread *t; \
stack.size = 0; \
if (asan_inited && (t = GetCurrentThread()) && !t->isUnwinding()) { \
uptr stack_top = t->stack_top(); \
uptr stack_bottom = t->stack_bottom(); \
ScopedUnwinding unwind_scope(t); \
stack.Unwind(max_s, pc, bp, stack_top, stack_bottom, fast); \
} \
}
#endif // SANITIZER_WINDOWS

View File

@ -21,6 +21,10 @@
namespace __asan {
AsanStats::AsanStats() {
Clear();
}
void AsanStats::Clear() {
CHECK(REAL(memset));
REAL(memset)(this, 0, sizeof(AsanStats));
}
@ -54,8 +58,70 @@ void AsanStats::Print() {
malloc_large, malloc_small_slow);
}
void AsanStats::MergeFrom(const AsanStats *stats) {
uptr *dst_ptr = reinterpret_cast<uptr*>(this);
const uptr *src_ptr = reinterpret_cast<const uptr*>(stats);
uptr num_fields = sizeof(*this) / sizeof(uptr);
for (uptr i = 0; i < num_fields; i++)
dst_ptr[i] += src_ptr[i];
}
static BlockingMutex print_lock(LINKER_INITIALIZED);
static AsanStats unknown_thread_stats(LINKER_INITIALIZED);
static AsanStats dead_threads_stats(LINKER_INITIALIZED);
static BlockingMutex dead_threads_stats_lock(LINKER_INITIALIZED);
// Required for malloc_zone_statistics() on OS X. This can't be stored in
// per-thread AsanStats.
static uptr max_malloced_memory;
static void MergeThreadStats(ThreadContextBase *tctx_base, void *arg) {
AsanStats *accumulated_stats = reinterpret_cast<AsanStats*>(arg);
AsanThreadContext *tctx = static_cast<AsanThreadContext*>(tctx_base);
if (AsanThread *t = tctx->thread)
accumulated_stats->MergeFrom(&t->stats());
}
static void GetAccumulatedStats(AsanStats *stats) {
stats->Clear();
{
ThreadRegistryLock l(&asanThreadRegistry());
asanThreadRegistry()
.RunCallbackForEachThreadLocked(MergeThreadStats, stats);
}
stats->MergeFrom(&unknown_thread_stats);
{
BlockingMutexLock lock(&dead_threads_stats_lock);
stats->MergeFrom(&dead_threads_stats);
}
// This is not very accurate: we may miss allocation peaks that happen
// between two updates of accumulated_stats_. For more accurate bookkeeping
// the maximum should be updated on every malloc(), which is unacceptable.
if (max_malloced_memory < stats->malloced) {
max_malloced_memory = stats->malloced;
}
}
void FlushToDeadThreadStats(AsanStats *stats) {
BlockingMutexLock lock(&dead_threads_stats_lock);
dead_threads_stats.MergeFrom(stats);
stats->Clear();
}
void FillMallocStatistics(AsanMallocStats *malloc_stats) {
AsanStats stats;
GetAccumulatedStats(&stats);
malloc_stats->blocks_in_use = stats.mallocs;
malloc_stats->size_in_use = stats.malloced;
malloc_stats->max_size_in_use = max_malloced_memory;
malloc_stats->size_allocated = stats.mmaped;
}
AsanStats &GetCurrentThreadStats() {
AsanThread *t = GetCurrentThread();
return (t) ? t->stats() : unknown_thread_stats;
}
static void PrintAccumulatedStats() {
AsanStats stats;
GetAccumulatedStats(&stats);
@ -68,100 +134,36 @@ static void PrintAccumulatedStats() {
PrintInternalAllocatorStats();
}
static AsanStats unknown_thread_stats(LINKER_INITIALIZED);
static AsanStats accumulated_stats(LINKER_INITIALIZED);
// Required for malloc_zone_statistics() on OS X. This can't be stored in
// per-thread AsanStats.
static uptr max_malloced_memory;
static BlockingMutex acc_stats_lock(LINKER_INITIALIZED);
static void FlushToAccumulatedStatsUnlocked(AsanStats *stats) {
acc_stats_lock.CheckLocked();
uptr *dst = (uptr*)&accumulated_stats;
uptr *src = (uptr*)stats;
uptr num_fields = sizeof(*stats) / sizeof(uptr);
for (uptr i = 0; i < num_fields; i++) {
dst[i] += src[i];
src[i] = 0;
}
}
static void FlushThreadStats(ThreadContextBase *tctx_base, void *arg) {
AsanThreadContext *tctx = static_cast<AsanThreadContext*>(tctx_base);
if (AsanThread *t = tctx->thread)
FlushToAccumulatedStatsUnlocked(&t->stats());
}
static void UpdateAccumulatedStatsUnlocked() {
acc_stats_lock.CheckLocked();
{
ThreadRegistryLock l(&asanThreadRegistry());
asanThreadRegistry().RunCallbackForEachThreadLocked(FlushThreadStats, 0);
}
FlushToAccumulatedStatsUnlocked(&unknown_thread_stats);
// This is not very accurate: we may miss allocation peaks that happen
// between two updates of accumulated_stats_. For more accurate bookkeeping
// the maximum should be updated on every malloc(), which is unacceptable.
if (max_malloced_memory < accumulated_stats.malloced) {
max_malloced_memory = accumulated_stats.malloced;
}
}
void FlushToAccumulatedStats(AsanStats *stats) {
BlockingMutexLock lock(&acc_stats_lock);
FlushToAccumulatedStatsUnlocked(stats);
}
void GetAccumulatedStats(AsanStats *stats) {
BlockingMutexLock lock(&acc_stats_lock);
UpdateAccumulatedStatsUnlocked();
internal_memcpy(stats, &accumulated_stats, sizeof(accumulated_stats));
}
void FillMallocStatistics(AsanMallocStats *malloc_stats) {
BlockingMutexLock lock(&acc_stats_lock);
UpdateAccumulatedStatsUnlocked();
malloc_stats->blocks_in_use = accumulated_stats.mallocs;
malloc_stats->size_in_use = accumulated_stats.malloced;
malloc_stats->max_size_in_use = max_malloced_memory;
malloc_stats->size_allocated = accumulated_stats.mmaped;
}
AsanStats &GetCurrentThreadStats() {
AsanThread *t = GetCurrentThread();
return (t) ? t->stats() : unknown_thread_stats;
}
} // namespace __asan
// ---------------------- Interface ---------------- {{{1
using namespace __asan; // NOLINT
uptr __asan_get_current_allocated_bytes() {
BlockingMutexLock lock(&acc_stats_lock);
UpdateAccumulatedStatsUnlocked();
uptr malloced = accumulated_stats.malloced;
uptr freed = accumulated_stats.freed;
AsanStats stats;
GetAccumulatedStats(&stats);
uptr malloced = stats.malloced;
uptr freed = stats.freed;
// Return sane value if malloced < freed due to racy
// way we update accumulated stats.
return (malloced > freed) ? malloced - freed : 1;
}
uptr __asan_get_heap_size() {
BlockingMutexLock lock(&acc_stats_lock);
UpdateAccumulatedStatsUnlocked();
return accumulated_stats.mmaped - accumulated_stats.munmaped;
AsanStats stats;
GetAccumulatedStats(&stats);
return stats.mmaped - stats.munmaped;
}
uptr __asan_get_free_bytes() {
BlockingMutexLock lock(&acc_stats_lock);
UpdateAccumulatedStatsUnlocked();
uptr total_free = accumulated_stats.mmaped
- accumulated_stats.munmaped
+ accumulated_stats.really_freed
+ accumulated_stats.really_freed_redzones;
uptr total_used = accumulated_stats.malloced
+ accumulated_stats.malloced_redzones;
AsanStats stats;
GetAccumulatedStats(&stats);
uptr total_free = stats.mmaped
- stats.munmaped
+ stats.really_freed
+ stats.really_freed_redzones;
uptr total_used = stats.malloced
+ stats.malloced_redzones;
// Return sane value if total_free < total_used due to racy
// way we update accumulated stats.
return (total_free > total_used) ? total_free - total_used : 1;

View File

@ -52,18 +52,16 @@ struct AsanStats {
// Default ctor for thread-local stats.
AsanStats();
// Prints formatted stats to stderr.
void Print();
void Print(); // Prints formatted stats to stderr.
void Clear();
void MergeFrom(const AsanStats *stats);
};
// Returns stats for GetCurrentThread(), or stats for fake "unknown thread"
// if GetCurrentThread() returns 0.
AsanStats &GetCurrentThreadStats();
// Flushes all thread-local stats to accumulated stats, and makes
// a copy of accumulated stats.
void GetAccumulatedStats(AsanStats *stats);
// Flushes a given stats into accumulated stats.
void FlushToAccumulatedStats(AsanStats *stats);
// Flushes a given stats into accumulated stats of dead threads.
void FlushToDeadThreadStats(AsanStats *stats);
// A cross-platform equivalent of malloc_statistics_t on Mac OS.
struct AsanMallocStats {

View File

@ -19,6 +19,7 @@
#include "asan_mapping.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "lsan/lsan_common.h"
namespace __asan {
@ -27,9 +28,8 @@ namespace __asan {
void AsanThreadContext::OnCreated(void *arg) {
CreateThreadContextArgs *args = static_cast<CreateThreadContextArgs*>(arg);
if (args->stack) {
internal_memcpy(&stack, args->stack, sizeof(stack));
}
if (args->stack)
stack_id = StackDepotPut(args->stack->trace, args->stack->size);
thread = args->thread;
thread->set_context(this);
}
@ -39,12 +39,16 @@ void AsanThreadContext::OnFinished() {
thread = 0;
}
static char thread_registry_placeholder[sizeof(ThreadRegistry)];
// MIPS requires aligned address
static ALIGNED(16) char thread_registry_placeholder[sizeof(ThreadRegistry)];
static ThreadRegistry *asan_thread_registry;
static BlockingMutex mu_for_thread_context(LINKER_INITIALIZED);
static LowLevelAllocator allocator_for_thread_context;
static ThreadContextBase *GetAsanThreadContext(u32 tid) {
void *mem = MmapOrDie(sizeof(AsanThreadContext), "AsanThreadContext");
return new(mem) AsanThreadContext(tid);
BlockingMutexLock lock(&mu_for_thread_context);
return new(allocator_for_thread_context) AsanThreadContext(tid);
}
ThreadRegistry &asanThreadRegistry() {
@ -84,40 +88,68 @@ AsanThread *AsanThread::Create(thread_callback_t start_routine,
void AsanThread::TSDDtor(void *tsd) {
AsanThreadContext *context = (AsanThreadContext*)tsd;
if (flags()->verbosity >= 1)
if (common_flags()->verbosity >= 1)
Report("T%d TSDDtor\n", context->tid);
if (context->thread)
context->thread->Destroy();
}
void AsanThread::Destroy() {
if (flags()->verbosity >= 1) {
if (common_flags()->verbosity >= 1) {
Report("T%d exited\n", tid());
}
malloc_storage().CommitBack();
if (flags()->use_sigaltstack) UnsetAlternateSignalStack();
asanThreadRegistry().FinishThread(tid());
FlushToAccumulatedStats(&stats_);
FlushToDeadThreadStats(&stats_);
// We also clear the shadow on thread destruction because
// some code may still be executing in later TSD destructors
// and we don't want it to have any poisoned stack.
ClearShadowForThreadStack();
fake_stack().Cleanup();
ClearShadowForThreadStackAndTLS();
DeleteFakeStack();
uptr size = RoundUpTo(sizeof(AsanThread), GetPageSizeCached());
UnmapOrDie(this, size);
}
// We want to create the FakeStack lazyly on the first use, but not eralier
// than the stack size is known and the procedure has to be async-signal safe.
FakeStack *AsanThread::AsyncSignalSafeLazyInitFakeStack() {
uptr stack_size = this->stack_size();
if (stack_size == 0) // stack_size is not yet available, don't use FakeStack.
return 0;
uptr old_val = 0;
// fake_stack_ has 3 states:
// 0 -- not initialized
// 1 -- being initialized
// ptr -- initialized
// This CAS checks if the state was 0 and if so changes it to state 1,
// if that was successfull, it initilizes the pointer.
if (atomic_compare_exchange_strong(
reinterpret_cast<atomic_uintptr_t *>(&fake_stack_), &old_val, 1UL,
memory_order_relaxed)) {
uptr stack_size_log = Log2(RoundUpToPowerOfTwo(stack_size));
if (flags()->uar_stack_size_log)
stack_size_log = static_cast<uptr>(flags()->uar_stack_size_log);
fake_stack_ = FakeStack::Create(stack_size_log);
SetTLSFakeStack(fake_stack_);
return fake_stack_;
}
return 0;
}
void AsanThread::Init() {
SetThreadStackTopAndBottom();
SetThreadStackAndTls();
CHECK(AddrIsInMem(stack_bottom_));
CHECK(AddrIsInMem(stack_top_ - 1));
ClearShadowForThreadStack();
if (flags()->verbosity >= 1) {
ClearShadowForThreadStackAndTLS();
if (common_flags()->verbosity >= 1) {
int local = 0;
Report("T%d: stack [%p,%p) size 0x%zx; local=%p\n",
tid(), (void*)stack_bottom_, (void*)stack_top_,
stack_top_ - stack_bottom_, &local);
}
fake_stack_.Init(stack_size());
fake_stack_ = 0; // Will be initialized lazily if needed.
AsanPlatformThreadInit();
}
@ -135,22 +167,33 @@ thread_return_t AsanThread::ThreadStart(uptr os_id) {
}
thread_return_t res = start_routine_(arg_);
malloc_storage().CommitBack();
if (flags()->use_sigaltstack) UnsetAlternateSignalStack();
this->Destroy();
// On POSIX systems we defer this to the TSD destructor. LSan will consider
// the thread's memory as non-live from the moment we call Destroy(), even
// though that memory might contain pointers to heap objects which will be
// cleaned up by a user-defined TSD destructor. Thus, calling Destroy() before
// the TSD destructors have run might cause false positives in LSan.
if (!SANITIZER_POSIX)
this->Destroy();
return res;
}
void AsanThread::SetThreadStackTopAndBottom() {
GetThreadStackTopAndBottom(tid() == 0, &stack_top_, &stack_bottom_);
void AsanThread::SetThreadStackAndTls() {
uptr tls_size = 0;
GetThreadStackAndTls(tid() == 0, &stack_bottom_, &stack_size_, &tls_begin_,
&tls_size);
stack_top_ = stack_bottom_ + stack_size_;
tls_end_ = tls_begin_ + tls_size;
int local;
CHECK(AddrIsInStack((uptr)&local));
}
void AsanThread::ClearShadowForThreadStack() {
void AsanThread::ClearShadowForThreadStackAndTLS() {
PoisonShadow(stack_bottom_, stack_top_ - stack_bottom_, 0);
if (tls_begin_ != tls_end_)
PoisonShadow(tls_begin_, tls_end_ - tls_begin_, 0);
}
const char *AsanThread::GetFrameNameByAddr(uptr addr, uptr *offset,
@ -158,8 +201,8 @@ const char *AsanThread::GetFrameNameByAddr(uptr addr, uptr *offset,
uptr bottom = 0;
if (AddrIsInStack(addr)) {
bottom = stack_bottom();
} else {
bottom = fake_stack().AddrIsInFakeStack(addr);
} else if (has_fake_stack()) {
bottom = fake_stack()->AddrIsInFakeStack(addr);
CHECK(bottom);
*offset = addr - bottom;
*frame_pc = ((uptr*)bottom)[2];
@ -195,13 +238,16 @@ static bool ThreadStackContainsAddress(ThreadContextBase *tctx_base,
void *addr) {
AsanThreadContext *tctx = static_cast<AsanThreadContext*>(tctx_base);
AsanThread *t = tctx->thread;
return (t && t->fake_stack().StackSize() &&
(t->fake_stack().AddrIsInFakeStack((uptr)addr) ||
t->AddrIsInStack((uptr)addr)));
if (!t) return false;
if (t->AddrIsInStack((uptr)addr)) return true;
if (t->has_fake_stack() && t->fake_stack()->AddrIsInFakeStack((uptr)addr))
return true;
return false;
}
AsanThread *GetCurrentThread() {
AsanThreadContext *context = (AsanThreadContext*)AsanTSDGet();
AsanThreadContext *context =
reinterpret_cast<AsanThreadContext *>(AsanTSDGet());
if (!context) {
if (SANITIZER_ANDROID) {
// On Android, libc constructor is called _after_ asan_init, and cleans up
@ -222,7 +268,7 @@ AsanThread *GetCurrentThread() {
void SetCurrentThread(AsanThread *t) {
CHECK(t->context());
if (flags()->verbosity >= 2) {
if (common_flags()->verbosity >= 2) {
Report("SetCurrentThread: %p for thread %p\n",
t->context(), (void*)GetThreadSelf());
}
@ -244,6 +290,20 @@ AsanThread *FindThreadByStackAddress(uptr addr) {
(void *)addr));
return tctx ? tctx->thread : 0;
}
void EnsureMainThreadIDIsCorrect() {
AsanThreadContext *context =
reinterpret_cast<AsanThreadContext *>(AsanTSDGet());
if (context && (context->tid == 0))
context->os_id = GetTid();
}
__asan::AsanThread *GetAsanThreadByOsIDLocked(uptr os_id) {
__asan::AsanThreadContext *context = static_cast<__asan::AsanThreadContext *>(
__asan::asanThreadRegistry().FindThreadContextByOsIDLocked(os_id));
if (!context) return 0;
return context->thread;
}
} // namespace __asan
// --- Implementation of LSan-specific functions --- {{{1
@ -251,8 +311,23 @@ namespace __lsan {
bool GetThreadRangesLocked(uptr os_id, uptr *stack_begin, uptr *stack_end,
uptr *tls_begin, uptr *tls_end,
uptr *cache_begin, uptr *cache_end) {
// FIXME: Stub.
return false;
__asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id);
if (!t) return false;
*stack_begin = t->stack_bottom();
*stack_end = t->stack_top();
*tls_begin = t->tls_begin();
*tls_end = t->tls_end();
// ASan doesn't keep allocator caches in TLS, so these are unused.
*cache_begin = 0;
*cache_end = 0;
return true;
}
void ForEachExtraStackRange(uptr os_id, RangeIteratorCallback callback,
void *arg) {
__asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id);
if (t && t->has_fake_stack())
t->fake_stack()->ForEachFakeFrame(callback, arg);
}
void LockThreadRegistry() {
@ -262,4 +337,8 @@ void LockThreadRegistry() {
void UnlockThreadRegistry() {
__asan::asanThreadRegistry().Unlock();
}
void EnsureMainThreadIDIsCorrect() {
__asan::EnsureMainThreadIDIsCorrect();
}
} // namespace __lsan

View File

@ -19,6 +19,7 @@
#include "asan_fake_stack.h"
#include "asan_stack.h"
#include "asan_stats.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_thread_registry.h"
@ -36,11 +37,13 @@ class AsanThreadContext : public ThreadContextBase {
explicit AsanThreadContext(int tid)
: ThreadContextBase(tid),
announced(false),
destructor_iterations(kPthreadDestructorIterations),
stack_id(0),
thread(0) {
internal_memset(&stack, 0, sizeof(stack));
}
bool announced;
StackTrace stack;
u8 destructor_iterations;
u32 stack_id;
AsanThread *thread;
void OnCreated(void *arg);
@ -48,7 +51,7 @@ class AsanThreadContext : public ThreadContextBase {
};
// AsanThreadContext objects are never freed, so we need many of them.
COMPILER_CHECK(sizeof(AsanThreadContext) <= 4096);
COMPILER_CHECK(sizeof(AsanThreadContext) <= 256);
// AsanThread are stored in TSD and destroyed when the thread dies.
class AsanThread {
@ -62,7 +65,9 @@ class AsanThread {
uptr stack_top() { return stack_top_; }
uptr stack_bottom() { return stack_bottom_; }
uptr stack_size() { return stack_top_ - stack_bottom_; }
uptr stack_size() { return stack_size_; }
uptr tls_begin() { return tls_begin_; }
uptr tls_end() { return tls_end_; }
u32 tid() { return context_->tid; }
AsanThreadContext *context() { return context_; }
void set_context(AsanThreadContext *context) { context_ = context; }
@ -73,23 +78,68 @@ class AsanThread {
return addr >= stack_bottom_ && addr < stack_top_;
}
FakeStack &fake_stack() { return fake_stack_; }
void DeleteFakeStack() {
if (!fake_stack_) return;
FakeStack *t = fake_stack_;
fake_stack_ = 0;
SetTLSFakeStack(0);
t->Destroy();
}
bool has_fake_stack() {
return (reinterpret_cast<uptr>(fake_stack_) > 1);
}
FakeStack *fake_stack() {
if (!__asan_option_detect_stack_use_after_return)
return 0;
if (!has_fake_stack())
return AsyncSignalSafeLazyInitFakeStack();
return fake_stack_;
}
// True is this thread is currently unwinding stack (i.e. collecting a stack
// trace). Used to prevent deadlocks on platforms where libc unwinder calls
// malloc internally. See PR17116 for more details.
bool isUnwinding() const { return unwinding; }
void setUnwinding(bool b) { unwinding = b; }
AsanThreadLocalMallocStorage &malloc_storage() { return malloc_storage_; }
AsanStats &stats() { return stats_; }
private:
AsanThread() {}
void SetThreadStackTopAndBottom();
void ClearShadowForThreadStack();
AsanThread() : unwinding(false) {}
void SetThreadStackAndTls();
void ClearShadowForThreadStackAndTLS();
FakeStack *AsyncSignalSafeLazyInitFakeStack();
AsanThreadContext *context_;
thread_callback_t start_routine_;
void *arg_;
uptr stack_top_;
uptr stack_bottom_;
// stack_size_ == stack_top_ - stack_bottom_;
// It needs to be set in a async-signal-safe manner.
uptr stack_size_;
uptr tls_begin_;
uptr tls_end_;
FakeStack fake_stack_;
FakeStack *fake_stack_;
AsanThreadLocalMallocStorage malloc_storage_;
AsanStats stats_;
bool unwinding;
};
// ScopedUnwinding is a scope for stacktracing member of a context
class ScopedUnwinding {
public:
explicit ScopedUnwinding(AsanThread *t) : thread(t) {
t->setUnwinding(true);
}
~ScopedUnwinding() { thread->setUnwinding(false); }
private:
AsanThread *thread;
};
struct CreateThreadContextArgs {
@ -109,6 +159,8 @@ void SetCurrentThread(AsanThread *t);
u32 GetCurrentTidOrInvalid();
AsanThread *FindThreadByStackAddress(uptr addr);
// Used to handle fork().
void EnsureMainThreadIDIsCorrect();
} // namespace __asan
#endif // ASAN_THREAD_H

View File

@ -25,6 +25,14 @@
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_mutex.h"
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
int __asan_should_detect_stack_use_after_return() {
__asan_init();
return __asan_option_detect_stack_use_after_return;
}
}
namespace __asan {
// ---------------------- Stacktraces, symbols, etc. ---------------- {{{1
@ -52,6 +60,9 @@ void AsanTSDSet(void *tsd) {
fake_tsd = tsd;
}
void PlatformTSDDtor(void *tsd) {
AsanThread::TSDDtor(tsd);
}
// ---------------------- Various stuff ---------------- {{{1
void MaybeReexec() {
// No need to re-exec on Windows.

View File

@ -0,0 +1,13 @@
## Autogenerated by LLVM/Clang configuration.
# Do not edit!
# Load common config for all compiler-rt lit tests.
lit_config.load_config(config, "@COMPILER_RT_BINARY_DIR@/lib/lit.common.configured")
# Tool-specific config options.
config.asan_source_dir = "@ASAN_SOURCE_DIR@"
config.bits = "32"
# Load tool-specific config that would do the real work.
lit_config.load_config(config, "@ASAN_SOURCE_DIR@/lit_tests/lit.cfg")

View File

@ -0,0 +1,12 @@
## Autogenerated by LLVM/Clang configuration.
# Do not edit!
# Load common config for all compiler-rt lit tests.
lit_config.load_config(config, "@COMPILER_RT_BINARY_DIR@/lib/lit.common.configured")
# Tool-specific config options.
config.asan_source_dir = "@ASAN_SOURCE_DIR@"
config.bits = "64"
# Load tool-specific config that would do the real work.
lit_config.load_config(config, "@ASAN_SOURCE_DIR@/lit_tests/lit.cfg")

View File

@ -2,8 +2,13 @@ set(ASAN_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/..)
set(ASAN_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/..)
configure_lit_site_cfg(
${CMAKE_CURRENT_SOURCE_DIR}/lit.site.cfg.in
${CMAKE_CURRENT_BINARY_DIR}/lit.site.cfg
${CMAKE_CURRENT_SOURCE_DIR}/64bitConfig/lit.site.cfg.in
${CMAKE_CURRENT_BINARY_DIR}/64bitConfig/lit.site.cfg
)
configure_lit_site_cfg(
${CMAKE_CURRENT_SOURCE_DIR}/32bitConfig/lit.site.cfg.in
${CMAKE_CURRENT_BINARY_DIR}/32bitConfig/lit.site.cfg
)
configure_lit_site_cfg(
@ -12,21 +17,26 @@ configure_lit_site_cfg(
)
if(COMPILER_RT_CAN_EXECUTE_TESTS)
set(ASAN_TESTSUITES)
if(CAN_TARGET_i386)
list(APPEND ASAN_TESTSUITES ${CMAKE_CURRENT_BINARY_DIR}/32bitConfig)
endif()
if(CAN_TARGET_x86_64 OR CAN_TARGET_powerpc64)
list(APPEND ASAN_TESTSUITES ${CMAKE_CURRENT_BINARY_DIR}/64bitConfig)
endif()
# Run ASan tests only if we're sure we may produce working binaries.
set(ASAN_TEST_DEPS
${SANITIZER_COMMON_LIT_TEST_DEPS}
${ASAN_RUNTIME_LIBRARIES}
asan_blacklist)
asan_runtime_libraries)
set(ASAN_TEST_PARAMS
asan_site_config=${CMAKE_CURRENT_BINARY_DIR}/lit.site.cfg
)
asan_site_config=${CMAKE_CURRENT_BINARY_DIR}/lit.site.cfg)
if(LLVM_INCLUDE_TESTS)
list(APPEND ASAN_TEST_DEPS AsanUnitTests)
list(APPEND ASAN_TESTSUITES ${CMAKE_CURRENT_BINARY_DIR}/Unit)
endif()
add_lit_testsuite(check-asan "Running the AddressSanitizer tests"
${CMAKE_CURRENT_BINARY_DIR}
${ASAN_TESTSUITES}
PARAMS ${ASAN_TEST_PARAMS}
DEPENDS ${ASAN_TEST_DEPS}
)
DEPENDS ${ASAN_TEST_DEPS})
set_target_properties(check-asan PROPERTIES FOLDER "ASan tests")
endif()

View File

@ -1,20 +0,0 @@
// Make sure ASan removes the runtime library from DYLD_INSERT_LIBRARIES before
// executing other programs.
// RUN: %clangxx_asan -m64 %s -o %t
// RUN: %clangxx -m64 %p/../SharedLibs/darwin-dummy-shared-lib-so.cc \
// RUN: -dynamiclib -o darwin-dummy-shared-lib-so.dylib
// Make sure DYLD_INSERT_LIBRARIES doesn't contain the runtime library before
// execl().
// RUN: %t >/dev/null 2>&1
// RUN: DYLD_INSERT_LIBRARIES=darwin-dummy-shared-lib-so.dylib \
// RUN: %t 2>&1 | FileCheck %s || exit 1
#include <unistd.h>
int main() {
execl("/bin/bash", "/bin/bash", "-c",
"echo DYLD_INSERT_LIBRARIES=$DYLD_INSERT_LIBRARIES", NULL);
// CHECK: {{DYLD_INSERT_LIBRARIES=.*darwin-dummy-shared-lib-so.dylib.*}}
return 0;
}

View File

@ -1,3 +0,0 @@
global-init:*badGlobal*
global-init-type:*badNamespace::BadClass*
global-init-src:*initialization-blacklist-extra2.cc

View File

@ -1,26 +0,0 @@
// If user provides his own libc functions, ASan doesn't
// intercept these functions.
// RUN: %clangxx_asan -m64 -O0 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O1 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O2 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O3 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O0 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O1 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O2 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O3 %s -o %t && %t 2>&1 | FileCheck %s
#include <stdlib.h>
#include <stdio.h>
extern "C" long strtol(const char *nptr, char **endptr, int base) {
fprintf(stderr, "my_strtol_interceptor\n");
return 0;
}
int main() {
char *x = (char*)malloc(10 * sizeof(char));
free(x);
return (int)strtol(x, 0, 10);
// CHECK: my_strtol_interceptor
// CHECK-NOT: heap-use-after-free
}

View File

@ -1,27 +0,0 @@
// ASan interceptor can be accessed with __interceptor_ prefix.
// RUN: %clangxx_asan -m64 -O0 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O1 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O2 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O3 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O0 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O1 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O2 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O3 %s -o %t && %t 2>&1 | FileCheck %s
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
extern "C" void *__interceptor_malloc(size_t size);
extern "C" void *malloc(size_t size) {
write(2, "malloc call\n", sizeof("malloc call\n") - 1);
return __interceptor_malloc(size);
}
int main() {
char *x = (char*)malloc(10 * sizeof(char));
free(x);
return (int)strtol(x, 0, 10);
// CHECK: malloc call
// CHECK: heap-use-after-free
}

View File

@ -1,26 +0,0 @@
// ASan interceptor can be accessed with __interceptor_ prefix.
// RUN: %clangxx_asan -m64 -O0 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O1 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O2 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O3 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O0 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O1 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O2 %s -o %t && %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O3 %s -o %t && %t 2>&1 | FileCheck %s
#include <stdlib.h>
#include <stdio.h>
extern "C" long __interceptor_strtol(const char *nptr, char **endptr, int base);
extern "C" long strtol(const char *nptr, char **endptr, int base) {
fprintf(stderr, "my_strtol_interceptor\n");
return __interceptor_strtol(nptr, endptr, base);
}
int main() {
char *x = (char*)malloc(10 * sizeof(char));
free(x);
return (int)strtol(x, 0, 10);
// CHECK: my_strtol_interceptor
// CHECK: heap-use-after-free
}

View File

@ -1,31 +0,0 @@
// RUN: %clangxx_asan -m64 -O0 -fsanitize-address-zero-base-shadow -fPIE -pie %s -o %t && %t 2>&1 | %symbolize > %t.out
// RUN: FileCheck %s < %t.out && FileCheck %s --check-prefix=CHECK-64 < %t.out
// RUN: %clangxx_asan -m64 -O1 -fsanitize-address-zero-base-shadow -fPIE -pie %s -o %t && %t 2>&1 | %symbolize > %t.out
// RUN: FileCheck %s < %t.out && FileCheck %s --check-prefix=CHECK-64 < %t.out
// RUN: %clangxx_asan -m64 -O2 -fsanitize-address-zero-base-shadow -fPIE -pie %s -o %t && %t 2>&1 | %symbolize > %t.out
// RUN: FileCheck %s < %t.out && FileCheck %s --check-prefix=CHECK-64 < %t.out
// RUN: %clangxx_asan -m32 -O0 -fsanitize-address-zero-base-shadow -fPIE -pie %s -o %t && %t 2>&1 | %symbolize > %t.out
// RUN: FileCheck %s < %t.out && FileCheck %s --check-prefix=CHECK-32 < %t.out
// RUN: %clangxx_asan -m32 -O1 -fsanitize-address-zero-base-shadow -fPIE -pie %s -o %t && %t 2>&1 | %symbolize > %t.out
// RUN: FileCheck %s < %t.out && FileCheck %s --check-prefix=CHECK-32 < %t.out
// RUN: %clangxx_asan -m32 -O2 -fsanitize-address-zero-base-shadow -fPIE -pie %s -o %t && %t 2>&1 | %symbolize > %t.out
// RUN: FileCheck %s < %t.out && FileCheck %s --check-prefix=CHECK-32 < %t.out
// Zero-base shadow only works on x86_64 and i386.
// REQUIRES: x86_64-supported-target,i386-supported-target
#include <string.h>
int main(int argc, char **argv) {
char x[10];
memset(x, 0, 10);
int res = x[argc * 10]; // BOOOM
// CHECK: {{READ of size 1 at 0x.* thread T0}}
// CHECK: {{ #0 0x.* in _?main .*zero-base-shadow.cc:}}[[@LINE-2]]
// CHECK: {{Address 0x.* is .* frame}}
// CHECK: main
// Check that shadow for stack memory occupies lower part of address space.
// CHECK-64: =>0x0f
// CHECK-32: =>0x1
return res;
}

View File

@ -2,7 +2,7 @@
// If you're changing this file, please also change
// ../Linux/interface_symbols.c
// RUN: %clang -fsanitize=address -dead_strip -O2 %s -o %t.exe
// RUN: %clang_asan -dead_strip -O2 %s -o %t.exe
// RUN: rm -f %t.symbols %t.interface
// RUN: nm -g `otool -L %t.exe | grep "asan_osx_dynamic.dylib" | \
@ -16,7 +16,7 @@
// RUN: | grep -v "__asan_default_options" \
// RUN: | grep -v "__asan_on_error" > %t.symbols
// RUN: cat %p/../../asan_interface_internal.h \
// RUN: cat %p/../../../asan_interface_internal.h \
// RUN: | sed "s/\/\/.*//" | sed "s/typedef.*//" \
// RUN: | grep -v "OPTIONAL" \
// RUN: | grep "__asan_.*(" | sed "s/.* __asan_/__asan_/;s/(.*//" \
@ -33,6 +33,8 @@
// RUN: echo __asan_report_store16 >> %t.interface
// RUN: echo __asan_report_load_n >> %t.interface
// RUN: echo __asan_report_store_n >> %t.interface
// RUN: for i in `jot - 0 10`; do echo __asan_stack_malloc_$i >> %t.interface; done
// RUN: for i in `jot - 0 10`; do echo __asan_stack_free_$i >> %t.interface; done
// RUN: cat %t.interface | sort -u | diff %t.symbols -

View File

@ -0,0 +1,51 @@
// Regression test for a bug in malloc_create_zone()
// (https://code.google.com/p/address-sanitizer/issues/detail?id=203)
// The old implementation of malloc_create_zone() didn't always return a
// page-aligned address, so we can only test on a best-effort basis.
// RUN: %clangxx_asan %s -o %t
// RUN: %t 2>&1
#include <malloc/malloc.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
const int kNumIter = 4096;
const int kNumZones = 100;
int main() {
char *mem[kNumIter * 2];
// Allocate memory chunks from different size classes up to 1 page.
// (For the case malloc() returns memory chunks in descending order)
for (int i = 0; i < kNumIter; i++) {
mem[i] = (char*)malloc(8 * i);
}
// Try to allocate a page-aligned malloc zone. Otherwise the mprotect() call
// in malloc_set_zone_name() will silently fail.
malloc_zone_t *zone = NULL;
bool aligned = false;
for (int i = 0; i < kNumZones; i++) {
zone = malloc_create_zone(0, 0);
if (((uintptr_t)zone & (~0xfff)) == (uintptr_t)zone) {
aligned = true;
break;
}
}
if (!aligned) {
printf("Warning: couldn't allocate a page-aligned zone.");
return 0;
}
// malloc_set_zone_name() calls mprotect(zone, 4096, PROT_READ | PROT_WRITE),
// modifies the zone contents and then calls mprotect(zone, 4096, PROT_READ).
malloc_set_zone_name(zone, "foobar");
// Allocate memory chunks from different size classes again.
for (int i = 0; i < kNumIter; i++) {
mem[i + kNumIter] = (char*)malloc(8 * i);
}
// Access the allocated memory chunks and free them.
for (int i = 0; i < kNumIter * 2; i++) {
memset(mem[i], 'a', 8 * (i % kNumIter));
free(mem[i]);
}
return 0;
}

View File

@ -0,0 +1,20 @@
// Make sure the zones created by malloc_create_zone() are write-protected.
#include <malloc/malloc.h>
#include <stdio.h>
// RUN: %clangxx_asan %s -o %t
// RUN: not %t 2>&1 | FileCheck %s
void *pwn(malloc_zone_t *unused_zone, size_t unused_size) {
printf("PWNED\n");
return NULL;
}
int main() {
malloc_zone_t *zone = malloc_create_zone(0, 0);
zone->malloc = pwn;
void *v = malloc_zone_malloc(zone, 1);
// CHECK-NOT: PWNED
return 0;
}

View File

@ -2,8 +2,8 @@
// This is a regression test for
// https://code.google.com/p/address-sanitizer/issues/detail?id=159
// RUN: %clangxx_asan -m64 %s -o %t
// RUN: %clangxx -m64 %p/../SharedLibs/darwin-dummy-shared-lib-so.cc \
// RUN: %clangxx_asan %s -o %t
// RUN: %clangxx %p/../SharedLibs/darwin-dummy-shared-lib-so.cc \
// RUN: -dynamiclib -o darwin-dummy-shared-lib-so.dylib
// FIXME: the following command line may hang in the case of a regression.

View File

@ -0,0 +1,20 @@
// Make sure ASan removes the runtime library from DYLD_INSERT_LIBRARIES before
// executing other programs.
// RUN: %clangxx_asan %s -o %t
// RUN: %clangxx %p/../Helpers/echo-env.cc -o %T/echo-env
// RUN: %clangxx %p/../SharedLibs/darwin-dummy-shared-lib-so.cc \
// RUN: -dynamiclib -o %t-darwin-dummy-shared-lib-so.dylib
// Make sure DYLD_INSERT_LIBRARIES doesn't contain the runtime library before
// execl().
// RUN: %t %T/echo-env >/dev/null 2>&1
// RUN: DYLD_INSERT_LIBRARIES=%t-darwin-dummy-shared-lib-so.dylib \
// RUN: %t %T/echo-env 2>&1 | FileCheck %s || exit 1
#include <unistd.h>
int main(int argc, char *argv[]) {
execl(argv[1], argv[1], "DYLD_INSERT_LIBRARIES", NULL);
// CHECK: {{DYLD_INSERT_LIBRARIES = .*darwin-dummy-shared-lib-so.dylib.*}}
return 0;
}

View File

@ -0,0 +1,19 @@
// Helper binary for
// lit_tests/TestCases/Darwin/unset-insert-libraries-on-exec.cc
// Prints the environment variable with the given name.
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {
if (argc != 2) {
printf("Usage: %s ENVNAME\n", argv[0]);
exit(1);
}
const char *value = getenv(argv[1]);
if (value) {
printf("%s = %s\n", argv[1], value);
} else {
printf("%s not set.\n", argv[1]);
}
return 0;
}

View File

@ -0,0 +1,2 @@
void *bar(void *input);
void *glob2 = bar((void*)0x2345);

View File

@ -0,0 +1,3 @@
global:*badGlobal*=init
type:*badNamespace::BadClass*=init
src:*initialization-blacklist-extra2.cc=init

View File

@ -3,13 +3,13 @@
// or gold's flag -Ttext (we try the first flag first, if that fails we
// try the second flag).
//
// RUN: %clangxx_asan -m64 -c %s -o %t.o
// RUN: %clangxx_asan -m64 -DBUILD_SO=1 -fPIC -shared %s -o %t.so -Wl,-Ttext-segment=0x3600000000 ||\
// RUN: %clangxx_asan -m64 -DBUILD_SO=1 -fPIC -shared %s -o %t.so -Wl,-Ttext=0x3600000000
// RUN: %clangxx_asan -m64 %t.o %t.so -Wl,-R. -o %t
// RUN: %clangxx_asan -c %s -o %t.o
// RUN: %clangxx_asan -DBUILD_SO=1 -fPIC -shared %s -o %t.so -Wl,-Ttext-segment=0x3600000000 ||\
// RUN: %clangxx_asan -DBUILD_SO=1 -fPIC -shared %s -o %t.so -Wl,-Ttext=0x3600000000
// RUN: %clangxx_asan %t.o %t.so -Wl,-R. -o %t
// RUN: ASAN_OPTIONS=verbosity=1 %t 2>&1 | FileCheck %s
// REQUIRES: x86_64-supported-target
// REQUIRES: x86_64-supported-target, asan-64-bits
#if BUILD_SO
int G;
int *getG() {

View File

@ -1,14 +1,10 @@
// Regression test for:
// http://code.google.com/p/address-sanitizer/issues/detail?id=37
// RUN: %clangxx_asan -m64 -O0 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -m64 -O1 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -m64 -O2 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -m64 -O3 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -m32 -O0 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -m32 -O1 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -m32 -O2 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -m32 -O3 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -O0 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -O1 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -O2 %s -o %t && %t | FileCheck %s
// RUN: %clangxx_asan -O3 %s -o %t && %t | FileCheck %s
#include <stdio.h>
#include <sched.h>

View File

@ -0,0 +1,45 @@
// RUN: %clangxx_asan -mllvm -asan-coverage=1 -DSHARED %s -shared -o %t.so -fPIC
// RUN: %clangxx_asan -mllvm -asan-coverage=1 %s -o %t -Wl,-R. %t.so
// RUN: export ASAN_OPTIONS=coverage=1:verbosity=1
// RUN: %t 2>&1 | FileCheck %s --check-prefix=CHECK-main
// RUN: %t foo 2>&1 | FileCheck %s --check-prefix=CHECK-foo
// RUN: %t bar 2>&1 | FileCheck %s --check-prefix=CHECK-bar
// RUN: %t foo bar 2>&1 | FileCheck %s --check-prefix=CHECK-foo-bar
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#ifdef SHARED
void bar() { printf("bar\n"); }
#else
__attribute__((noinline))
void foo() { printf("foo\n"); }
extern void bar();
int main(int argc, char **argv) {
fprintf(stderr, "PID: %d\n", getpid());
for (int i = 1; i < argc; i++) {
if (!strcmp(argv[i], "foo"))
foo();
if (!strcmp(argv[i], "bar"))
bar();
}
}
#endif
// CHECK-main: PID: [[PID:[0-9]+]]
// CHECK-main: [[PID]].sancov: 1 PCs written
// CHECK-main-NOT: .so.[[PID]]
//
// CHECK-foo: PID: [[PID:[0-9]+]]
// CHECK-foo: [[PID]].sancov: 2 PCs written
// CHECK-foo-NOT: .so.[[PID]]
//
// CHECK-bar: PID: [[PID:[0-9]+]]
// CHECK-bar: [[PID]].sancov: 1 PCs written
// CHECK-bar: .so.[[PID]].sancov: 1 PCs written
//
// CHECK-foo-bar: PID: [[PID:[0-9]+]]
// CHECK-foo-bar: [[PID]].sancov: 2 PCs written
// CHECK-foo-bar: so.[[PID]].sancov: 1 PCs written

View File

@ -1,7 +1,5 @@
// RUN: %clangxx_asan -m64 -O0 %s -o %t && %t %p 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m64 -O3 %s -o %t && %t %p 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O0 %s -o %t && %t %p 2>&1 | FileCheck %s
// RUN: %clangxx_asan -m32 -O3 %s -o %t && %t %p 2>&1 | FileCheck %s
// RUN: %clangxx_asan -O0 %s -o %t && %t %p 2>&1 | FileCheck %s
// RUN: %clangxx_asan -O3 %s -o %t && %t %p 2>&1 | FileCheck %s
#include <assert.h>
#include <glob.h>
@ -24,6 +22,7 @@ int main(int argc, char *argv[]) {
assert(globbuf.gl_pathc == 2);
printf("%zu\n", strlen(globbuf.gl_pathv[0]));
printf("%zu\n", strlen(globbuf.gl_pathv[1]));
globfree(&globbuf);
printf("PASS\n");
// CHECK: PASS
return 0;

View File

@ -0,0 +1,23 @@
// Regression test for
// https://code.google.com/p/address-sanitizer/issues/detail?id=183
// RUN: %clangxx_asan -O2 %s -o %t
// RUN: not %t 12 2>&1 | FileCheck %s
// RUN: not %t 100 2>&1 | FileCheck %s
// RUN: not %t 10000 2>&1 | FileCheck %s
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[]) {
int *x = new int[5];
memset(x, 0, sizeof(x[0]) * 5);
int index = atoi(argv[1]);
int res = x[index];
// CHECK: AddressSanitizer: {{(heap-buffer-overflow|SEGV)}}
// CHECK: #0 0x{{.*}} in main {{.*}}heap-overflow-large.cc:[[@LINE-2]]
// CHECK: AddressSanitizer can not {{(provide additional info|describe address in more detail \(wild memory access suspected\))}}
// CHECK: SUMMARY: AddressSanitizer: {{(heap-buffer-overflow|SEGV)}}
delete[] x;
return res;
}

View File

@ -1,9 +1,8 @@
// RUN: %clangxx_asan -fsanitize=use-after-return -m64 -O0 %s -o %t && \
// RUN: %t 2>&1 | %symbolize | FileCheck %s
// RUN: %clangxx_asan -fsanitize=use-after-return -m64 -O2 %s -o %t && \
// RUN: %t 2>&1 | %symbolize | FileCheck %s
// RUN: %clangxx_asan -fsanitize=use-after-return -m32 -O2 %s -o %t && \
// RUN: %t 2>&1 | %symbolize | FileCheck %s
// RUN: export ASAN_OPTIONS=detect_stack_use_after_return=1
// RUN: %clangxx_asan -O0 %s -o %t && \
// RUN: not %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -O2 %s -o %t && \
// RUN: not %t 2>&1 | FileCheck %s
#include <stdio.h>
#include <string.h>

View File

@ -3,12 +3,10 @@
// independently on order in which we list source files (if we specify
// strict init-order checking).
// RUN: %clangxx_asan -m64 -O0 %s %p/../Helpers/initialization-bug-extra.cc -o %t
// RUN: ASAN_OPTIONS=check_initialization_order=true:strict_init_order=true %t 2>&1 \
// RUN: | %symbolize | FileCheck %s
// RUN: %clangxx_asan -m64 -O0 %p/../Helpers/initialization-bug-extra.cc %s -o %t
// RUN: ASAN_OPTIONS=check_initialization_order=true:strict_init_order=true %t 2>&1 \
// RUN: | %symbolize | FileCheck %s
// RUN: %clangxx_asan -O0 %s %p/../Helpers/initialization-bug-extra.cc -o %t
// RUN: ASAN_OPTIONS=strict_init_order=true not %t 2>&1 | FileCheck %s
// RUN: %clangxx_asan -O0 %p/../Helpers/initialization-bug-extra.cc %s -o %t
// RUN: ASAN_OPTIONS=strict_init_order=true not %t 2>&1 | FileCheck %s
// Do not test with optimization -- the error may be optimized away.

Some files were not shown because too many files have changed in this diff Show More