As for the float trig functions and logf, use a minimax polynomial

that is specialized for float precision.  The new polynomial has degree
5 instead of 11, and a maximum error of 2**-27.74 ulps instead
of 2**-30.64.  This doesn't affect the final error significantly; the
maximum error was and is about 0.9101 ulps on amd64 -01 and the number
of cases with an error of > 0.5 ulps is actually reduced by epsilon
despite the larger error in the polynomial.

This is about 15% faster on amd64 (A64), i386 (A64) and ia64.  The asm
version is still used instead of this on i386 since it is faster and
more accurate.
This commit is contained in:
Bruce Evans 2008-02-06 06:35:21 +00:00
parent b204a4e7a1
commit ce56838fdc

View File

@ -31,11 +31,12 @@ ln2HI[2] ={ 6.9314575195e-01, /* 0x3f317200 */
ln2LO[2] ={ 1.4286067653e-06, /* 0x35bfbe8e */
-1.4286067653e-06,}, /* 0xb5bfbe8e */
invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
P2 = -2.7777778450e-03, /* 0xbb360b61 */
P3 = 6.6137559770e-05, /* 0x388ab355 */
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
P5 = 4.1381369442e-08; /* 0x3331bb4c */
/*
* Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
* |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
*/
P1 = 1.6666625440e-1, /* 0xaaaa8f.0p-26 */
P2 = -2.7667332906e-3; /* -0xb55215.0p-32 */
static volatile float twom100 = 7.8886090522e-31; /* 2**-100=0x0d800000 */
@ -79,7 +80,7 @@ __ieee754_expf(float x) /* default IEEE double exp */
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
c = x - t*(P1+t*P2);
if(k==0) return one-((x*c)/(c-(float)2.0)-x);
else y = one-((lo-(x*c)/((float)2.0-c))-hi);
if(k >= -125) {