Revert r336497 for now, as it breaks on architectures using gcc, with:

cc1: warnings being treated as errors
/usr/src/lib/msun/src/s_cpow.c: In function 'cpow':
/usr/src/lib/msun/src/s_cpow.c:63: warning: implicit declaration of function 'CMPLX'
This commit is contained in:
Dimitry Andric 2018-07-19 19:07:25 +00:00
parent 8d6dfc9ece
commit c422fbac00
8 changed files with 125 additions and 55 deletions

View File

@ -56,6 +56,7 @@ COMMON_SRCS= b_exp.c b_log.c b_tgamma.c \
imprecise.c \
k_cos.c k_cosf.c k_exp.c k_expf.c k_rem_pio2.c k_sin.c k_sinf.c \
k_tan.c k_tanf.c \
polevll.c \
s_asinh.c s_asinhf.c s_atan.c s_atanf.c s_carg.c s_cargf.c s_cargl.c \
s_cbrt.c s_cbrtf.c s_ceil.c s_ceilf.c s_clog.c s_clogf.c \
s_copysign.c s_copysignf.c s_cos.c s_cosf.c \

View File

@ -14,52 +14,6 @@
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <math.h>
#include "math_private.h"
/*
* Polynomial evaluator:
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
*/
static inline long double
__polevll(long double x, long double *PP, int n)
{
long double y;
long double *P;
P = PP;
y = *P++;
do {
y = y * x + *P++;
} while (--n);
return (y);
}
/*
* Polynomial evaluator:
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
*/
static inline long double
__p1evll(long double x, long double *PP, int n)
{
long double y;
long double *P;
P = PP;
n -= 1;
y = x + *P++;
do {
y = y * x + *P++;
} while (--n);
return (y);
}
/* powl.c
*
* Power function, long double precision
@ -513,7 +467,7 @@ return( z );
/* Find a multiple of 1/NXT that is within 1/NXT of x. */
static inline long double
static long double
reducl(long double x)
{
long double t;

View File

@ -180,9 +180,16 @@ If 0**0 = 1, then
then \*(Na**0 = 1 too because x**0 = 1 for all finite
and infinite x, i.e., independently of x.
.El
.Sh BUGS
To conform with newer C/C++ standards, a stub implementation for
.Nm powl
was committed to the math library, where
.Nm powl
is mapped to
.Nm pow .
Thus, the numerical accuracy is at most that of the 53-bit double
precision implementation.
.Sh SEE ALSO
.Xr clog 3
.Xr cpow 3
.Xr fenv 3 ,
.Xr ldexp 3 ,
.Xr log 3 ,

View File

@ -846,4 +846,7 @@ long double __kernel_sinl(long double, long double, int);
long double __kernel_cosl(long double, long double);
long double __kernel_tanl(long double, long double, int);
long double __p1evll(long double, void *, int);
long double __polevll(long double, void *, int);
#endif /* !_MATH_PRIVATE_H_ */

105
lib/msun/src/polevll.c Normal file
View File

@ -0,0 +1,105 @@
/*-
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* polevll.c
* p1evll.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* long double x, y, coef[N+1], polevl[];
*
* y = polevll( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evll() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevll().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <math.h>
#include "math_private.h"
/*
* Polynomial evaluator:
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
*/
long double
__polevll(long double x, void *PP, int n)
{
long double y;
long double *P;
P = (long double *)PP;
y = *P++;
do {
y = y * x + *P++;
} while (--n);
return (y);
}
/*
* Polynomial evaluator:
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
*/
long double
__p1evll(long double x, void *PP, int n)
{
long double y;
long double *P;
P = (long double *)PP;
n -= 1;
y = x + *P++;
do {
y = y * x + *P++;
} while (--n);
return (y);
}

View File

@ -60,7 +60,7 @@ cpow(double complex a, double complex z)
y = cimag (z);
absa = cabs (a);
if (absa == 0.0) {
return (CMPLX(0.0, 0.0));
return (0.0 + 0.0 * I);
}
arga = carg (a);
r = pow (absa, x);
@ -69,6 +69,6 @@ cpow(double complex a, double complex z)
r = r * exp (-y * arga);
theta = theta + y * log (absa);
}
w = CMPLX(r * cos (theta), r * sin (theta));
w = r * cos (theta) + (r * sin (theta)) * I;
return (w);
}

View File

@ -59,7 +59,7 @@ cpowf(float complex a, float complex z)
y = cimagf(z);
absa = cabsf (a);
if (absa == 0.0f) {
return (CMPLXF(0.0f, 0.0f));
return (0.0f + 0.0f * I);
}
arga = cargf (a);
r = powf (absa, x);
@ -68,6 +68,6 @@ cpowf(float complex a, float complex z)
r = r * expf (-y * arga);
theta = theta + y * logf (absa);
}
w = CMPLXF(r * cosf (theta), r * sinf (theta));
w = r * cosf (theta) + (r * sinf (theta)) * I;
return (w);
}

View File

@ -59,7 +59,7 @@ cpowl(long double complex a, long double complex z)
y = cimagl(z);
absa = cabsl(a);
if (absa == 0.0L) {
return (CMPLXL(0.0L, 0.0L));
return (0.0L + 0.0L * I);
}
arga = cargl(a);
r = powl(absa, x);
@ -68,6 +68,6 @@ cpowl(long double complex a, long double complex z)
r = r * expl(-y * arga);
theta = theta + y * logl(absa);
}
w = CMPLXL(r * cosl(theta), r * sinl(theta));
w = r * cosl(theta) + (r * sinl(theta)) * I;
return (w);
}