math(3): Use the .Fa macro for function arguments

.Fa is the suitable macro for functions in comparsion to the
.Ar macro, which should be used for commandline arguments.

While here, fix some mandoc warnings.

Reviewed by:	imp (earlier version)
Obtained from:	OpenBSD (in partial)
MFC after:	3 days
Differential Revision:	https://reviews.freebsd.org/D31090
This commit is contained in:
Gordon Bergling 2021-07-09 19:51:44 +02:00
parent 9e3761d126
commit c5cbef2f85
11 changed files with 28 additions and 28 deletions

View File

@ -60,7 +60,7 @@ These functions return the arc cosine in the range
radians.
If:
.Bd -unfilled -offset indent
.Pf \&| Ns Ar x Ns \&| > 1 ,
.Pf \&| Ns Fa x Ns \&| > 1 ,
.Ed
.Pp
.Fn acos x

View File

@ -55,13 +55,13 @@ and
functions compute the inverse hyperbolic cosine
of the real
argument
.Ar x .
.Fa x .
For a discussion of error due to roundoff, see
.Xr math 3 .
.Sh RETURN VALUES
These functions
return the inverse hyperbolic cosine of
.Ar x .
.Fa x .
If the argument is less than 1,
.Fn acosh
raises an invalid exception and returns an \*(Na.

View File

@ -62,7 +62,7 @@ These functions return the arc sine in the range
radians.
If:
.Bd -unfilled -offset indent
.Pf \&| Ns Ar x Ns \&| > 1
.Pf \&| Ns Fa x Ns \&| > 1
.Ed
.Pp
.Fn asin x

View File

@ -55,13 +55,13 @@ and
functions compute the inverse hyperbolic sine
of the real
argument
.Ar x .
.Fa x .
For a discussion of error due to roundoff, see
.Xr math 3 .
.Sh RETURN VALUES
These functions
return the inverse hyperbolic sine of
.Ar x .
.Fa x .
.Sh SEE ALSO
.Xr acosh 3 ,
.Xr atanh 3 ,

View File

@ -63,7 +63,7 @@ The
and
.Fn atan2l
functions compute the principal value of the arc tangent of
.Fa y/ Ns Ar x ,
.Fa y/ Ns Fa x ,
using the signs of both arguments to determine the quadrant of
the return value.
.Pp
@ -94,7 +94,7 @@ and
.Fn atan2l
functions, if successful,
return the arc tangent of
.Fa y/ Ns Ar x
.Fa y/ Ns Fa x
in the range
.Bk -words
.Bq \&- Ns \*(Pi , \&+ Ns \*(Pi
@ -105,22 +105,22 @@ Here are some of the special cases:
.It Fn atan2 y x No := Ta
.Fn atan y/x Ta
if
.Ar x
.Fa x
> 0,
.It Ta sign( Ns Ar y Ns )*(\*(Pi -
.It Ta sign( Ns Fa y Ns )*(\*(Pi -
.Fn atan "\*(Bay/x\*(Ba" ) Ta
if
.Ar x
.Fa x
< 0,
.It Ta
.No 0 Ta
if x = y = 0, or
.It Ta
.Pf sign( Ar y Ns )*\*(Pi/2 Ta
.Pf sign( Fa y Ns )*\*(Pi/2 Ta
if
.Ar x
.Fa x
= 0 \(!=
.Ar y .
.Fa y .
.El
.Sh NOTES
The function

View File

@ -55,18 +55,18 @@ and
functions compute the inverse hyperbolic tangent
of the real
argument
.Ar x .
.Fa x .
For a discussion of error due to roundoff, see
.Xr math 3 .
.Sh RETURN VALUES
These functions
return the inverse hyperbolic tangent of
.Ar x
.Fa x
if successful.
If the argument has absolute value 1, a divide-by-zero exception
is raised and an infinity is returned.
If
.Ar |x|
.Fa |x|
> 1, an invalid exception is raised and an \*(Na is returned.
.Sh SEE ALSO
.Xr acosh 3 ,

View File

@ -31,7 +31,7 @@
.Nm ccos ,
.Nm ccosf ,
.Nm csin ,
.Nm csinf
.Nm csinf ,
.Nm ctan ,
.Nm ctanf
.Nd complex trigonometric functions

View File

@ -31,7 +31,7 @@
.Nm ccosh ,
.Nm ccoshf ,
.Nm csinh ,
.Nm csinhf
.Nm csinhf ,
.Nm ctanh ,
.Nm ctanhf
.Nd complex hyperbolic functions

View File

@ -108,9 +108,9 @@ and the
.Fn powl
functions compute the value
of
.Ar x
.Fa x
to the exponent
.Ar y .
.Fa y .
.Sh ERROR (due to Roundoff etc.)
The values of
.Fn exp 0 ,
@ -181,8 +181,8 @@ then \*(Na**0 = 1 too because x**0 = 1 for all finite
and infinite x, i.e., independently of x.
.El
.Sh SEE ALSO
.Xr clog 3
.Xr cpow 3
.Xr clog 3 ,
.Xr cpow 3 ,
.Xr fenv 3 ,
.Xr ldexp 3 ,
.Xr log 3 ,

View File

@ -67,13 +67,13 @@ Upon returning from
and
.Fn sincosl ,
the memory pointed to by
.Ar "*s"
.Fa "*s"
and
.Ar "*c"
.Fa "*c"
are assigned the values of sine and cosine, respectively.
.Sh SEE ALSO
.Xr cos 3 ,
.Xr sin 3 ,
.Xr sin 3
.Sh HISTORY
These functions were added to
.Fx 9.0

View File

@ -63,7 +63,7 @@ and
.Fn cbrtl
functions compute
the cube root of
.Ar x .
.Fa x .
.Pp
The
.Fn sqrt ,
@ -72,7 +72,7 @@ and
.Fn sqrtl
functions compute the
non-negative square root of
.Ar x .
.Fa x .
.Sh RETURN VALUES
The
.Fn cbrt ,