Remove sha1 hashing from OpenZFS, it's not used anywhere.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Attila Fülöp <attila@fueloep.org> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12895 Closes #12902
This commit is contained in:
parent
3e310f099d
commit
a798b485ae
@ -29,9 +29,6 @@
|
||||
int aes_mod_init(void);
|
||||
int aes_mod_fini(void);
|
||||
|
||||
int sha1_mod_init(void);
|
||||
int sha1_mod_fini(void);
|
||||
|
||||
int sha2_mod_init(void);
|
||||
int sha2_mod_fini(void);
|
||||
|
||||
|
@ -17,7 +17,6 @@ ASM_SOURCES_AS = \
|
||||
asm-x86_64/modes/gcm_pclmulqdq.S \
|
||||
asm-x86_64/modes/aesni-gcm-x86_64.S \
|
||||
asm-x86_64/modes/ghash-x86_64.S \
|
||||
asm-x86_64/sha1/sha1-x86_64.S \
|
||||
asm-x86_64/sha2/sha256_impl.S \
|
||||
asm-x86_64/sha2/sha512_impl.S
|
||||
else
|
||||
@ -46,14 +45,12 @@ KERNEL_C = \
|
||||
algs/modes/ctr.c \
|
||||
algs/modes/ccm.c \
|
||||
algs/modes/ecb.c \
|
||||
algs/sha1/sha1.c \
|
||||
algs/sha2/sha2.c \
|
||||
algs/skein/skein.c \
|
||||
algs/skein/skein_block.c \
|
||||
algs/skein/skein_iv.c \
|
||||
illumos-crypto.c \
|
||||
io/aes.c \
|
||||
io/sha1_mod.c \
|
||||
io/sha2_mod.c \
|
||||
io/skein_mod.c \
|
||||
os/modhash.c \
|
||||
|
@ -26,7 +26,6 @@ $(MODULE)-objs += core/kcf_mech_tabs.o
|
||||
$(MODULE)-objs += core/kcf_prov_lib.o
|
||||
$(MODULE)-objs += spi/kcf_spi.o
|
||||
$(MODULE)-objs += io/aes.o
|
||||
$(MODULE)-objs += io/sha1_mod.o
|
||||
$(MODULE)-objs += io/sha2_mod.o
|
||||
$(MODULE)-objs += io/skein_mod.o
|
||||
$(MODULE)-objs += os/modhash.o
|
||||
@ -41,7 +40,6 @@ $(MODULE)-objs += algs/aes/aes_impl_generic.o
|
||||
$(MODULE)-objs += algs/aes/aes_impl.o
|
||||
$(MODULE)-objs += algs/aes/aes_modes.o
|
||||
$(MODULE)-objs += algs/edonr/edonr.o
|
||||
$(MODULE)-objs += algs/sha1/sha1.o
|
||||
$(MODULE)-objs += algs/sha2/sha2.o
|
||||
$(MODULE)-objs += algs/skein/skein.o
|
||||
$(MODULE)-objs += algs/skein/skein_block.o
|
||||
@ -53,7 +51,6 @@ $(MODULE)-$(CONFIG_X86_64) += asm-x86_64/aes/aes_aesni.o
|
||||
$(MODULE)-$(CONFIG_X86_64) += asm-x86_64/modes/gcm_pclmulqdq.o
|
||||
$(MODULE)-$(CONFIG_X86_64) += asm-x86_64/modes/aesni-gcm-x86_64.o
|
||||
$(MODULE)-$(CONFIG_X86_64) += asm-x86_64/modes/ghash-x86_64.o
|
||||
$(MODULE)-$(CONFIG_X86_64) += asm-x86_64/sha1/sha1-x86_64.o
|
||||
$(MODULE)-$(CONFIG_X86_64) += asm-x86_64/sha2/sha256_impl.o
|
||||
$(MODULE)-$(CONFIG_X86_64) += asm-x86_64/sha2/sha512_impl.o
|
||||
|
||||
@ -70,7 +67,6 @@ OBJECT_FILES_NON_STANDARD_ghash-x86_64.o := y
|
||||
# Suppress objtool "unsupported stack pointer realignment" warnings. We are
|
||||
# not using a DRAP register while aligning the stack to a 64 byte boundary.
|
||||
# See #6950 for the reasoning.
|
||||
OBJECT_FILES_NON_STANDARD_sha1-x86_64.o := y
|
||||
OBJECT_FILES_NON_STANDARD_sha256_impl.o := y
|
||||
OBJECT_FILES_NON_STANDARD_sha512_impl.o := y
|
||||
|
||||
@ -84,13 +80,11 @@ ICP_DIRS = \
|
||||
algs/aes \
|
||||
algs/edonr \
|
||||
algs/modes \
|
||||
algs/sha1 \
|
||||
algs/sha2 \
|
||||
algs/skein \
|
||||
asm-x86_64 \
|
||||
asm-x86_64/aes \
|
||||
asm-x86_64/modes \
|
||||
asm-x86_64/sha1 \
|
||||
asm-x86_64/sha2 \
|
||||
asm-i386 \
|
||||
asm-generic
|
||||
|
@ -1,835 +0,0 @@
|
||||
/*
|
||||
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The basic framework for this code came from the reference
|
||||
* implementation for MD5. That implementation is Copyright (C)
|
||||
* 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
|
||||
*
|
||||
* License to copy and use this software is granted provided that it
|
||||
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
|
||||
* Algorithm" in all material mentioning or referencing this software
|
||||
* or this function.
|
||||
*
|
||||
* License is also granted to make and use derivative works provided
|
||||
* that such works are identified as "derived from the RSA Data
|
||||
* Security, Inc. MD5 Message-Digest Algorithm" in all material
|
||||
* mentioning or referencing the derived work.
|
||||
*
|
||||
* RSA Data Security, Inc. makes no representations concerning either
|
||||
* the merchantability of this software or the suitability of this
|
||||
* software for any particular purpose. It is provided "as is"
|
||||
* without express or implied warranty of any kind.
|
||||
*
|
||||
* These notices must be retained in any copies of any part of this
|
||||
* documentation and/or software.
|
||||
*
|
||||
* NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
|
||||
* standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
|
||||
* Not as fast as one would like -- further optimizations are encouraged
|
||||
* and appreciated.
|
||||
*/
|
||||
|
||||
#include <sys/zfs_context.h>
|
||||
#include <sha1/sha1.h>
|
||||
#include <sha1/sha1_consts.h>
|
||||
|
||||
#ifdef _LITTLE_ENDIAN
|
||||
#include <sys/byteorder.h>
|
||||
#define HAVE_HTONL
|
||||
#endif
|
||||
|
||||
#define _RESTRICT_KYWD
|
||||
|
||||
static void Encode(uint8_t *, const uint32_t *, size_t);
|
||||
|
||||
#if defined(__sparc)
|
||||
|
||||
#define SHA1_TRANSFORM(ctx, in) \
|
||||
SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
|
||||
(ctx)->state[3], (ctx)->state[4], (ctx), (in))
|
||||
|
||||
static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
|
||||
SHA1_CTX *, const uint8_t *);
|
||||
|
||||
#elif defined(__amd64)
|
||||
|
||||
#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
|
||||
#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
|
||||
(in), (num))
|
||||
|
||||
void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
|
||||
|
||||
#else
|
||||
|
||||
#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
|
||||
|
||||
static void SHA1Transform(SHA1_CTX *, const uint8_t *);
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
|
||||
|
||||
/*
|
||||
* F, G, and H are the basic SHA1 functions.
|
||||
*/
|
||||
#define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
|
||||
#define G(b, c, d) ((b) ^ (c) ^ (d))
|
||||
#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
|
||||
|
||||
/*
|
||||
* SHA1Init()
|
||||
*
|
||||
* purpose: initializes the sha1 context and begins and sha1 digest operation
|
||||
* input: SHA1_CTX * : the context to initializes.
|
||||
* output: void
|
||||
*/
|
||||
|
||||
void
|
||||
SHA1Init(SHA1_CTX *ctx)
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
|
||||
/*
|
||||
* load magic initialization constants. Tell lint
|
||||
* that these constants are unsigned by using U.
|
||||
*/
|
||||
|
||||
ctx->state[0] = 0x67452301U;
|
||||
ctx->state[1] = 0xefcdab89U;
|
||||
ctx->state[2] = 0x98badcfeU;
|
||||
ctx->state[3] = 0x10325476U;
|
||||
ctx->state[4] = 0xc3d2e1f0U;
|
||||
}
|
||||
|
||||
void
|
||||
SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
|
||||
{
|
||||
uint32_t i, buf_index, buf_len;
|
||||
const uint8_t *input = inptr;
|
||||
#if defined(__amd64)
|
||||
uint32_t block_count;
|
||||
#endif /* __amd64 */
|
||||
|
||||
/* check for noop */
|
||||
if (input_len == 0)
|
||||
return;
|
||||
|
||||
/* compute number of bytes mod 64 */
|
||||
buf_index = (ctx->count[1] >> 3) & 0x3F;
|
||||
|
||||
/* update number of bits */
|
||||
if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
|
||||
ctx->count[0]++;
|
||||
|
||||
ctx->count[0] += (input_len >> 29);
|
||||
|
||||
buf_len = 64 - buf_index;
|
||||
|
||||
/* transform as many times as possible */
|
||||
i = 0;
|
||||
if (input_len >= buf_len) {
|
||||
|
||||
/*
|
||||
* general optimization:
|
||||
*
|
||||
* only do initial bcopy() and SHA1Transform() if
|
||||
* buf_index != 0. if buf_index == 0, we're just
|
||||
* wasting our time doing the bcopy() since there
|
||||
* wasn't any data left over from a previous call to
|
||||
* SHA1Update().
|
||||
*/
|
||||
|
||||
if (buf_index) {
|
||||
bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
|
||||
SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
|
||||
i = buf_len;
|
||||
}
|
||||
|
||||
#if !defined(__amd64)
|
||||
for (; i + 63 < input_len; i += 64)
|
||||
SHA1_TRANSFORM(ctx, &input[i]);
|
||||
#else
|
||||
block_count = (input_len - i) >> 6;
|
||||
if (block_count > 0) {
|
||||
SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
|
||||
i += block_count << 6;
|
||||
}
|
||||
#endif /* !__amd64 */
|
||||
|
||||
/*
|
||||
* general optimization:
|
||||
*
|
||||
* if i and input_len are the same, return now instead
|
||||
* of calling bcopy(), since the bcopy() in this case
|
||||
* will be an expensive nop.
|
||||
*/
|
||||
|
||||
if (input_len == i)
|
||||
return;
|
||||
|
||||
buf_index = 0;
|
||||
}
|
||||
|
||||
/* buffer remaining input */
|
||||
bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA1Final()
|
||||
*
|
||||
* purpose: ends an sha1 digest operation, finalizing the message digest and
|
||||
* zeroing the context.
|
||||
* input: uchar_t * : A buffer to store the digest.
|
||||
* : The function actually uses void* because many
|
||||
* : callers pass things other than uchar_t here.
|
||||
* SHA1_CTX * : the context to finalize, save, and zero
|
||||
* output: void
|
||||
*/
|
||||
|
||||
void
|
||||
SHA1Final(void *digest, SHA1_CTX *ctx)
|
||||
{
|
||||
uint8_t bitcount_be[sizeof (ctx->count)];
|
||||
uint32_t index = (ctx->count[1] >> 3) & 0x3f;
|
||||
|
||||
/* store bit count, big endian */
|
||||
Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
|
||||
|
||||
/* pad out to 56 mod 64 */
|
||||
SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
|
||||
|
||||
/* append length (before padding) */
|
||||
SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
|
||||
|
||||
/* store state in digest */
|
||||
Encode(digest, ctx->state, sizeof (ctx->state));
|
||||
|
||||
/* zeroize sensitive information */
|
||||
bzero(ctx, sizeof (*ctx));
|
||||
}
|
||||
|
||||
|
||||
#if !defined(__amd64)
|
||||
|
||||
typedef uint32_t sha1word;
|
||||
|
||||
/*
|
||||
* sparc optimization:
|
||||
*
|
||||
* on the sparc, we can load big endian 32-bit data easily. note that
|
||||
* special care must be taken to ensure the address is 32-bit aligned.
|
||||
* in the interest of speed, we don't check to make sure, since
|
||||
* careful programming can guarantee this for us.
|
||||
*/
|
||||
|
||||
#if defined(_ZFS_BIG_ENDIAN)
|
||||
#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
|
||||
|
||||
#elif defined(HAVE_HTONL)
|
||||
#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
|
||||
|
||||
#else
|
||||
#define LOAD_BIG_32(addr) BE_32(*((uint32_t *)(addr)))
|
||||
#endif /* _BIG_ENDIAN */
|
||||
|
||||
/*
|
||||
* SHA1Transform()
|
||||
*/
|
||||
#if defined(W_ARRAY)
|
||||
#define W(n) w[n]
|
||||
#else /* !defined(W_ARRAY) */
|
||||
#define W(n) w_ ## n
|
||||
#endif /* !defined(W_ARRAY) */
|
||||
|
||||
/*
|
||||
* ROTATE_LEFT rotates x left n bits.
|
||||
*/
|
||||
|
||||
#if defined(__GNUC__) && defined(_LP64)
|
||||
static __inline__ uint64_t
|
||||
ROTATE_LEFT(uint64_t value, uint32_t n)
|
||||
{
|
||||
uint32_t t32;
|
||||
|
||||
t32 = (uint32_t)value;
|
||||
return ((t32 << n) | (t32 >> (32 - n)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ROTATE_LEFT(x, n) \
|
||||
(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__sparc)
|
||||
|
||||
|
||||
/*
|
||||
* sparc register window optimization:
|
||||
*
|
||||
* `a', `b', `c', `d', and `e' are passed into SHA1Transform
|
||||
* explicitly since it increases the number of registers available to
|
||||
* the compiler. under this scheme, these variables can be held in
|
||||
* %i0 - %i4, which leaves more local and out registers available.
|
||||
*
|
||||
* purpose: sha1 transformation -- updates the digest based on `block'
|
||||
* input: uint32_t : bytes 1 - 4 of the digest
|
||||
* uint32_t : bytes 5 - 8 of the digest
|
||||
* uint32_t : bytes 9 - 12 of the digest
|
||||
* uint32_t : bytes 12 - 16 of the digest
|
||||
* uint32_t : bytes 16 - 20 of the digest
|
||||
* SHA1_CTX * : the context to update
|
||||
* uint8_t [64]: the block to use to update the digest
|
||||
* output: void
|
||||
*/
|
||||
|
||||
|
||||
void
|
||||
SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
|
||||
SHA1_CTX *ctx, const uint8_t blk[64])
|
||||
{
|
||||
/*
|
||||
* sparc optimization:
|
||||
*
|
||||
* while it is somewhat counter-intuitive, on sparc, it is
|
||||
* more efficient to place all the constants used in this
|
||||
* function in an array and load the values out of the array
|
||||
* than to manually load the constants. this is because
|
||||
* setting a register to a 32-bit value takes two ops in most
|
||||
* cases: a `sethi' and an `or', but loading a 32-bit value
|
||||
* from memory only takes one `ld' (or `lduw' on v9). while
|
||||
* this increases memory usage, the compiler can find enough
|
||||
* other things to do while waiting to keep the pipeline does
|
||||
* not stall. additionally, it is likely that many of these
|
||||
* constants are cached so that later accesses do not even go
|
||||
* out to the bus.
|
||||
*
|
||||
* this array is declared `static' to keep the compiler from
|
||||
* having to bcopy() this array onto the stack frame of
|
||||
* SHA1Transform() each time it is called -- which is
|
||||
* unacceptably expensive.
|
||||
*
|
||||
* the `const' is to ensure that callers are good citizens and
|
||||
* do not try to munge the array. since these routines are
|
||||
* going to be called from inside multithreaded kernelland,
|
||||
* this is a good safety check. -- `sha1_consts' will end up in
|
||||
* .rodata.
|
||||
*
|
||||
* unfortunately, loading from an array in this manner hurts
|
||||
* performance under Intel. So, there is a macro,
|
||||
* SHA1_CONST(), used in SHA1Transform(), that either expands to
|
||||
* a reference to this array, or to the actual constant,
|
||||
* depending on what platform this code is compiled for.
|
||||
*/
|
||||
|
||||
|
||||
static const uint32_t sha1_consts[] = {
|
||||
SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* general optimization:
|
||||
*
|
||||
* use individual integers instead of using an array. this is a
|
||||
* win, although the amount it wins by seems to vary quite a bit.
|
||||
*/
|
||||
|
||||
|
||||
uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
|
||||
uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
|
||||
|
||||
|
||||
/*
|
||||
* sparc optimization:
|
||||
*
|
||||
* if `block' is already aligned on a 4-byte boundary, use
|
||||
* LOAD_BIG_32() directly. otherwise, bcopy() into a
|
||||
* buffer that *is* aligned on a 4-byte boundary and then do
|
||||
* the LOAD_BIG_32() on that buffer. benchmarks have shown
|
||||
* that using the bcopy() is better than loading the bytes
|
||||
* individually and doing the endian-swap by hand.
|
||||
*
|
||||
* even though it's quite tempting to assign to do:
|
||||
*
|
||||
* blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
|
||||
*
|
||||
* and only have one set of LOAD_BIG_32()'s, the compiler
|
||||
* *does not* like that, so please resist the urge.
|
||||
*/
|
||||
|
||||
|
||||
if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
|
||||
bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
|
||||
w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
|
||||
w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
|
||||
w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
|
||||
w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
|
||||
w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
|
||||
w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
|
||||
w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9);
|
||||
w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8);
|
||||
w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7);
|
||||
w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6);
|
||||
w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5);
|
||||
w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4);
|
||||
w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3);
|
||||
w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2);
|
||||
w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1);
|
||||
w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0);
|
||||
} else {
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_15 = LOAD_BIG_32(blk + 60);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_14 = LOAD_BIG_32(blk + 56);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_13 = LOAD_BIG_32(blk + 52);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_12 = LOAD_BIG_32(blk + 48);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_11 = LOAD_BIG_32(blk + 44);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_10 = LOAD_BIG_32(blk + 40);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_9 = LOAD_BIG_32(blk + 36);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_8 = LOAD_BIG_32(blk + 32);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_7 = LOAD_BIG_32(blk + 28);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_6 = LOAD_BIG_32(blk + 24);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_5 = LOAD_BIG_32(blk + 20);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_4 = LOAD_BIG_32(blk + 16);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_3 = LOAD_BIG_32(blk + 12);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_2 = LOAD_BIG_32(blk + 8);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_1 = LOAD_BIG_32(blk + 4);
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
w_0 = LOAD_BIG_32(blk + 0);
|
||||
}
|
||||
#else /* !defined(__sparc) */
|
||||
|
||||
void /* CSTYLED */
|
||||
SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
|
||||
{
|
||||
/* CSTYLED */
|
||||
sha1word a = ctx->state[0];
|
||||
sha1word b = ctx->state[1];
|
||||
sha1word c = ctx->state[2];
|
||||
sha1word d = ctx->state[3];
|
||||
sha1word e = ctx->state[4];
|
||||
|
||||
#if defined(W_ARRAY)
|
||||
sha1word w[16];
|
||||
#else /* !defined(W_ARRAY) */
|
||||
sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
|
||||
sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
|
||||
#endif /* !defined(W_ARRAY) */
|
||||
|
||||
W(0) = LOAD_BIG_32((void *)(blk + 0));
|
||||
W(1) = LOAD_BIG_32((void *)(blk + 4));
|
||||
W(2) = LOAD_BIG_32((void *)(blk + 8));
|
||||
W(3) = LOAD_BIG_32((void *)(blk + 12));
|
||||
W(4) = LOAD_BIG_32((void *)(blk + 16));
|
||||
W(5) = LOAD_BIG_32((void *)(blk + 20));
|
||||
W(6) = LOAD_BIG_32((void *)(blk + 24));
|
||||
W(7) = LOAD_BIG_32((void *)(blk + 28));
|
||||
W(8) = LOAD_BIG_32((void *)(blk + 32));
|
||||
W(9) = LOAD_BIG_32((void *)(blk + 36));
|
||||
W(10) = LOAD_BIG_32((void *)(blk + 40));
|
||||
W(11) = LOAD_BIG_32((void *)(blk + 44));
|
||||
W(12) = LOAD_BIG_32((void *)(blk + 48));
|
||||
W(13) = LOAD_BIG_32((void *)(blk + 52));
|
||||
W(14) = LOAD_BIG_32((void *)(blk + 56));
|
||||
W(15) = LOAD_BIG_32((void *)(blk + 60));
|
||||
|
||||
#endif /* !defined(__sparc) */
|
||||
|
||||
/*
|
||||
* general optimization:
|
||||
*
|
||||
* even though this approach is described in the standard as
|
||||
* being slower algorithmically, it is 30-40% faster than the
|
||||
* "faster" version under SPARC, because this version has more
|
||||
* of the constraints specified at compile-time and uses fewer
|
||||
* variables (and therefore has better register utilization)
|
||||
* than its "speedier" brother. (i've tried both, trust me)
|
||||
*
|
||||
* for either method given in the spec, there is an "assignment"
|
||||
* phase where the following takes place:
|
||||
*
|
||||
* tmp = (main_computation);
|
||||
* e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
|
||||
*
|
||||
* we can make the algorithm go faster by not doing this work,
|
||||
* but just pretending that `d' is now `e', etc. this works
|
||||
* really well and obviates the need for a temporary variable.
|
||||
* however, we still explicitly perform the rotate action,
|
||||
* since it is cheaper on SPARC to do it once than to have to
|
||||
* do it over and over again.
|
||||
*/
|
||||
|
||||
/* round 1 */
|
||||
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
|
||||
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
|
||||
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
|
||||
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
|
||||
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
/* round 2 */
|
||||
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
|
||||
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
|
||||
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
|
||||
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
|
||||
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
/* round 3 */
|
||||
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
|
||||
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
|
||||
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
|
||||
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
|
||||
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
|
||||
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
|
||||
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
|
||||
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
|
||||
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
|
||||
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
|
||||
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
|
||||
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
|
||||
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
|
||||
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
|
||||
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
|
||||
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
|
||||
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
|
||||
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
|
||||
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
|
||||
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
|
||||
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
/* round 4 */
|
||||
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
|
||||
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
|
||||
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
|
||||
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
|
||||
c = ROTATE_LEFT(c, 30);
|
||||
|
||||
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
|
||||
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
|
||||
b = ROTATE_LEFT(b, 30);
|
||||
|
||||
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
|
||||
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
|
||||
a = ROTATE_LEFT(a, 30);
|
||||
|
||||
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
|
||||
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
|
||||
e = ROTATE_LEFT(e, 30);
|
||||
|
||||
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
|
||||
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
|
||||
d = ROTATE_LEFT(d, 30);
|
||||
|
||||
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
|
||||
|
||||
ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
|
||||
SHA1_CONST(3);
|
||||
ctx->state[1] += b;
|
||||
ctx->state[2] += ROTATE_LEFT(c, 30);
|
||||
ctx->state[3] += d;
|
||||
ctx->state[4] += e;
|
||||
|
||||
/* zeroize sensitive information */
|
||||
W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
|
||||
W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
|
||||
}
|
||||
#endif /* !__amd64 */
|
||||
|
||||
|
||||
/*
|
||||
* Encode()
|
||||
*
|
||||
* purpose: to convert a list of numbers from little endian to big endian
|
||||
* input: uint8_t * : place to store the converted big endian numbers
|
||||
* uint32_t * : place to get numbers to convert from
|
||||
* size_t : the length of the input in bytes
|
||||
* output: void
|
||||
*/
|
||||
|
||||
static void
|
||||
Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
|
||||
size_t len)
|
||||
{
|
||||
size_t i, j;
|
||||
|
||||
#if defined(__sparc)
|
||||
if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
|
||||
for (i = 0, j = 0; j < len; i++, j += 4) {
|
||||
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
||||
*((uint32_t *)(output + j)) = input[i];
|
||||
}
|
||||
} else {
|
||||
#endif /* little endian -- will work on big endian, but slowly */
|
||||
|
||||
for (i = 0, j = 0; j < len; i++, j += 4) {
|
||||
output[j] = (input[i] >> 24) & 0xff;
|
||||
output[j + 1] = (input[i] >> 16) & 0xff;
|
||||
output[j + 2] = (input[i] >> 8) & 0xff;
|
||||
output[j + 3] = input[i] & 0xff;
|
||||
}
|
||||
#if defined(__sparc)
|
||||
}
|
||||
#endif
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -110,7 +110,6 @@ icp_fini(void)
|
||||
{
|
||||
skein_mod_fini();
|
||||
sha2_mod_fini();
|
||||
sha1_mod_fini();
|
||||
aes_mod_fini();
|
||||
kcf_sched_destroy();
|
||||
kcf_prov_tab_destroy();
|
||||
@ -139,7 +138,6 @@ icp_init(void)
|
||||
|
||||
/* initialize algorithms */
|
||||
aes_mod_init();
|
||||
sha1_mod_init();
|
||||
sha2_mod_init();
|
||||
skein_mod_init();
|
||||
|
||||
|
@ -1,61 +0,0 @@
|
||||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License (the "License").
|
||||
* You may not use this file except in compliance with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or http://www.opensolaris.org/os/licensing.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#ifndef _SYS_SHA1_H
|
||||
#define _SYS_SHA1_H
|
||||
|
||||
#include <sys/types.h> /* for uint_* */
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
* NOTE: n2rng (Niagara2 RNG driver) accesses the state field of
|
||||
* SHA1_CTX directly. NEVER change this structure without verifying
|
||||
* compatibility with n2rng. The important thing is that the state
|
||||
* must be in a field declared as uint32_t state[5].
|
||||
*/
|
||||
/* SHA-1 context. */
|
||||
typedef struct {
|
||||
uint32_t state[5]; /* state (ABCDE) */
|
||||
uint32_t count[2]; /* number of bits, modulo 2^64 (msb first) */
|
||||
union {
|
||||
uint8_t buf8[64]; /* undigested input */
|
||||
uint32_t buf32[16]; /* realigned input */
|
||||
} buf_un;
|
||||
} SHA1_CTX;
|
||||
|
||||
#define SHA1_DIGEST_LENGTH 20
|
||||
|
||||
void SHA1Init(SHA1_CTX *);
|
||||
void SHA1Update(SHA1_CTX *, const void *, size_t);
|
||||
void SHA1Final(void *, SHA1_CTX *);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SYS_SHA1_H */
|
@ -1,65 +0,0 @@
|
||||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License, Version 1.0 only
|
||||
* (the "License"). You may not use this file except in compliance
|
||||
* with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or http://www.opensolaris.org/os/licensing.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright (c) 1998, by Sun Microsystems, Inc.
|
||||
* All rights reserved.
|
||||
*/
|
||||
|
||||
#ifndef _SYS_SHA1_CONSTS_H
|
||||
#define _SYS_SHA1_CONSTS_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
* as explained in sha1.c, loading 32-bit constants on a sparc is expensive
|
||||
* since it involves both a `sethi' and an `or'. thus, we instead use `ld'
|
||||
* to load the constants from an array called `sha1_consts'. however, on
|
||||
* intel (and perhaps other processors), it is cheaper to load the constant
|
||||
* directly. thus, the c code in SHA1Transform() uses the macro SHA1_CONST()
|
||||
* which either expands to a constant or an array reference, depending on
|
||||
* the architecture the code is being compiled for.
|
||||
*/
|
||||
|
||||
#include <sys/types.h> /* uint32_t */
|
||||
|
||||
extern const uint32_t sha1_consts[];
|
||||
|
||||
#if defined(__sparc)
|
||||
#define SHA1_CONST(x) (sha1_consts[x])
|
||||
#else
|
||||
#define SHA1_CONST(x) (SHA1_CONST_ ## x)
|
||||
#endif
|
||||
|
||||
/* constants, as provided in FIPS 180-1 */
|
||||
|
||||
#define SHA1_CONST_0 0x5a827999U
|
||||
#define SHA1_CONST_1 0x6ed9eba1U
|
||||
#define SHA1_CONST_2 0x8f1bbcdcU
|
||||
#define SHA1_CONST_3 0xca62c1d6U
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SYS_SHA1_CONSTS_H */
|
@ -1,73 +0,0 @@
|
||||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License (the "License").
|
||||
* You may not use this file except in compliance with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or http://www.opensolaris.org/os/licensing.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#ifndef _SHA1_IMPL_H
|
||||
#define _SHA1_IMPL_H
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define SHA1_HASH_SIZE 20 /* SHA_1 digest length in bytes */
|
||||
#define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */
|
||||
#define SHA1_HMAC_BLOCK_SIZE 64 /* SHA1-HMAC block size */
|
||||
#define SHA1_HMAC_MIN_KEY_LEN 1 /* SHA1-HMAC min key length in bytes */
|
||||
#define SHA1_HMAC_MAX_KEY_LEN INT_MAX /* SHA1-HMAC max key length in bytes */
|
||||
#define SHA1_HMAC_INTS_PER_BLOCK (SHA1_HMAC_BLOCK_SIZE/sizeof (uint32_t))
|
||||
|
||||
/*
|
||||
* CSPI information (entry points, provider info, etc.)
|
||||
*/
|
||||
typedef enum sha1_mech_type {
|
||||
SHA1_MECH_INFO_TYPE, /* SUN_CKM_SHA1 */
|
||||
SHA1_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA1_HMAC */
|
||||
SHA1_HMAC_GEN_MECH_INFO_TYPE /* SUN_CKM_SHA1_HMAC_GENERAL */
|
||||
} sha1_mech_type_t;
|
||||
|
||||
/*
|
||||
* Context for SHA1 mechanism.
|
||||
*/
|
||||
typedef struct sha1_ctx {
|
||||
sha1_mech_type_t sc_mech_type; /* type of context */
|
||||
SHA1_CTX sc_sha1_ctx; /* SHA1 context */
|
||||
} sha1_ctx_t;
|
||||
|
||||
/*
|
||||
* Context for SHA1-HMAC and SHA1-HMAC-GENERAL mechanisms.
|
||||
*/
|
||||
typedef struct sha1_hmac_ctx {
|
||||
sha1_mech_type_t hc_mech_type; /* type of context */
|
||||
uint32_t hc_digest_len; /* digest len in bytes */
|
||||
SHA1_CTX hc_icontext; /* inner SHA1 context */
|
||||
SHA1_CTX hc_ocontext; /* outer SHA1 context */
|
||||
} sha1_hmac_ctx_t;
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SHA1_IMPL_H */
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user