Merge llvm, clang, lld and lldb release_40 branch 292732, and update

build glue.
This commit is contained in:
Dimitry Andric 2017-01-22 18:02:44 +00:00
21 changed files with 222 additions and 145 deletions

View File

@ -405,6 +405,7 @@ char ModuleSummaryIndexWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
"Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
"Module Summary Analysis", false, true)

View File

@ -768,13 +768,12 @@ void MetadataLoader::MetadataLoaderImpl::lazyLoadOneMetadata(
unsigned ID, PlaceholderQueue &Placeholders) {
assert(ID < (MDStringRef.size()) + GlobalMetadataBitPosIndex.size());
assert(ID >= MDStringRef.size() && "Unexpected lazy-loading of MDString");
#ifndef NDEBUG
// Lookup first if the metadata hasn't already been loaded.
if (auto *MD = MetadataList.lookup(ID)) {
auto *N = dyn_cast_or_null<MDNode>(MD);
assert(N && N->isTemporary() && "Lazy loading an already loaded metadata");
if (!N->isTemporary())
return;
}
#endif
SmallVector<uint64_t, 64> Record;
StringRef Blob;
IndexCursor.JumpToBit(GlobalMetadataBitPosIndex[ID - MDStringRef.size()]);
@ -827,8 +826,22 @@ Error MetadataLoader::MetadataLoaderImpl::parseOneMetadata(
auto getMD = [&](unsigned ID) -> Metadata * {
if (ID < MDStringRef.size())
return lazyLoadOneMDString(ID);
if (!IsDistinct)
if (!IsDistinct) {
if (auto *MD = MetadataList.lookup(ID))
return MD;
// If lazy-loading is enabled, we try recursively to load the operand
// instead of creating a temporary.
if (ID < (MDStringRef.size() + GlobalMetadataBitPosIndex.size())) {
// Create a temporary for the node that is referencing the operand we
// will lazy-load. It is needed before recursing in case there are
// uniquing cycles.
MetadataList.getMetadataFwdRef(NextMetadataNo);
lazyLoadOneMetadata(ID, Placeholders);
return MetadataList.lookup(ID);
}
// Return a temporary.
return MetadataList.getMetadataFwdRef(ID);
}
if (auto *MD = MetadataList.getMetadataIfResolved(ID))
return MD;
return &Placeholders.getPlaceholderOp(ID);

View File

@ -829,11 +829,22 @@ static std::string writeGeneratedObject(int count, StringRef CacheEntryPath,
// Main entry point for the ThinLTO processing
void ThinLTOCodeGenerator::run() {
// Prepare the resulting object vector
assert(ProducedBinaries.empty() && "The generator should not be reused");
if (SavedObjectsDirectoryPath.empty())
ProducedBinaries.resize(Modules.size());
else {
sys::fs::create_directories(SavedObjectsDirectoryPath);
bool IsDir;
sys::fs::is_directory(SavedObjectsDirectoryPath, IsDir);
if (!IsDir)
report_fatal_error("Unexistent dir: '" + SavedObjectsDirectoryPath + "'");
ProducedBinaryFiles.resize(Modules.size());
}
if (CodeGenOnly) {
// Perform only parallel codegen and return.
ThreadPool Pool;
assert(ProducedBinaries.empty() && "The generator should not be reused");
ProducedBinaries.resize(Modules.size());
int count = 0;
for (auto &ModuleBuffer : Modules) {
Pool.async([&](int count) {
@ -845,7 +856,12 @@ void ThinLTOCodeGenerator::run() {
/*IsImporting*/ false);
// CodeGen
ProducedBinaries[count] = codegen(*TheModule);
auto OutputBuffer = codegen(*TheModule);
if (SavedObjectsDirectoryPath.empty())
ProducedBinaries[count] = std::move(OutputBuffer);
else
ProducedBinaryFiles[count] = writeGeneratedObject(
count, "", SavedObjectsDirectoryPath, *OutputBuffer);
}, count++);
}
@ -866,18 +882,6 @@ void ThinLTOCodeGenerator::run() {
WriteIndexToFile(*Index, OS);
}
// Prepare the resulting object vector
assert(ProducedBinaries.empty() && "The generator should not be reused");
if (SavedObjectsDirectoryPath.empty())
ProducedBinaries.resize(Modules.size());
else {
sys::fs::create_directories(SavedObjectsDirectoryPath);
bool IsDir;
sys::fs::is_directory(SavedObjectsDirectoryPath, IsDir);
if (!IsDir)
report_fatal_error("Unexistent dir: '" + SavedObjectsDirectoryPath + "'");
ProducedBinaryFiles.resize(Modules.size());
}
// Prepare the module map.
auto ModuleMap = generateModuleMap(Modules);

View File

@ -29455,19 +29455,11 @@ static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
return SDValue();
}
/// Combine brcond/cmov/setcc/.. based on comparing the result of
/// atomic_load_add to use EFLAGS produced by the addition
/// directly if possible. For example:
///
/// (setcc (cmp (atomic_load_add x, -C) C), COND_E)
/// becomes:
/// (setcc (LADD x, -C), COND_E)
///
/// and
/// Combine:
/// (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S)
/// becomes:
/// to:
/// (brcond/cmov/setcc .., (LADD x, 1), COND_LE)
///
/// i.e., reusing the EFLAGS produced by the LOCKed instruction.
/// Note that this is only legal for some op/cc combinations.
static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
SelectionDAG &DAG) {
@ -29482,7 +29474,7 @@ static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
if (!Cmp.hasOneUse())
return SDValue();
// This applies to variations of the common case:
// This only applies to variations of the common case:
// (icmp slt x, 0) -> (icmp sle (add x, 1), 0)
// (icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
// (icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
@ -29501,9 +29493,8 @@ static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
return SDValue();
auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS);
if (!CmpRHSC)
if (!CmpRHSC || CmpRHSC->getZExtValue() != 0)
return SDValue();
APInt Comparand = CmpRHSC->getAPIntValue();
const unsigned Opc = CmpLHS.getOpcode();
@ -29519,19 +29510,16 @@ static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
if (Opc == ISD::ATOMIC_LOAD_SUB)
Addend = -Addend;
if (Comparand == -Addend) {
// No change to CC.
} else if (CC == X86::COND_S && Comparand == 0 && Addend == 1) {
if (CC == X86::COND_S && Addend == 1)
CC = X86::COND_LE;
} else if (CC == X86::COND_NS && Comparand == 0 && Addend == 1) {
else if (CC == X86::COND_NS && Addend == 1)
CC = X86::COND_G;
} else if (CC == X86::COND_G && Comparand == 0 && Addend == -1) {
else if (CC == X86::COND_G && Addend == -1)
CC = X86::COND_GE;
} else if (CC == X86::COND_LE && Comparand == 0 && Addend == -1) {
else if (CC == X86::COND_LE && Addend == -1)
CC = X86::COND_L;
} else {
else
return SDValue();
}
SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG);
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),

View File

@ -232,9 +232,6 @@ void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
isTargetKFreeBSD() || In64BitMode)
stackAlignment = 16;
assert((!isPMULLDSlow() || hasSSE41()) &&
"Feature Slow PMULLD can only be set on a subtarget with SSE4.1");
}
void X86Subtarget::initializeEnvironment() {

View File

@ -3163,6 +3163,9 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
// Don't bother if the instruction is in a BB which ends in an EHPad.
if (UseBB->getTerminator()->isEHPad())
continue;
// Don't bother rewriting PHIs in catchswitch blocks.
if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
continue;
// Ignore uses which are part of other SCEV expressions, to avoid
// analyzing them multiple times.
if (SE.isSCEVable(UserInst->getType())) {
@ -4672,7 +4675,8 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
// is the canonical backedge for this loop, which complicates post-inc
// users.
if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
!isa<IndirectBrInst>(BB->getTerminator())) {
!isa<IndirectBrInst>(BB->getTerminator()) &&
!isa<CatchSwitchInst>(BB->getTerminator())) {
BasicBlock *Parent = PN->getParent();
Loop *PNLoop = LI.getLoopFor(Parent);
if (!PNLoop || Parent != PNLoop->getHeader()) {

View File

@ -81,6 +81,10 @@ STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
STATISTIC(NumGVNMaxIterations,
"Maximum Number of iterations it took to converge GVN");
STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
STATISTIC(NumGVNAvoidedSortedLeaderChanges,
"Number of avoided sorted leader changes");
//===----------------------------------------------------------------------===//
// GVN Pass
@ -139,6 +143,10 @@ struct CongruenceClass {
// This is used so we can detect store equivalence changes properly.
int StoreCount = 0;
// The most dominating leader after our current leader, because the member set
// is not sorted and is expensive to keep sorted all the time.
std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
: ID(ID), RepLeader(Leader), DefiningExpr(E) {}
@ -320,8 +328,8 @@ private:
// Templated to allow them to work both on BB's and BB-edges.
template <class T>
Value *lookupOperandLeader(Value *, const User *, const T &) const;
void performCongruenceFinding(Value *, const Expression *);
void moveValueToNewCongruenceClass(Value *, CongruenceClass *,
void performCongruenceFinding(Instruction *, const Expression *);
void moveValueToNewCongruenceClass(Instruction *, CongruenceClass *,
CongruenceClass *);
// Reachability handling.
void updateReachableEdge(BasicBlock *, BasicBlock *);
@ -1056,20 +1064,43 @@ void NewGVN::markLeaderChangeTouched(CongruenceClass *CC) {
// Move a value, currently in OldClass, to be part of NewClass
// Update OldClass for the move (including changing leaders, etc)
void NewGVN::moveValueToNewCongruenceClass(Value *V, CongruenceClass *OldClass,
void NewGVN::moveValueToNewCongruenceClass(Instruction *I,
CongruenceClass *OldClass,
CongruenceClass *NewClass) {
DEBUG(dbgs() << "New congruence class for " << V << " is " << NewClass->ID
DEBUG(dbgs() << "New congruence class for " << I << " is " << NewClass->ID
<< "\n");
OldClass->Members.erase(V);
NewClass->Members.insert(V);
if (isa<StoreInst>(V)) {
if (I == OldClass->NextLeader.first)
OldClass->NextLeader = {nullptr, ~0U};
// The new instruction and new class leader may either be siblings in the
// dominator tree, or the new class leader should dominate the new member
// instruction. We simply check that the member instruction does not properly
// dominate the new class leader.
assert(
!isa<Instruction>(NewClass->RepLeader) || !NewClass->RepLeader ||
I == NewClass->RepLeader ||
!DT->properlyDominates(
I->getParent(),
cast<Instruction>(NewClass->RepLeader)->getParent()) &&
"New class for instruction should not be dominated by instruction");
if (NewClass->RepLeader != I) {
auto DFSNum = InstrDFS.lookup(I);
if (DFSNum < NewClass->NextLeader.second)
NewClass->NextLeader = {I, DFSNum};
}
OldClass->Members.erase(I);
NewClass->Members.insert(I);
if (isa<StoreInst>(I)) {
--OldClass->StoreCount;
assert(OldClass->StoreCount >= 0);
++NewClass->StoreCount;
assert(NewClass->StoreCount > 0);
}
ValueToClass[V] = NewClass;
ValueToClass[I] = NewClass;
// See if we destroyed the class or need to swap leaders.
if (OldClass->Members.empty() && OldClass != InitialClass) {
if (OldClass->DefiningExpr) {
@ -1078,25 +1109,48 @@ void NewGVN::moveValueToNewCongruenceClass(Value *V, CongruenceClass *OldClass,
<< " from table\n");
ExpressionToClass.erase(OldClass->DefiningExpr);
}
} else if (OldClass->RepLeader == V) {
} else if (OldClass->RepLeader == I) {
// When the leader changes, the value numbering of
// everything may change due to symbolization changes, so we need to
// reprocess.
OldClass->RepLeader = *(OldClass->Members.begin());
DEBUG(dbgs() << "Leader change!\n");
++NumGVNLeaderChanges;
// We don't need to sort members if there is only 1, and we don't care about
// sorting the initial class because everything either gets out of it or is
// unreachable.
if (OldClass->Members.size() == 1 || OldClass == InitialClass) {
OldClass->RepLeader = *(OldClass->Members.begin());
} else if (OldClass->NextLeader.first) {
++NumGVNAvoidedSortedLeaderChanges;
OldClass->RepLeader = OldClass->NextLeader.first;
OldClass->NextLeader = {nullptr, ~0U};
} else {
++NumGVNSortedLeaderChanges;
// TODO: If this ends up to slow, we can maintain a dual structure for
// member testing/insertion, or keep things mostly sorted, and sort only
// here, or ....
std::pair<Value *, unsigned> MinDFS = {nullptr, ~0U};
for (const auto X : OldClass->Members) {
auto DFSNum = InstrDFS.lookup(X);
if (DFSNum < MinDFS.second)
MinDFS = {X, DFSNum};
}
OldClass->RepLeader = MinDFS.first;
}
markLeaderChangeTouched(OldClass);
}
}
// Perform congruence finding on a given value numbering expression.
void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
ValueToExpression[V] = E;
void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
ValueToExpression[I] = E;
// This is guaranteed to return something, since it will at least find
// INITIAL.
CongruenceClass *VClass = ValueToClass[V];
assert(VClass && "Should have found a vclass");
CongruenceClass *IClass = ValueToClass[I];
assert(IClass && "Should have found a IClass");
// Dead classes should have been eliminated from the mapping.
assert(!VClass->Dead && "Found a dead class");
assert(!IClass->Dead && "Found a dead class");
CongruenceClass *EClass;
if (const auto *VE = dyn_cast<VariableExpression>(E)) {
@ -1118,13 +1172,13 @@ void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
NewClass->RepLeader =
lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
} else {
NewClass->RepLeader = V;
NewClass->RepLeader = I;
}
assert(!isa<VariableExpression>(E) &&
"VariableExpression should have been handled already");
EClass = NewClass;
DEBUG(dbgs() << "Created new congruence class for " << *V
DEBUG(dbgs() << "Created new congruence class for " << *I
<< " using expression " << *E << " at " << NewClass->ID
<< " and leader " << *(NewClass->RepLeader) << "\n");
DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n");
@ -1140,36 +1194,31 @@ void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
assert(!EClass->Dead && "We accidentally looked up a dead class");
}
}
bool ClassChanged = VClass != EClass;
bool LeaderChanged = LeaderChanges.erase(V);
bool ClassChanged = IClass != EClass;
bool LeaderChanged = LeaderChanges.erase(I);
if (ClassChanged || LeaderChanged) {
DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E
<< "\n");
if (ClassChanged)
moveValueToNewCongruenceClass(V, VClass, EClass);
markUsersTouched(V);
if (auto *I = dyn_cast<Instruction>(V)) {
if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
// If this is a MemoryDef, we need to update the equivalence table. If
// we determined the expression is congruent to a different memory
// state, use that different memory state. If we determined it didn't,
// we update that as well. Right now, we only support store
// expressions.
if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) &&
EClass->Members.size() != 1) {
auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess();
setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr);
} else {
setMemoryAccessEquivTo(MA, nullptr);
}
markMemoryUsersTouched(MA);
moveValueToNewCongruenceClass(I, IClass, EClass);
markUsersTouched(I);
if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
// If this is a MemoryDef, we need to update the equivalence table. If
// we determined the expression is congruent to a different memory
// state, use that different memory state. If we determined it didn't,
// we update that as well. Right now, we only support store
// expressions.
if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) &&
EClass->Members.size() != 1) {
auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess();
setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr);
} else {
setMemoryAccessEquivTo(MA, nullptr);
}
markMemoryUsersTouched(MA);
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(V)) {
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
// There is, sadly, one complicating thing for stores. Stores do not
// produce values, only consume them. However, in order to make loads and
// stores value number the same, we ignore the value operand of the store.

View File

@ -5602,6 +5602,13 @@ void LoopVectorizationLegality::collectLoopUniforms() {
// is consecutive-like, the pointer operand should remain uniform.
else if (hasConsecutiveLikePtrOperand(&I))
ConsecutiveLikePtrs.insert(Ptr);
// Otherwise, if the memory instruction will be vectorized and its
// pointer operand is non-consecutive-like, the memory instruction should
// be a gather or scatter operation. Its pointer operand will be
// non-uniform.
else
PossibleNonUniformPtrs.insert(Ptr);
}
// Add to the Worklist all consecutive and consecutive-like pointers that

View File

@ -3337,8 +3337,8 @@ def note_ovl_candidate : Note<"candidate "
def note_ovl_candidate_inherited_constructor : Note<
"constructor from base class %0 inherited here">;
def note_ovl_candidate_inherited_constructor_slice : Note<
"constructor inherited from base class cannot be used to initialize from "
"an argument of the derived class type">;
"candidate %select{constructor|template}0 ignored: "
"inherited constructor cannot be used to %select{copy|move}1 object">;
def note_ovl_candidate_illegal_constructor : Note<
"candidate %select{constructor|template}0 ignored: "
"instantiation %select{takes|would take}0 its own class type by value">;

View File

@ -512,7 +512,7 @@ protected:
Builder.defineMacro("__unix__");
Builder.defineMacro("__ELF__");
if (Opts.POSIXThreads)
Builder.defineMacro("_POSIX_THREADS");
Builder.defineMacro("_REENTRANT");
switch (Triple.getArch()) {
default:

View File

@ -1652,9 +1652,10 @@ Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
if (Tok.is(tok::code_completion)) {
// Code completion for a member access expression.
Actions.CodeCompleteMemberReferenceExpr(
getCurScope(), LHS.get(), OpLoc, OpKind == tok::arrow,
ExprStatementTokLoc == LHS.get()->getLocStart());
if (Expr *Base = LHS.get())
Actions.CodeCompleteMemberReferenceExpr(
getCurScope(), Base, OpLoc, OpKind == tok::arrow,
ExprStatementTokLoc == Base->getLocStart());
cutOffParsing();
return ExprError();

View File

@ -5944,6 +5944,28 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
Candidate.FailureKind = ovl_fail_illegal_constructor;
return;
}
// C++ [over.match.funcs]p8: (proposed DR resolution)
// A constructor inherited from class type C that has a first parameter
// of type "reference to P" (including such a constructor instantiated
// from a template) is excluded from the set of candidate functions when
// constructing an object of type cv D if the argument list has exactly
// one argument and D is reference-related to P and P is reference-related
// to C.
auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
Constructor->getParamDecl(0)->getType()->isReferenceType()) {
QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
QualType C = Context.getRecordType(Constructor->getParent());
QualType D = Context.getRecordType(Shadow->getParent());
SourceLocation Loc = Args.front()->getExprLoc();
if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
(Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_inhctor_slice;
return;
}
}
}
unsigned NumParams = Proto->getNumParams();
@ -6016,31 +6038,6 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
}
}
// C++ [over.best.ics]p4+: (proposed DR resolution)
// If the target is the first parameter of an inherited constructor when
// constructing an object of type C with an argument list that has exactly
// one expression, an implicit conversion sequence cannot be formed if C is
// reference-related to the type that the argument would have after the
// application of the user-defined conversion (if any) and before the final
// standard conversion sequence.
auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
if (Shadow && Args.size() == 1 && !isa<InitListExpr>(Args.front())) {
bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
QualType ConvertedArgumentType = Args.front()->getType();
if (Candidate.Conversions[0].isUserDefined())
ConvertedArgumentType =
Candidate.Conversions[0].UserDefined.After.getFromType();
if (CompareReferenceRelationship(Args.front()->getLocStart(),
Context.getRecordType(Shadow->getParent()),
ConvertedArgumentType, DerivedToBase,
ObjCConversion,
ObjCLifetimeConversion) >= Ref_Related) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_inhctor_slice;
return;
}
}
if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_enable_if;
@ -10222,8 +10219,13 @@ static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
return DiagnoseOpenCLExtensionDisabled(S, Cand);
case ovl_fail_inhctor_slice:
// It's generally not interesting to note copy/move constructors here.
if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
return;
S.Diag(Fn->getLocation(),
diag::note_ovl_candidate_inherited_constructor_slice);
diag::note_ovl_candidate_inherited_constructor_slice)
<< (Fn->getPrimaryTemplate() ? 1 : 0)
<< Fn->getParamDecl(0)->getType()->isRValueReferenceType();
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
return;

View File

@ -5127,18 +5127,22 @@ ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
if (CTAK == CTAK_Deduced &&
!Context.hasSameType(ParamType.getNonLValueExprType(Context),
Arg->getType())) {
// C++ [temp.deduct.type]p17: (DR1770)
// If P has a form that contains <i>, and if the type of i differs from
// the type of the corresponding template parameter of the template named
// by the enclosing simple-template-id, deduction fails.
//
// Note that CTAK will be CTAK_DeducedFromArrayBound if the form was [i]
// rather than <i>.
//
// FIXME: We interpret the 'i' here as referring to the expression
// denoting the non-type template parameter rather than the parameter
// itself, and so strip off references before comparing types. It's
// not clear how this is supposed to work for references.
// FIXME: If either type is dependent, we skip the check. This isn't
// correct, since during deduction we're supposed to have replaced each
// template parameter with some unique (non-dependent) placeholder.
// FIXME: If the argument type contains 'auto', we carry on and fail the
// type check in order to force specific types to be more specialized than
// 'auto'. It's not clear how partial ordering with 'auto' is supposed to
// work.
if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
!Arg->getType()->getContainedAutoType()) {
Converted = TemplateArgument(Arg);
return Arg;
}
// FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
// we should actually be checking the type of the template argument in P,
// not the type of the template argument deduced from A, against the
// template parameter type.
Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
<< Arg->getType()
<< ParamType.getUnqualifiedType();

View File

@ -140,7 +140,7 @@ template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
uint8_t Visibility) {
SymbolBody *S = find(Name);
if (!S || !S->isUndefined())
if (!S || S->isInCurrentDSO())
return nullptr;
return addAbsolute(Name, Visibility);
}
@ -283,7 +283,7 @@ static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
if (WasInserted)
return 1;
SymbolBody *Body = S->body();
if (Body->isLazy() || Body->isUndefined() || Body->isShared())
if (Body->isLazy() || !Body->isInCurrentDSO())
return 1;
if (Binding == STB_WEAK)
return -1;
@ -426,12 +426,8 @@ void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
std::tie(S, WasInserted) =
insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true, F);
// Make sure we preempt DSO symbols with default visibility.
if (Sym.getVisibility() == STV_DEFAULT) {
if (Sym.getVisibility() == STV_DEFAULT)
S->ExportDynamic = true;
// Exporting preempting symbols takes precedence over linker scripts.
if (S->VersionId == VER_NDX_LOCAL)
S->VersionId = VER_NDX_GLOBAL;
}
if (WasInserted || isa<Undefined<ELFT>>(S->body())) {
replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
if (!S->isWeak())
@ -467,6 +463,14 @@ template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
return SymVector[V.Idx]->body();
}
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::findInCurrentDSO(StringRef Name) {
if (SymbolBody *S = find(Name))
if (S->isInCurrentDSO())
return S;
return nullptr;
}
template <class ELFT>
void SymbolTable<ELFT>::addLazyArchive(ArchiveFile *F,
const object::Archive::Symbol Sym) {

View File

@ -82,6 +82,7 @@ public:
void scanVersionScript();
SymbolBody *find(StringRef Name);
SymbolBody *findInCurrentDSO(StringRef Name);
void trace(StringRef Name);
void wrap(StringRef Name);

View File

@ -203,8 +203,8 @@ void SymbolBody::parseSymbolVersion() {
// Truncate the symbol name so that it doesn't include the version string.
Name = {S.data(), Pos};
// If this is an undefined or shared symbol it is not a definition.
if (isUndefined() || isShared())
// If this is not in this DSO, it is not a definition.
if (!isInCurrentDSO())
return;
// '@@' in a symbol name means the default version.
@ -299,7 +299,8 @@ uint8_t Symbol::computeBinding() const {
return Binding;
if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
return STB_LOCAL;
if (VersionId == VER_NDX_LOCAL && !body()->isUndefined())
const SymbolBody *Body = body();
if (VersionId == VER_NDX_LOCAL && Body->isInCurrentDSO())
return STB_LOCAL;
if (Config->NoGnuUnique && Binding == STB_GNU_UNIQUE)
return STB_GLOBAL;

View File

@ -67,6 +67,7 @@ public:
return SymbolKind == LazyArchiveKind || SymbolKind == LazyObjectKind;
}
bool isShared() const { return SymbolKind == SharedKind; }
bool isInCurrentDSO() const { return !isUndefined() && !isShared(); }
bool isLocal() const { return IsLocal; }
bool isPreemptible() const;
StringRef getName() const { return Name; }

View File

@ -883,9 +883,9 @@ template <class ELFT> void DynamicSection<ELFT>::finalize() {
add({DT_FINI_ARRAYSZ, Out<ELFT>::FiniArray, Entry::SecSize});
}
if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init))
if (SymbolBody *B = Symtab<ELFT>::X->findInCurrentDSO(Config->Init))
add({DT_INIT, B});
if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini))
if (SymbolBody *B = Symtab<ELFT>::X->findInCurrentDSO(Config->Fini))
add({DT_FINI, B});
bool HasVerNeed = In<ELFT>::VerNeed->getNeedNum() != 0;

View File

@ -641,7 +641,7 @@ static void addOptionalSynthetic(StringRef Name, OutputSectionBase *Sec,
typename ELFT::uint Val,
uint8_t StOther = STV_HIDDEN) {
if (SymbolBody *S = Symtab<ELFT>::X->find(Name))
if (S->isUndefined() || S->isShared())
if (!S->isInCurrentDSO())
Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, StOther);
}
@ -661,7 +661,7 @@ static Symbol *addOptionalRegular(StringRef Name, InputSectionBase<ELFT> *IS,
SymbolBody *S = Symtab<ELFT>::X->find(Name);
if (!S)
return nullptr;
if (!S->isUndefined() && !S->isShared())
if (S->isInCurrentDSO())
return S->symbol();
return addRegular(Name, IS, Value);
}

View File

@ -8,4 +8,4 @@
#define CLANG_VENDOR "FreeBSD "
#define SVN_REVISION "292009"
#define SVN_REVISION "292732"

View File

@ -4,5 +4,5 @@
#define LLD_VERSION_STRING "4.0.0"
#define LLD_VERSION_MAJOR 4
#define LLD_VERSION_MINOR 0
#define LLD_REVISION_STRING "292009"
#define LLD_REVISION_STRING "292732"
#define LLD_REPOSITORY_STRING "FreeBSD"