Vendor import of llvm release_38 branch r258549:

https://llvm.org/svn/llvm-project/llvm/branches/release_38@258549
This commit is contained in:
Dimitry Andric 2016-01-22 21:16:09 +00:00
parent dfab1a98e0
commit dadbdfff07
62 changed files with 1772 additions and 469 deletions

View File

@ -295,7 +295,7 @@ class MachineFunction {
}
/// Should we be emitting segmented stack stuff for the function
bool shouldSplitStack();
bool shouldSplitStack() const;
/// getNumBlockIDs - Return the number of MBB ID's allocated.
///

View File

@ -369,6 +369,18 @@ struct SDNodeFlags {
(UnsafeAlgebra << 3) | (NoNaNs << 4) | (NoInfs << 5) |
(NoSignedZeros << 6) | (AllowReciprocal << 7);
}
/// Clear any flags in this flag set that aren't also set in Flags.
void intersectWith(const SDNodeFlags *Flags) {
NoUnsignedWrap &= Flags->NoUnsignedWrap;
NoSignedWrap &= Flags->NoSignedWrap;
Exact &= Flags->Exact;
UnsafeAlgebra &= Flags->UnsafeAlgebra;
NoNaNs &= Flags->NoNaNs;
NoInfs &= Flags->NoInfs;
NoSignedZeros &= Flags->NoSignedZeros;
AllowReciprocal &= Flags->AllowReciprocal;
}
};
/// Represents one node in the SelectionDAG.
@ -682,6 +694,9 @@ class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
/// and directly, but it is not to avoid creating a vtable for this class.
const SDNodeFlags *getFlags() const;
/// Clear any flags in this node that aren't also set in Flags.
void intersectFlagsWith(const SDNodeFlags *Flags);
/// Return the number of values defined/returned by this operator.
unsigned getNumValues() const { return NumValues; }

View File

@ -346,6 +346,10 @@ class GlobalValue : public Constant {
return !(isDeclarationForLinker() || isWeakForLinker());
}
// Returns true if the alignment of the value can be unilaterally
// increased.
bool canIncreaseAlignment() const;
/// This method unlinks 'this' from the containing module, but does not delete
/// it.
virtual void removeFromParent() = 0;

View File

@ -331,6 +331,25 @@ unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
/// during lowering by the GC infrastructure.
bool callsGCLeafFunction(ImmutableCallSite CS);
//===----------------------------------------------------------------------===//
// Intrinsic pattern matching
//
/// Try and match a bitreverse or bswap idiom.
///
/// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
/// instructions are returned in \c InsertedInsts. They will all have been added
/// to a basic block.
///
/// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
/// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
/// to BW / 4 nodes to be searched, so is significantly faster.
///
/// This function returns true on a successful match or false otherwise.
bool recognizeBitReverseOrBSwapIdiom(
Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
SmallVectorImpl<Instruction *> &InsertedInsts);
} // End llvm namespace
#endif

View File

@ -125,8 +125,6 @@ class LibCallSimplifier {
Value *optimizeStringMemoryLibCall(CallInst *CI, IRBuilder<> &B);
// Math Library Optimizations
Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType);
Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
Value *optimizePow(CallInst *CI, IRBuilder<> &B);
Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);

View File

@ -93,18 +93,7 @@ class DebugLocEntry {
/// variable, merge them by appending Next's values to the current
/// list of values.
/// Return true if the merge was successful.
bool MergeValues(const DebugLocEntry &Next) {
if (Begin == Next.Begin) {
auto *Expr = cast_or_null<DIExpression>(Values[0].Expression);
auto *NextExpr = cast_or_null<DIExpression>(Next.Values[0].Expression);
if (Expr->isBitPiece() && NextExpr->isBitPiece()) {
addValues(Next.Values);
End = Next.End;
return true;
}
}
return false;
}
bool MergeValues(const DebugLocEntry &Next);
/// \brief Attempt to merge this DebugLocEntry with Next and return
/// true if the merge was successful. Entries can be merged if they

View File

@ -805,6 +805,24 @@ static bool piecesOverlap(const DIExpression *P1, const DIExpression *P2) {
return (l1 < r2) && (l2 < r1);
}
/// \brief If this and Next are describing different pieces of the same
/// variable, merge them by appending Next's values to the current
/// list of values.
/// Return true if the merge was successful.
bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) {
if (Begin == Next.Begin) {
auto *Expr = cast_or_null<DIExpression>(Values[0].Expression);
auto *NextExpr = cast_or_null<DIExpression>(Next.Values[0].Expression);
if (Expr->isBitPiece() && NextExpr->isBitPiece() &&
!piecesOverlap(Expr, NextExpr)) {
addValues(Next.Values);
End = Next.End;
return true;
}
}
return false;
}
/// Build the location list for all DBG_VALUEs in the function that
/// describe the same variable. If the ranges of several independent
/// pieces of the same variable overlap partially, split them up and

View File

@ -1742,8 +1742,8 @@ bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
// over-aligning global variables that have an explicit section is
// forbidden.
GlobalVariable *GV;
if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() &&
!GV->hasSection() && GV->getAlignment() < PrefAlign &&
if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
GV->getAlignment() < PrefAlign &&
DL->getTypeAllocSize(GV->getType()->getElementType()) >=
MinSize + Offset2)
GV->setAlignment(PrefAlign);
@ -5211,6 +5211,24 @@ bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
return false;
}
/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
static bool makeBitReverse(Instruction &I, const DataLayout &DL,
const TargetLowering &TLI) {
if (!I.getType()->isIntegerTy() ||
!TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
TLI.getValueType(DL, I.getType(), true)))
return false;
SmallVector<Instruction*, 4> Insts;
if (!recognizeBitReverseOrBSwapIdiom(&I, false, true, Insts))
return false;
Instruction *LastInst = Insts.back();
I.replaceAllUsesWith(LastInst);
RecursivelyDeleteTriviallyDeadInstructions(&I);
return true;
}
// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
@ -5224,8 +5242,19 @@ bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
if (ModifiedDT)
return true;
}
MadeChange |= dupRetToEnableTailCallOpts(&BB);
bool MadeBitReverse = true;
while (TLI && MadeBitReverse) {
MadeBitReverse = false;
for (auto &I : reverse(BB)) {
if (makeBitReverse(I, *DL, *TLI)) {
MadeBitReverse = MadeChange = true;
break;
}
}
}
MadeChange |= dupRetToEnableTailCallOpts(&BB);
return MadeChange;
}

View File

@ -163,7 +163,7 @@ getOrCreateJumpTableInfo(unsigned EntryKind) {
}
/// Should we be emitting segmented stack stuff for the function
bool MachineFunction::shouldSplitStack() {
bool MachineFunction::shouldSplitStack() const {
return getFunction()->hasFnAttribute("split-stack");
}

View File

@ -377,22 +377,6 @@ static void AddNodeIDOperands(FoldingSetNodeID &ID,
}
}
/// Add logical or fast math flag values to FoldingSetNodeID value.
static void AddNodeIDFlags(FoldingSetNodeID &ID, unsigned Opcode,
const SDNodeFlags *Flags) {
if (!isBinOpWithFlags(Opcode))
return;
unsigned RawFlags = 0;
if (Flags)
RawFlags = Flags->getRawFlags();
ID.AddInteger(RawFlags);
}
static void AddNodeIDFlags(FoldingSetNodeID &ID, const SDNode *N) {
AddNodeIDFlags(ID, N->getOpcode(), N->getFlags());
}
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
SDVTList VTList, ArrayRef<SDValue> OpList) {
AddNodeIDOpcode(ID, OpC);
@ -528,8 +512,6 @@ static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
}
} // end switch (N->getOpcode())
AddNodeIDFlags(ID, N);
// Target specific memory nodes could also have address spaces to check.
if (N->isTargetMemoryOpcode())
ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
@ -851,6 +833,9 @@ SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
if (Node)
if (const SDNodeFlags *Flags = N->getFlags())
Node->intersectFlagsWith(Flags);
return Node;
}
@ -869,6 +854,9 @@ SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
if (Node)
if (const SDNodeFlags *Flags = N->getFlags())
Node->intersectFlagsWith(Flags);
return Node;
}
@ -886,6 +874,9 @@ SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
if (Node)
if (const SDNodeFlags *Flags = N->getFlags())
Node->intersectFlagsWith(Flags);
return Node;
}
@ -3892,10 +3883,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
SDValue Ops[] = {N1, N2};
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
AddNodeIDFlags(ID, Opcode, Flags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) {
if (Flags)
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
@ -6249,10 +6242,12 @@ SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
AddNodeIDFlags(ID, Opcode, Flags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DebugLoc(), IP))
if (SDNode *E = FindNodeOrInsertPos(ID, DebugLoc(), IP)) {
if (Flags)
E->intersectFlagsWith(Flags);
return E;
}
}
return nullptr;
}
@ -6948,6 +6943,11 @@ const SDNodeFlags *SDNode::getFlags() const {
return nullptr;
}
void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
FlagsNode->Flags.intersectWith(Flags);
}
SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
assert(N->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");

View File

@ -12,11 +12,12 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/GlobalValue.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
@ -134,6 +135,47 @@ bool GlobalValue::isDeclaration() const {
return false;
}
bool GlobalValue::canIncreaseAlignment() const {
// Firstly, can only increase the alignment of a global if it
// is a strong definition.
if (!isStrongDefinitionForLinker())
return false;
// It also has to either not have a section defined, or, not have
// alignment specified. (If it is assigned a section, the global
// could be densely packed with other objects in the section, and
// increasing the alignment could cause padding issues.)
if (hasSection() && getAlignment() > 0)
return false;
// On ELF platforms, we're further restricted in that we can't
// increase the alignment of any variable which might be emitted
// into a shared library, and which is exported. If the main
// executable accesses a variable found in a shared-lib, the main
// exe actually allocates memory for and exports the symbol ITSELF,
// overriding the symbol found in the library. That is, at link
// time, the observed alignment of the variable is copied into the
// executable binary. (A COPY relocation is also generated, to copy
// the initial data from the shadowed variable in the shared-lib
// into the location in the main binary, before running code.)
//
// And thus, even though you might think you are defining the
// global, and allocating the memory for the global in your object
// file, and thus should be able to set the alignment arbitrarily,
// that's not actually true. Doing so can cause an ABI breakage; an
// executable might have already been built with the previous
// alignment of the variable, and then assuming an increased
// alignment will be incorrect.
// Conservatively assume ELF if there's no parent pointer.
bool isELF =
(!Parent || Triple(Parent->getTargetTriple()).isOSBinFormatELF());
if (isELF && hasDefaultVisibility() && !hasLocalLinkage())
return false;
return true;
}
//===----------------------------------------------------------------------===//
// GlobalVariable Implementation
//===----------------------------------------------------------------------===//

View File

@ -10133,6 +10133,7 @@ void AArch64TargetLowering::insertCopiesSplitCSR(
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (AArch64::GPR64RegClass.contains(*I))
@ -10152,13 +10153,13 @@ void AArch64TargetLowering::insertCopiesSplitCSR(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
NewVR)
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
*I)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}

View File

@ -112,9 +112,21 @@ class AArch64ELFStreamer : public MCELFStreamer {
MCELFStreamer::EmitInstruction(Inst, STI);
}
/// Emit a 32-bit value as an instruction. This is only used for the .inst
/// directive, EmitInstruction should be used in other cases.
void emitInst(uint32_t Inst) {
char Buffer[4];
// We can't just use EmitIntValue here, as that will emit a data mapping
// symbol, and swap the endianness on big-endian systems (instructions are
// always little-endian).
for (unsigned I = 0; I < 4; ++I) {
Buffer[I] = uint8_t(Inst);
Inst >>= 8;
}
EmitA64MappingSymbol();
MCELFStreamer::EmitIntValue(Inst, 4);
MCELFStreamer::EmitBytes(StringRef(Buffer, 4));
}
/// This is one of the functions used to emit data into an ELF section, so the

View File

@ -12423,6 +12423,7 @@ void ARMTargetLowering::insertCopiesSplitCSR(
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (ARM::GPRRegClass.contains(*I))
@ -12442,13 +12443,13 @@ void ARMTargetLowering::insertCopiesSplitCSR(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
NewVR)
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
*I)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}

View File

@ -832,10 +832,10 @@ def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
R8, R9, R10, R11)>;
// CSRs that are handled by prologue, epilogue.
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add)>;
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
// CSRs that are handled explicitly via copies.
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(add CSR_64_TLS_Darwin)>;
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
// All GPRs - except r11
def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,

View File

@ -2031,6 +2031,10 @@ void X86FrameLowering::adjustForSegmentedStacks(
unsigned TlsReg, TlsOffset;
DebugLoc DL;
// To support shrink-wrapping we would need to insert the new blocks
// at the right place and update the branches to PrologueMBB.
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
"Scratch register is live-in");
@ -2271,6 +2275,11 @@ void X86FrameLowering::adjustForHiPEPrologue(
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
DebugLoc DL;
// To support shrink-wrapping we would need to insert the new blocks
// at the right place and update the branches to PrologueMBB.
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
// HiPE-specific values
const unsigned HipeLeafWords = 24;
const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
@ -2584,7 +2593,14 @@ bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// If we may need to emit frameless compact unwind information, give
// up as this is currently broken: PR25614.
return MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF);
return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
// The lowering of segmented stack and HiPE only support entry blocks
// as prologue blocks: PR26107.
// This limitation may be lifted if we fix:
// - adjustForSegmentedStacks
// - adjustForHiPEPrologue
MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
!MF.shouldSplitStack();
}
MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(

View File

@ -28908,6 +28908,7 @@ void X86TargetLowering::insertCopiesSplitCSR(
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (X86::GR64RegClass.contains(*I))
@ -28925,13 +28926,13 @@ void X86TargetLowering::insertCopiesSplitCSR(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
NewVR)
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
*I)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}

View File

@ -17,6 +17,7 @@
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
@ -1565,190 +1566,18 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return Changed ? &I : nullptr;
}
/// Analyze the specified subexpression and see if it is capable of providing
/// pieces of a bswap or bitreverse. The subexpression provides a potential
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
/// the output of the expression came from a corresponding bit in some other
/// value. This function is recursive, and the end result is a mapping of
/// (value, bitnumber) to bitnumber. It is the caller's responsibility to
/// validate that all `value`s are identical and that the bitnumber to bitnumber
/// mapping is correct for a bswap or bitreverse.
///
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
/// that the expression deposits the low byte of %X into the high byte of the
/// result and that all other bits are zero. This expression is accepted,
/// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7].
///
/// This function returns true if the match was unsuccessful and false if so.
/// On entry to the function the "OverallLeftShift" is a signed integer value
/// indicating the number of bits that the subexpression is later shifted. For
/// example, if the expression is later right shifted by 16 bits, the
/// OverallLeftShift value would be -16 on entry. This is used to specify which
/// bits of BitValues are actually being set.
///
/// Similarly, BitMask is a bitmask where a bit is clear if its corresponding
/// bit is masked to zero by a user. For example, in (X & 255), X will be
/// processed with a bytemask of 255. BitMask is always in the local
/// (OverallLeftShift) coordinate space.
///
static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask,
SmallVectorImpl<Value *> &BitValues,
SmallVectorImpl<int> &BitProvenance) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an or instruction, it may be an inner node of the bswap.
if (I->getOpcode() == Instruction::Or)
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance) ||
CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask,
BitValues, BitProvenance);
// If this is a logical shift by a constant, recurse with OverallLeftShift
// and BitMask adjusted.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
unsigned ShAmt =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined.
if (ShAmt > BitValues.size())
return true;
unsigned BitShift = ShAmt;
if (I->getOpcode() == Instruction::Shl) {
// X << C -> collect(X, +C)
OverallLeftShift += BitShift;
BitMask = BitMask.lshr(BitShift);
} else {
// X >>u C -> collect(X, -C)
OverallLeftShift -= BitShift;
BitMask = BitMask.shl(BitShift);
}
if (OverallLeftShift >= (int)BitValues.size())
return true;
if (OverallLeftShift <= -(int)BitValues.size())
return true;
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance);
}
// If this is a logical 'and' with a mask that clears bits, clear the
// corresponding bits in BitMask.
if (I->getOpcode() == Instruction::And &&
isa<ConstantInt>(I->getOperand(1))) {
unsigned NumBits = BitValues.size();
APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) {
// If this bit is masked out by a later operation, we don't care what
// the and mask is.
if (BitMask[i] == 0)
continue;
// If the AndMask is zero for this bit, clear the bit.
APInt MaskB = AndMask & Bit;
if (MaskB == 0) {
BitMask.clearBit(i);
continue;
}
// Otherwise, this bit is kept.
}
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance);
}
}
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap/bitreverse. To be part of a bswap or
// bitreverse we must be demanding a contiguous range of bits from it.
unsigned InputBitLen = BitMask.countPopulation();
unsigned InputBitNo = BitMask.countTrailingZeros();
if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo !=
InputBitLen)
// Not a contiguous set range of bits!
return true;
// We know we're moving a contiguous range of bits from the input to the
// output. Record which bits in the output came from which bits in the input.
unsigned DestBitNo = InputBitNo + OverallLeftShift;
for (unsigned I = 0; I < InputBitLen; ++I)
BitProvenance[DestBitNo + I] = InputBitNo + I;
// If the destination bit value is already defined, the values are or'd
// together, which isn't a bswap/bitreverse (unless it's an or of the same
// bits).
if (BitValues[DestBitNo] && BitValues[DestBitNo] != V)
return true;
for (unsigned I = 0; I < InputBitLen; ++I)
BitValues[DestBitNo + I] = V;
return false;
}
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
unsigned BitWidth) {
if (From % 8 != To % 8)
return false;
// Convert from bit indices to byte indices and check for a byte reversal.
From >>= 3;
To >>= 3;
BitWidth >>= 3;
return From == BitWidth - To - 1;
}
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
unsigned BitWidth) {
return From == BitWidth - To - 1;
}
/// Given an OR instruction, check to see if this is a bswap or bitreverse
/// idiom. If so, insert the new intrinsic and return it.
Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
if (!ITy)
return nullptr; // Can't do vectors.
unsigned BW = ITy->getBitWidth();
/// We keep track of which bit (BitProvenance) inside which value (BitValues)
/// defines each bit in the result.
SmallVector<Value *, 8> BitValues(BW, nullptr);
SmallVector<int, 8> BitProvenance(BW, -1);
// Try to find all the pieces corresponding to the bswap.
APInt BitMask = APInt::getAllOnesValue(BitValues.size());
if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance))
SmallVector<Instruction*, 4> Insts;
if (!recognizeBitReverseOrBSwapIdiom(&I, true, false, Insts))
return nullptr;
Instruction *LastInst = Insts.pop_back_val();
LastInst->removeFromParent();
// Check to see if all of the bits come from the same value.
Value *V = BitValues[0];
if (!V) return nullptr; // Didn't find a bit? Must be zero.
if (!std::all_of(BitValues.begin(), BitValues.end(),
[&](const Value *X) { return X == V; }))
return nullptr;
// Now, is the bit permutation correct for a bswap or a bitreverse? We can
// only byteswap values with an even number of bytes.
bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;;
for (unsigned i = 0, e = BitValues.size(); i != e; ++i) {
OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
OKForBitReverse &=
bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
}
Intrinsic::ID Intrin;
if (OKForBSwap)
Intrin = Intrinsic::bswap;
else if (OKForBitReverse)
Intrin = Intrinsic::bitreverse;
else
return nullptr;
Function *F = Intrinsic::getDeclaration(I.getModule(), Intrin, ITy);
return CallInst::Create(F, V);
for (auto *Inst : Insts)
Worklist.Add(Inst);
return LastInst;
}
/// We have an expression of the form (A&C)|(B&D). Check if A is (cond?-1:0)

View File

@ -179,13 +179,244 @@ void LandingPadInliningInfo::forwardResume(
RI->eraseFromParent();
}
/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
static Value *getParentPad(Value *EHPad) {
if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
return FPI->getParentPad();
return cast<CatchSwitchInst>(EHPad)->getParentPad();
}
typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
/// Helper for getUnwindDestToken that does the descendant-ward part of
/// the search.
static Value *getUnwindDestTokenHelper(Instruction *EHPad,
UnwindDestMemoTy &MemoMap) {
SmallVector<Instruction *, 8> Worklist(1, EHPad);
while (!Worklist.empty()) {
Instruction *CurrentPad = Worklist.pop_back_val();
// We only put pads on the worklist that aren't in the MemoMap. When
// we find an unwind dest for a pad we may update its ancestors, but
// the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
// so they should never get updated while queued on the worklist.
assert(!MemoMap.count(CurrentPad));
Value *UnwindDestToken = nullptr;
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
if (CatchSwitch->hasUnwindDest()) {
UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
} else {
// Catchswitch doesn't have a 'nounwind' variant, and one might be
// annotated as "unwinds to caller" when really it's nounwind (see
// e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
// parent's unwind dest from this. We can check its catchpads'
// descendants, since they might include a cleanuppad with an
// "unwinds to caller" cleanupret, which can be trusted.
for (auto HI = CatchSwitch->handler_begin(),
HE = CatchSwitch->handler_end();
HI != HE && !UnwindDestToken; ++HI) {
BasicBlock *HandlerBlock = *HI;
auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
for (User *Child : CatchPad->users()) {
// Intentionally ignore invokes here -- since the catchswitch is
// marked "unwind to caller", it would be a verifier error if it
// contained an invoke which unwinds out of it, so any invoke we'd
// encounter must unwind to some child of the catch.
if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
continue;
Instruction *ChildPad = cast<Instruction>(Child);
auto Memo = MemoMap.find(ChildPad);
if (Memo == MemoMap.end()) {
// Haven't figure out this child pad yet; queue it.
Worklist.push_back(ChildPad);
continue;
}
// We've already checked this child, but might have found that
// it offers no proof either way.
Value *ChildUnwindDestToken = Memo->second;
if (!ChildUnwindDestToken)
continue;
// We already know the child's unwind dest, which can either
// be ConstantTokenNone to indicate unwind to caller, or can
// be another child of the catchpad. Only the former indicates
// the unwind dest of the catchswitch.
if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
UnwindDestToken = ChildUnwindDestToken;
break;
}
assert(getParentPad(ChildUnwindDestToken) == CatchPad);
}
}
}
} else {
auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
for (User *U : CleanupPad->users()) {
if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
UnwindDestToken = RetUnwindDest->getFirstNonPHI();
else
UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
break;
}
Value *ChildUnwindDestToken;
if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
} else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
Instruction *ChildPad = cast<Instruction>(U);
auto Memo = MemoMap.find(ChildPad);
if (Memo == MemoMap.end()) {
// Haven't resolved this child yet; queue it and keep searching.
Worklist.push_back(ChildPad);
continue;
}
// We've checked this child, but still need to ignore it if it
// had no proof either way.
ChildUnwindDestToken = Memo->second;
if (!ChildUnwindDestToken)
continue;
} else {
// Not a relevant user of the cleanuppad
continue;
}
// In a well-formed program, the child/invoke must either unwind to
// an(other) child of the cleanup, or exit the cleanup. In the
// first case, continue searching.
if (isa<Instruction>(ChildUnwindDestToken) &&
getParentPad(ChildUnwindDestToken) == CleanupPad)
continue;
UnwindDestToken = ChildUnwindDestToken;
break;
}
}
// If we haven't found an unwind dest for CurrentPad, we may have queued its
// children, so move on to the next in the worklist.
if (!UnwindDestToken)
continue;
// Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
// any ancestors of CurrentPad up to but not including UnwindDestToken's
// parent pad. Record this in the memo map, and check to see if the
// original EHPad being queried is one of the ones exited.
Value *UnwindParent;
if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
UnwindParent = getParentPad(UnwindPad);
else
UnwindParent = nullptr;
bool ExitedOriginalPad = false;
for (Instruction *ExitedPad = CurrentPad;
ExitedPad && ExitedPad != UnwindParent;
ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
// Skip over catchpads since they just follow their catchswitches.
if (isa<CatchPadInst>(ExitedPad))
continue;
MemoMap[ExitedPad] = UnwindDestToken;
ExitedOriginalPad |= (ExitedPad == EHPad);
}
if (ExitedOriginalPad)
return UnwindDestToken;
// Continue the search.
}
// No definitive information is contained within this funclet.
return nullptr;
}
/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
/// return that pad instruction. If it unwinds to caller, return
/// ConstantTokenNone. If it does not have a definitive unwind destination,
/// return nullptr.
///
/// This routine gets invoked for calls in funclets in inlinees when inlining
/// an invoke. Since many funclets don't have calls inside them, it's queried
/// on-demand rather than building a map of pads to unwind dests up front.
/// Determining a funclet's unwind dest may require recursively searching its
/// descendants, and also ancestors and cousins if the descendants don't provide
/// an answer. Since most funclets will have their unwind dest immediately
/// available as the unwind dest of a catchswitch or cleanupret, this routine
/// searches top-down from the given pad and then up. To avoid worst-case
/// quadratic run-time given that approach, it uses a memo map to avoid
/// re-processing funclet trees. The callers that rewrite the IR as they go
/// take advantage of this, for correctness, by checking/forcing rewritten
/// pads' entries to match the original callee view.
static Value *getUnwindDestToken(Instruction *EHPad,
UnwindDestMemoTy &MemoMap) {
// Catchpads unwind to the same place as their catchswitch;
// redirct any queries on catchpads so the code below can
// deal with just catchswitches and cleanuppads.
if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
EHPad = CPI->getCatchSwitch();
// Check if we've already determined the unwind dest for this pad.
auto Memo = MemoMap.find(EHPad);
if (Memo != MemoMap.end())
return Memo->second;
// Search EHPad and, if necessary, its descendants.
Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
if (UnwindDestToken)
return UnwindDestToken;
// No information is available for this EHPad from itself or any of its
// descendants. An unwind all the way out to a pad in the caller would
// need also to agree with the unwind dest of the parent funclet, so
// search up the chain to try to find a funclet with information. Put
// null entries in the memo map to avoid re-processing as we go up.
MemoMap[EHPad] = nullptr;
Instruction *LastUselessPad = EHPad;
Value *AncestorToken;
for (AncestorToken = getParentPad(EHPad);
auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
AncestorToken = getParentPad(AncestorToken)) {
// Skip over catchpads since they just follow their catchswitches.
if (isa<CatchPadInst>(AncestorPad))
continue;
assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
auto AncestorMemo = MemoMap.find(AncestorPad);
if (AncestorMemo == MemoMap.end()) {
UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
} else {
UnwindDestToken = AncestorMemo->second;
}
if (UnwindDestToken)
break;
LastUselessPad = AncestorPad;
}
// Since the whole tree under LastUselessPad has no information, it all must
// match UnwindDestToken; record that to avoid repeating the search.
SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
while (!Worklist.empty()) {
Instruction *UselessPad = Worklist.pop_back_val();
assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
MemoMap[UselessPad] = UnwindDestToken;
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
for (User *U : HandlerBlock->getFirstNonPHI()->users())
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
Worklist.push_back(cast<Instruction>(U));
} else {
assert(isa<CleanupPadInst>(UselessPad));
for (User *U : UselessPad->users())
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
Worklist.push_back(cast<Instruction>(U));
}
}
return UnwindDestToken;
}
/// When we inline a basic block into an invoke,
/// we have to turn all of the calls that can throw into invokes.
/// This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
static BasicBlock *
HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) {
static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
BasicBlock *BB, BasicBlock *UnwindEdge,
UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *I = &*BBI++;
@ -196,6 +427,31 @@ HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) {
if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
continue;
if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
// This call is nested inside a funclet. If that funclet has an unwind
// destination within the inlinee, then unwinding out of this call would
// be UB. Rewriting this call to an invoke which targets the inlined
// invoke's unwind dest would give the call's parent funclet multiple
// unwind destinations, which is something that subsequent EH table
// generation can't handle and that the veirifer rejects. So when we
// see such a call, leave it as a call.
auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
Value *UnwindDestToken =
getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
continue;
#ifndef NDEBUG
Instruction *MemoKey;
if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
MemoKey = CatchPad->getCatchSwitch();
else
MemoKey = FuncletPad;
assert(FuncletUnwindMap->count(MemoKey) &&
(*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
"must get memoized to avoid confusing later searches");
#endif // NDEBUG
}
// Convert this function call into an invoke instruction. First, split the
// basic block.
BasicBlock *Split =
@ -328,13 +584,23 @@ static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
// This connects all the instructions which 'unwind to caller' to the invoke
// destination.
UnwindDestMemoTy FuncletUnwindMap;
for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
BB != E; ++BB) {
if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
if (CRI->unwindsToCaller()) {
CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI);
auto *CleanupPad = CRI->getCleanupPad();
CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
CRI->eraseFromParent();
UpdatePHINodes(&*BB);
// Finding a cleanupret with an unwind destination would confuse
// subsequent calls to getUnwindDestToken, so map the cleanuppad
// to short-circuit any such calls and recognize this as an "unwind
// to caller" cleanup.
assert(!FuncletUnwindMap.count(CleanupPad) ||
isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
FuncletUnwindMap[CleanupPad] =
ConstantTokenNone::get(Caller->getContext());
}
}
@ -345,12 +611,41 @@ static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
Instruction *Replacement = nullptr;
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
if (CatchSwitch->unwindsToCaller()) {
Value *UnwindDestToken;
if (auto *ParentPad =
dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
// This catchswitch is nested inside another funclet. If that
// funclet has an unwind destination within the inlinee, then
// unwinding out of this catchswitch would be UB. Rewriting this
// catchswitch to unwind to the inlined invoke's unwind dest would
// give the parent funclet multiple unwind destinations, which is
// something that subsequent EH table generation can't handle and
// that the veirifer rejects. So when we see such a call, leave it
// as "unwind to caller".
UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
continue;
} else {
// This catchswitch has no parent to inherit constraints from, and
// none of its descendants can have an unwind edge that exits it and
// targets another funclet in the inlinee. It may or may not have a
// descendant that definitively has an unwind to caller. In either
// case, we'll have to assume that any unwinds out of it may need to
// be routed to the caller, so treat it as though it has a definitive
// unwind to caller.
UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
}
auto *NewCatchSwitch = CatchSwitchInst::Create(
CatchSwitch->getParentPad(), UnwindDest,
CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
CatchSwitch);
for (BasicBlock *PadBB : CatchSwitch->handlers())
NewCatchSwitch->addHandler(PadBB);
// Propagate info for the old catchswitch over to the new one in
// the unwind map. This also serves to short-circuit any subsequent
// checks for the unwind dest of this catchswitch, which would get
// confused if they found the outer handler in the callee.
FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
Replacement = NewCatchSwitch;
}
} else if (!isa<FuncletPadInst>(I)) {
@ -369,8 +664,8 @@ static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
for (Function::iterator BB = FirstNewBlock->getIterator(),
E = Caller->end();
BB != E; ++BB)
if (BasicBlock *NewBB =
HandleCallsInBlockInlinedThroughInvoke(&*BB, UnwindDest))
if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
&*BB, UnwindDest, &FuncletUnwindMap))
// Update any PHI nodes in the exceptional block to indicate that there
// is now a new entry in them.
UpdatePHINodes(NewBB);
@ -1415,6 +1710,20 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
}
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any call instructions into invoke instructions. This is sensitive to which
// funclet pads were top-level in the inlinee, so must be done before
// rewriting the "parent pad" links.
if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
BasicBlock *UnwindDest = II->getUnwindDest();
Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
if (isa<LandingPadInst>(FirstNonPHI)) {
HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
} else {
HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
}
}
// Update the lexical scopes of the new funclets and callsites.
// Anything that had 'none' as its parent is now nested inside the callsite's
// EHPad.
@ -1472,18 +1781,6 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
}
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any call instructions into invoke instructions.
if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
BasicBlock *UnwindDest = II->getUnwindDest();
Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
if (isa<LandingPadInst>(FirstNonPHI)) {
HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
} else {
HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
}
}
// Handle any inlined musttail call sites. In order for a new call site to be
// musttail, the source of the clone and the inlined call site must have been
// musttail. Therefore it's safe to return without merging control into the

View File

@ -944,37 +944,44 @@ bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
unsigned PrefAlign,
const DataLayout &DL) {
assert(PrefAlign > Align);
V = V->stripPointerCasts();
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
// TODO: ideally, computeKnownBits ought to have used
// AllocaInst::getAlignment() in its computation already, making
// the below max redundant. But, as it turns out,
// stripPointerCasts recurses through infinite layers of bitcasts,
// while computeKnownBits is not allowed to traverse more than 6
// levels.
Align = std::max(AI->getAlignment(), Align);
if (PrefAlign <= Align)
return Align;
// If the preferred alignment is greater than the natural stack alignment
// then don't round up. This avoids dynamic stack realignment.
if (DL.exceedsNaturalStackAlignment(PrefAlign))
return Align;
// If there is a requested alignment and if this is an alloca, round up.
if (AI->getAlignment() >= PrefAlign)
return AI->getAlignment();
AI->setAlignment(PrefAlign);
return PrefAlign;
}
if (auto *GO = dyn_cast<GlobalObject>(V)) {
// TODO: as above, this shouldn't be necessary.
Align = std::max(GO->getAlignment(), Align);
if (PrefAlign <= Align)
return Align;
// If there is a large requested alignment and we can, bump up the alignment
// of the global. If the memory we set aside for the global may not be the
// memory used by the final program then it is impossible for us to reliably
// enforce the preferred alignment.
if (!GO->isStrongDefinitionForLinker())
if (!GO->canIncreaseAlignment())
return Align;
if (GO->getAlignment() >= PrefAlign)
return GO->getAlignment();
// We can only increase the alignment of the global if it has no alignment
// specified or if it is not assigned a section. If it is assigned a
// section, the global could be densely packed with other objects in the
// section, increasing the alignment could cause padding issues.
if (!GO->hasSection() || GO->getAlignment() == 0)
GO->setAlignment(PrefAlign);
return GO->getAlignment();
GO->setAlignment(PrefAlign);
return PrefAlign;
}
return Align;
@ -1585,3 +1592,205 @@ bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
return false;
}
/// A potential constituent of a bitreverse or bswap expression. See
/// collectBitParts for a fuller explanation.
struct BitPart {
BitPart(Value *P, unsigned BW) : Provider(P) {
Provenance.resize(BW);
}
/// The Value that this is a bitreverse/bswap of.
Value *Provider;
/// The "provenance" of each bit. Provenance[A] = B means that bit A
/// in Provider becomes bit B in the result of this expression.
SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
enum { Unset = -1 };
};
/// Analyze the specified subexpression and see if it is capable of providing
/// pieces of a bswap or bitreverse. The subexpression provides a potential
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
/// the output of the expression came from a corresponding bit in some other
/// value. This function is recursive, and the end result is a mapping of
/// bitnumber to bitnumber. It is the caller's responsibility to validate that
/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
///
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
/// that the expression deposits the low byte of %X into the high byte of the
/// result and that all other bits are zero. This expression is accepted and a
/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
/// [0-7].
///
/// To avoid revisiting values, the BitPart results are memoized into the
/// provided map. To avoid unnecessary copying of BitParts, BitParts are
/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
/// store BitParts objects, not pointers. As we need the concept of a nullptr
/// BitParts (Value has been analyzed and the analysis failed), we an Optional
/// type instead to provide the same functionality.
///
/// Because we pass around references into \c BPS, we must use a container that
/// does not invalidate internal references (std::map instead of DenseMap).
///
static const Optional<BitPart> &
collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
std::map<Value *, Optional<BitPart>> &BPS) {
auto I = BPS.find(V);
if (I != BPS.end())
return I->second;
auto &Result = BPS[V] = None;
auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an or instruction, it may be an inner node of the bswap.
if (I->getOpcode() == Instruction::Or) {
auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
MatchBitReversals, BPS);
auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
MatchBitReversals, BPS);
if (!A || !B)
return Result;
// Try and merge the two together.
if (!A->Provider || A->Provider != B->Provider)
return Result;
Result = BitPart(A->Provider, BitWidth);
for (unsigned i = 0; i < A->Provenance.size(); ++i) {
if (A->Provenance[i] != BitPart::Unset &&
B->Provenance[i] != BitPart::Unset &&
A->Provenance[i] != B->Provenance[i])
return Result = None;
if (A->Provenance[i] == BitPart::Unset)
Result->Provenance[i] = B->Provenance[i];
else
Result->Provenance[i] = A->Provenance[i];
}
return Result;
}
// If this is a logical shift by a constant, recurse then shift the result.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
unsigned BitShift =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined.
if (BitShift > BitWidth)
return Result;
auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
MatchBitReversals, BPS);
if (!Res)
return Result;
Result = Res;
// Perform the "shift" on BitProvenance.
auto &P = Result->Provenance;
if (I->getOpcode() == Instruction::Shl) {
P.erase(std::prev(P.end(), BitShift), P.end());
P.insert(P.begin(), BitShift, BitPart::Unset);
} else {
P.erase(P.begin(), std::next(P.begin(), BitShift));
P.insert(P.end(), BitShift, BitPart::Unset);
}
return Result;
}
// If this is a logical 'and' with a mask that clears bits, recurse then
// unset the appropriate bits.
if (I->getOpcode() == Instruction::And &&
isa<ConstantInt>(I->getOperand(1))) {
APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
// Check that the mask allows a multiple of 8 bits for a bswap, for an
// early exit.
unsigned NumMaskedBits = AndMask.countPopulation();
if (!MatchBitReversals && NumMaskedBits % 8 != 0)
return Result;
auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
MatchBitReversals, BPS);
if (!Res)
return Result;
Result = Res;
for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
// If the AndMask is zero for this bit, clear the bit.
if ((AndMask & Bit) == 0)
Result->Provenance[i] = BitPart::Unset;
return Result;
}
}
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap/bitreverse.
Result = BitPart(V, BitWidth);
for (unsigned i = 0; i < BitWidth; ++i)
Result->Provenance[i] = i;
return Result;
}
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
unsigned BitWidth) {
if (From % 8 != To % 8)
return false;
// Convert from bit indices to byte indices and check for a byte reversal.
From >>= 3;
To >>= 3;
BitWidth >>= 3;
return From == BitWidth - To - 1;
}
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
unsigned BitWidth) {
return From == BitWidth - To - 1;
}
/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
bool llvm::recognizeBitReverseOrBSwapIdiom(
Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
SmallVectorImpl<Instruction *> &InsertedInsts) {
if (Operator::getOpcode(I) != Instruction::Or)
return false;
if (!MatchBSwaps && !MatchBitReversals)
return false;
IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
if (!ITy || ITy->getBitWidth() > 128)
return false; // Can't do vectors or integers > 128 bits.
unsigned BW = ITy->getBitWidth();
// Try to find all the pieces corresponding to the bswap.
std::map<Value *, Optional<BitPart>> BPS;
auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
if (!Res)
return false;
auto &BitProvenance = Res->Provenance;
// Now, is the bit permutation correct for a bswap or a bitreverse? We can
// only byteswap values with an even number of bytes.
bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;
for (unsigned i = 0; i < BW; ++i) {
OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
OKForBitReverse &=
bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
}
Intrinsic::ID Intrin;
if (OKForBSwap && MatchBSwaps)
Intrin = Intrinsic::bswap;
else if (OKForBitReverse && MatchBitReversals)
Intrin = Intrinsic::bitreverse;
else
return false;
Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
return true;
}

View File

@ -970,15 +970,34 @@ static Value *valueHasFloatPrecision(Value *Val) {
return nullptr;
}
//===----------------------------------------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
/// Any floating-point library function that we're trying to simplify will have
/// a signature of the form: fptype foo(fptype param1, fptype param2, ...).
/// CheckDoubleTy indicates that 'fptype' must be 'double'.
static bool matchesFPLibFunctionSignature(const Function *F, unsigned NumParams,
bool CheckDoubleTy) {
FunctionType *FT = F->getFunctionType();
if (FT->getNumParams() != NumParams)
return false;
Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
bool CheckRetType) {
// The return type must match what we're looking for.
Type *RetTy = FT->getReturnType();
if (CheckDoubleTy ? !RetTy->isDoubleTy() : !RetTy->isFloatingPointTy())
return false;
// Each parameter must match the return type, and therefore, match every other
// parameter too.
for (const Type *ParamTy : FT->params())
if (ParamTy != RetTy)
return false;
return true;
}
/// Shrink double -> float for unary functions like 'floor'.
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
bool CheckRetType) {
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
!FT->getParamType(0)->isDoubleTy())
if (!matchesFPLibFunctionSignature(Callee, 1, true))
return nullptr;
if (CheckRetType) {
@ -1013,15 +1032,10 @@ Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
return B.CreateFPExt(V, B.getDoubleTy());
}
// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
/// Shrink double -> float for binary functions like 'fmin/fmax'.
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPointTy())
if (!matchesFPLibFunctionSignature(Callee, 2, true))
return nullptr;
// If this is something like 'fmin((double)floatval1, (double)floatval2)',
@ -1394,12 +1408,21 @@ Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, true);
// FIXME: Refactor - this check is repeated all over this file and even in the
// preceding call to shrink double -> float.
// Make sure this has 1 argument of FP type, which matches the result type.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
if (!CI->hasUnsafeAlgebra())
return Ret;

View File

@ -8,6 +8,7 @@
@sg = internal thread_local global %struct.S zeroinitializer, align 1
@__dso_handle = external global i8
@__tls_guard = internal thread_local unnamed_addr global i1 false
@sum1 = internal thread_local global i32 0, align 4
declare %struct.S* @_ZN1SC1Ev(%struct.S* returned)
declare %struct.S* @_ZN1SD1Ev(%struct.S* returned)
@ -74,3 +75,29 @@ __tls_init.exit:
; CHECK-NOT: ldp d27, d26
; CHECK-NOT: ldp d29, d28
; CHECK-NOT: ldp d31, d30
; CHECK-LABEL: _ZTW4sum1
; CHECK-NOT: stp d31, d30
; CHECK-NOT: stp d29, d28
; CHECK-NOT: stp d27, d26
; CHECK-NOT: stp d25, d24
; CHECK-NOT: stp d23, d22
; CHECK-NOT: stp d21, d20
; CHECK-NOT: stp d19, d18
; CHECK-NOT: stp d17, d16
; CHECK-NOT: stp d7, d6
; CHECK-NOT: stp d5, d4
; CHECK-NOT: stp d3, d2
; CHECK-NOT: stp d1, d0
; CHECK-NOT: stp x20, x19
; CHECK-NOT: stp x14, x13
; CHECK-NOT: stp x12, x11
; CHECK-NOT: stp x10, x9
; CHECK-NOT: stp x8, x7
; CHECK-NOT: stp x6, x5
; CHECK-NOT: stp x4, x3
; CHECK-NOT: stp x2, x1
; CHECK: blr
define cxx_fast_tlscc nonnull i32* @_ZTW4sum1() nounwind {
ret i32* @sum1
}

View File

@ -0,0 +1,43 @@
; RUN: llc -asm-verbose=false < %s | FileCheck %s
; PR26063
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
target triple = "armv7--linux-gnueabihf"
; CHECK: .LBB0_1:
; CHECK-NEXT: bl f{{$}}
; CHECK-NEXT: ldrb r[[T0:[0-9]+]], [r{{[0-9]+}}, #1]!{{$}}
; CHECK-NEXT: cmp r{{[0-9]+}}, #1{{$}}
; CHECK-NEXT: cmpne r[[T0]], #0{{$}}
; CHECK-NEXT: bne .LBB0_1{{$}}
define i8* @h(i8* readonly %a, i32 %b, i32 %c) {
entry:
%0 = load i8, i8* %a, align 1
%tobool4 = icmp ne i8 %0, 0
%cmp5 = icmp ne i32 %b, 1
%1 = and i1 %cmp5, %tobool4
br i1 %1, label %while.body.preheader, label %while.end
while.body.preheader: ; preds = %entry
br label %while.body
while.body: ; preds = %while.body.preheader, %while.body
%a.addr.06 = phi i8* [ %incdec.ptr, %while.body ], [ %a, %while.body.preheader ]
%call = tail call i32 bitcast (i32 (...)* @f to i32 ()*)()
%incdec.ptr = getelementptr inbounds i8, i8* %a.addr.06, i32 1
%2 = load i8, i8* %incdec.ptr, align 1
%tobool = icmp ne i8 %2, 0
%cmp = icmp ne i32 %call, 1
%3 = and i1 %cmp, %tobool
br i1 %3, label %while.body, label %while.end.loopexit
while.end.loopexit: ; preds = %while.body
%incdec.ptr.lcssa = phi i8* [ %incdec.ptr, %while.body ]
br label %while.end
while.end: ; preds = %while.end.loopexit, %entry
%a.addr.0.lcssa = phi i8* [ %a, %entry ], [ %incdec.ptr.lcssa, %while.end.loopexit ]
ret i8* %a.addr.0.lcssa
}
declare i32 @f(...)

View File

@ -8,6 +8,7 @@
@sg = internal thread_local global %struct.S zeroinitializer, align 1
@__dso_handle = external global i8
@__tls_guard = internal thread_local unnamed_addr global i1 false
@sum1 = internal thread_local global i32 0, align 4
declare %struct.S* @_ZN1SC1Ev(%struct.S* returned)
declare %struct.S* @_ZN1SD1Ev(%struct.S* returned)
@ -44,3 +45,13 @@ __tls_init.exit:
; CHECK-NOT: pop {r9, r12}
; CHECK-NOT: pop {r1, r2, r3, r4, r7, pc}
; CHECK: pop {lr}
; CHECK-LABEL: _ZTW4sum1
; CHECK-NOT: push {r1, r2, r3, r4, r7, lr}
; CHECK-NOT: push {r9, r12}
; CHECK-NOT: vpush {d16, d17, d18, d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31}
; CHECK-NOT: vpush {d0, d1, d2, d3, d4, d5, d6, d7}
; CHECK: blx
define cxx_fast_tlscc nonnull i32* @_ZTW4sum1() nounwind {
ret i32* @sum1
}

View File

@ -1,10 +1,10 @@
; RUN: llc < %s -mtriple=armv7-apple-ios -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-IOS
; RUN: llc < %s -mtriple=thumbv7m-none-macho -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-DARWIN
; RUN: llc < %s -mtriple=arm-none-eabi -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-EABI
; RUN: llc < %s -mtriple=arm-none-eabihf -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-EABI
; RUN: llc < %s -mtriple=arm-none-androideabi -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-EABI
; RUN: llc < %s -mtriple=arm-none-gnueabi -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-GNUEABI
; RUN: llc < %s -mtriple=arm-none-gnueabihf -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-GNUEABI
; RUN: llc < %s -mtriple=armv7-apple-ios -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-IOS --check-prefix=CHECK
; RUN: llc < %s -mtriple=thumbv7m-none-macho -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-DARWIN --check-prefix=CHECK
; RUN: llc < %s -mtriple=arm-none-eabi -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-EABI --check-prefix=CHECK
; RUN: llc < %s -mtriple=arm-none-eabihf -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-EABI --check-prefix=CHECK
; RUN: llc < %s -mtriple=arm-none-androideabi -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-EABI --check-prefix=CHECK
; RUN: llc < %s -mtriple=arm-none-gnueabi -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-GNUEABI --check-prefix=CHECK
; RUN: llc < %s -mtriple=arm-none-gnueabihf -disable-post-ra -o - | FileCheck %s --check-prefix=CHECK-GNUEABI --check-prefix=CHECK
define void @f1(i8* %dest, i8* %src) {
entry:
@ -402,8 +402,8 @@ entry:
; CHECK: arr1:
; CHECK-IOS: .align 3
; CHECK-DARWIN: .align 2
; CHECK-EABI: .align 2
; CHECK-GNUEABI: .align 2
; CHECK-EABI-NOT: .align
; CHECK-GNUEABI-NOT: .align
; CHECK: arr2:
; CHECK: {{\.section.+foo,bar}}
; CHECK-NOT: .align

View File

@ -1,20 +0,0 @@
; RUN: llc < %s -march=x86-64 | FileCheck %s
; CHECK: addl
; The two additions are the same , but have different flags.
; In theory this code should never be generated by the frontend, but this
; tries to test that two identical instructions with two different flags
; actually generate two different nodes.
;
; Normally the combiner would see this condition without the flags
; and optimize the result of the sub into a register clear
; (the final result would be 0). With the different flags though the combiner
; needs to keep the add + sub nodes, because the two nodes result as different
; nodes and so cannot assume that the subtraction of the two nodes
; generates 0 as result
define i32 @foo(i32 %a, i32 %b) {
%1 = add i32 %a, %b
%2 = add nsw i32 %a, %b
%3 = sub i32 %1, %2
ret i32 %3
}

View File

@ -4,11 +4,13 @@
; tricks similar to AArch64 fast TLS calling convention (r255821).
; Applying tricks on x86-64 similar to r255821.
; RUN: llc < %s -mtriple=x86_64-apple-darwin -enable-shrink-wrap=true | FileCheck %s
; RUN: llc < %s -mtriple=x86_64-apple-darwin -O0 | FileCheck %s --check-prefix=CHECK-O0
%struct.S = type { i8 }
@sg = internal thread_local global %struct.S zeroinitializer, align 1
@__dso_handle = external global i8
@__tls_guard = internal thread_local unnamed_addr global i1 false
@sum1 = internal thread_local global i32 0, align 4
declare void @_ZN1SC1Ev(%struct.S*)
declare void @_ZN1SD1Ev(%struct.S*)
@ -50,3 +52,28 @@ init.i:
__tls_init.exit:
ret %struct.S* @sg
}
; CHECK-LABEL: _ZTW4sum1
; CHECK-NOT: pushq %r11
; CHECK-NOT: pushq %r10
; CHECK-NOT: pushq %r9
; CHECK-NOT: pushq %r8
; CHECK-NOT: pushq %rsi
; CHECK-NOT: pushq %rdx
; CHECK-NOT: pushq %rcx
; CHECK-NOT: pushq %rbx
; CHECK: callq
define cxx_fast_tlscc nonnull i32* @_ZTW4sum1() nounwind {
ret i32* @sum1
}
; Make sure at O0 we don't overwrite RBP.
; CHECK-O0-LABEL: _ZTW4sum2
; CHECK-O0: pushq %rbp
; CHECK-O0: movq %rsp, %rbp
; CHECK-O0-NOT: movq %r{{.*}}, (%rbp)
define cxx_fast_tlscc i32* @_ZTW4sum2() #0 {
ret i32* @sum1
}
attributes #0 = { nounwind "no-frame-pointer-elim"="true" }

View File

@ -1,11 +1,5 @@
; RUN: llc %s -o - | FileCheck %s --check-prefix=CHECK
;
; This test checks that we do not use shrink-wrapping when
; the function does not have any frame pointer and may unwind.
; This is a workaround for a limitation in the emission of
; the CFI directives, that are not correct in such case.
; PR25614
;
; Note: This test cannot be merged with the shrink-wrapping tests
; because the booleans set on the command line take precedence on
; the target logic that disable shrink-wrapping.
@ -13,6 +7,12 @@ target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128"
target triple = "x86_64-apple-macosx"
; This test checks that we do not use shrink-wrapping when
; the function does not have any frame pointer and may unwind.
; This is a workaround for a limitation in the emission of
; the CFI directives, that are not correct in such case.
; PR25614
;
; No shrink-wrapping should occur here, until the CFI information are fixed.
; CHECK-LABEL: framelessUnwind:
;
@ -151,3 +151,74 @@ false:
}
attributes #2 = { "no-frame-pointer-elim"="false" nounwind }
; Check that we generate correct code for segmented stack.
; We used to emit the code at the entry point of the function
; instead of just before the prologue.
; For now, shrink-wrapping is disabled on segmented stack functions: PR26107.
;
; CHECK-LABEL: segmentedStack:
; CHECK: cmpq
; CHECK-NEXT: ja [[ENTRY_LABEL:LBB[0-9_]+]]
;
; CHECK: callq ___morestack
; CHECK-NEXT: retq
;
; CHECK: [[ENTRY_LABEL]]:
; Prologue
; CHECK: push
;
; In PR26107, we use to drop these two basic blocks, because
; the segmentedStack entry block was jumping directly to
; the place where the prologue is actually needed, which is
; the call to memcmp.
; Then, those two basic blocks did not have any predecessors
; anymore and were removed.
;
; Check if vk1 is null
; CHECK: testq %rdi, %rdi
; CHECK-NEXT: je [[STRINGS_EQUAL:LBB[0-9_]+]]
;
; Check if vk2 is null
; CHECK: testq %rsi, %rsi
; CHECK-NEXT: je [[STRINGS_EQUAL]]
;
; CHECK: [[STRINGS_EQUAL]]
; CHECK-NEXT: popq
define zeroext i1 @segmentedStack(i8* readonly %vk1, i8* readonly %vk2, i64 %key_size) #5 {
entry:
%cmp.i = icmp eq i8* %vk1, null
%cmp1.i = icmp eq i8* %vk2, null
%brmerge.i = or i1 %cmp.i, %cmp1.i
%cmp1.mux.i = and i1 %cmp.i, %cmp1.i
br i1 %brmerge.i, label %__go_ptr_strings_equal.exit, label %if.end4.i
if.end4.i: ; preds = %entry
%tmp = getelementptr inbounds i8, i8* %vk1, i64 8
%tmp1 = bitcast i8* %tmp to i64*
%tmp2 = load i64, i64* %tmp1, align 8
%tmp3 = getelementptr inbounds i8, i8* %vk2, i64 8
%tmp4 = bitcast i8* %tmp3 to i64*
%tmp5 = load i64, i64* %tmp4, align 8
%cmp.i.i = icmp eq i64 %tmp2, %tmp5
br i1 %cmp.i.i, label %land.rhs.i.i, label %__go_ptr_strings_equal.exit
land.rhs.i.i: ; preds = %if.end4.i
%tmp6 = bitcast i8* %vk2 to i8**
%tmp7 = load i8*, i8** %tmp6, align 8
%tmp8 = bitcast i8* %vk1 to i8**
%tmp9 = load i8*, i8** %tmp8, align 8
%call.i.i = tail call i32 @memcmp(i8* %tmp9, i8* %tmp7, i64 %tmp2) #5
%cmp4.i.i = icmp eq i32 %call.i.i, 0
br label %__go_ptr_strings_equal.exit
__go_ptr_strings_equal.exit: ; preds = %land.rhs.i.i, %if.end4.i, %entry
%retval.0.i = phi i1 [ %cmp1.mux.i, %entry ], [ false, %if.end4.i ], [ %cmp4.i.i, %land.rhs.i.i ]
ret i1 %retval.0.i
}
; Function Attrs: nounwind readonly
declare i32 @memcmp(i8* nocapture, i8* nocapture, i64) #5
attributes #5 = { nounwind readonly ssp uwtable "split-stack" }

View File

@ -0,0 +1,107 @@
; RUN: llc -filetype=obj -o - < %s | llvm-dwarfdump - | FileCheck %s
;
; Checks that we're creating two ranges, one that terminates immediately
; and one that spans the rest of the function. This isn't necessarily the
; best thing to do here (and also not necessarily correct, since the first
; one has a bit_piece), but it is what is currently being emitted, any
; change here needs to be intentional, so the test is very specific.
;
; CHECK: .debug_loc contents:
; CHECK: 0x00000000: Beginning address offset: 0x0000000000000004
; CHECK: Ending address offset: 0x0000000000000004
; CHECK: Location description: 10 00 9f
; CHECK: Beginning address offset: 0x0000000000000004
; CHECK: Ending address offset: 0x0000000000000014
; CHECK: Location description: 10 00 9f
; Created form the following test case (PR26163) with
; clang -cc1 -triple armv4t--freebsd11.0-gnueabi -emit-obj -debug-info-kind=standalone -O2 -x c test.c
;
; typedef unsigned int size_t;
; struct timeval {
; long long tv_sec;
; int tv_usec;
; };
;
; void *memset(void *, int, size_t);
; void foo(void);
;
; static void
; bar(int value)
; {
; struct timeval lifetime;
;
; memset(&lifetime, 0, sizeof(struct timeval));
; lifetime.tv_sec = value;
;
; foo();
; }
;
; int
; parse_config_file(void)
; {
; int value;
;
; bar(value);
; return (0);
; }
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
target triple = "armv4t--freebsd11.0-gnueabi"
%struct.timeval = type { i64, i32 }
declare void @llvm.dbg.declare(metadata, metadata, metadata)
declare void @llvm.dbg.value(metadata, i64, metadata, metadata)
declare void @foo()
define i32 @parse_config_file() !dbg !4 {
entry:
tail call void @llvm.dbg.value(metadata i32 0, i64 0, metadata !15, metadata !26), !dbg !27
tail call void @llvm.dbg.declare(metadata %struct.timeval* undef, metadata !16, metadata !26), !dbg !29
tail call void @llvm.dbg.value(metadata i64 0, i64 0, metadata !16, metadata !30), !dbg !29
tail call void @llvm.dbg.value(metadata i32 0, i64 0, metadata !16, metadata !31), !dbg !29
tail call void @foo() #3, !dbg !32
ret i32 0, !dbg !33
}
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!22, !23, !24}
!llvm.ident = !{!25}
!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.9.0 (https://github.com/llvm-mirror/clang 89dda3855cda574f355e6defa1d77bdae5053994) (llvm/trunk 257891)", isOptimized: true, runtimeVersion: 0, emissionKind: 1, enums: !2, subprograms: !3)
!1 = !DIFile(filename: "<stdin>", directory: "/home/ubuntu/bugs")
!2 = !{}
!3 = !{!4, !11}
!4 = distinct !DISubprogram(name: "parse_config_file", scope: !5, file: !5, line: 22, type: !6, isLocal: false, isDefinition: true, scopeLine: 23, flags: DIFlagPrototyped, isOptimized: true, variables: !9)
!5 = !DIFile(filename: "test.c", directory: "/home/ubuntu/bugs")
!6 = !DISubroutineType(types: !7)
!7 = !{!8}
!8 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
!9 = !{!10}
!10 = !DILocalVariable(name: "value", scope: !4, file: !5, line: 24, type: !8)
!11 = distinct !DISubprogram(name: "bar", scope: !5, file: !5, line: 11, type: !12, isLocal: true, isDefinition: true, scopeLine: 12, flags: DIFlagPrototyped, isOptimized: true, variables: !14)
!12 = !DISubroutineType(types: !13)
!13 = !{null, !8}
!14 = !{!15, !16}
!15 = !DILocalVariable(name: "value", arg: 1, scope: !11, file: !5, line: 11, type: !8)
!16 = !DILocalVariable(name: "lifetime", scope: !11, file: !5, line: 13, type: !17)
!17 = !DICompositeType(tag: DW_TAG_structure_type, name: "timeval", file: !5, line: 2, size: 128, align: 64, elements: !18)
!18 = !{!19, !21}
!19 = !DIDerivedType(tag: DW_TAG_member, name: "tv_sec", scope: !17, file: !5, line: 3, baseType: !20, size: 64, align: 64)
!20 = !DIBasicType(name: "long long int", size: 64, align: 64, encoding: DW_ATE_signed)
!21 = !DIDerivedType(tag: DW_TAG_member, name: "tv_usec", scope: !17, file: !5, line: 4, baseType: !8, size: 32, align: 32, offset: 64)
!22 = !{i32 2, !"Debug Info Version", i32 3}
!23 = !{i32 1, !"wchar_size", i32 4}
!24 = !{i32 1, !"min_enum_size", i32 4}
!25 = !{!"clang version 3.9.0 (https://github.com/llvm-mirror/clang 89dda3855cda574f355e6defa1d77bdae5053994) (llvm/trunk 257891)"}
!26 = !DIExpression()
!27 = !DILocation(line: 11, scope: !11, inlinedAt: !28)
!28 = distinct !DILocation(line: 26, scope: !4)
!29 = !DILocation(line: 13, scope: !11, inlinedAt: !28)
!30 = !DIExpression(DW_OP_bit_piece, 0, 64)
!31 = !DIExpression(DW_OP_bit_piece, 0, 32)
!32 = !DILocation(line: 18, scope: !11, inlinedAt: !28)
!33 = !DILocation(line: 27, scope: !4)

View File

@ -1,5 +1,5 @@
; RUN: %lli -extra-module=%p/Inputs/cross-module-b.ll -disable-lazy-compilation=true -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
declare i32 @FB()

View File

@ -1,5 +1,5 @@
; RUN: %lli -extra-module=%p/Inputs/multi-module-b.ll -extra-module=%p/Inputs/multi-module-c.ll -disable-lazy-compilation=true -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
declare i32 @FB()

View File

@ -1,5 +1,5 @@
; RUN: %lli -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
define i32 @bar() nounwind {
ret i32 0

View File

@ -1,5 +1,5 @@
; RUN: %lli -remote-mcjit -disable-lazy-compilation=false -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
; This test should fail until remote symbol resolution is supported.
define i32 @main() nounwind {

View File

@ -1,5 +1,5 @@
; RUN: %lli -remote-mcjit -O0 -disable-lazy-compilation=false -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
; The intention of this test is to verify that symbols mapped to COMMON in ELF
; work as expected.

View File

@ -1,5 +1,5 @@
; RUN: %lli -remote-mcjit -O0 -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
; Check that a variable is always aligned as specified.

View File

@ -1,5 +1,5 @@
; RUN: %lli -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
define double @test(double* %DP, double %Arg) nounwind {
%D = load double, double* %DP ; <double> [#uses=1]

View File

@ -1,5 +1,5 @@
; RUN: %lli -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
@count = global i32 1, align 4

View File

@ -1,6 +1,6 @@
; RUN: %lli -remote-mcjit -mcjit-remote-process=lli-child-target%exeext \
; RUN: -relocation-model=pic -code-model=small %s > /dev/null
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, win32
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, mingw32, win32
@count = global i32 1, align 4

View File

@ -1,5 +1,5 @@
; RUN: %lli -remote-mcjit -O0 -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
@.str = private unnamed_addr constant [6 x i8] c"data1\00", align 1
@ptr = global i8* getelementptr inbounds ([6 x i8], [6 x i8]* @.str, i32 0, i32 0), align 4

View File

@ -1,6 +1,6 @@
; RUN: %lli -remote-mcjit -mcjit-remote-process=lli-child-target%exeext \
; RUN: -O0 -relocation-model=pic -code-model=small %s
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, win32
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, mingw32, win32
@.str = private unnamed_addr constant [6 x i8] c"data1\00", align 1
@ptr = global i8* getelementptr inbounds ([6 x i8], [6 x i8]* @.str, i32 0, i32 0), align 4

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -extra-module=%p/Inputs/cross-module-b.ll -disable-lazy-compilation=true -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
declare i32 @FB()

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -extra-module=%p/Inputs/multi-module-b.ll -extra-module=%p/Inputs/multi-module-c.ll -disable-lazy-compilation=true -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
declare i32 @FB()

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
define i32 @bar() nounwind {
ret i32 0

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -disable-lazy-compilation=false -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
; This test should fail until remote symbol resolution is supported.
define i32 @main() nounwind {

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -O0 -disable-lazy-compilation=false -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
; The intention of this test is to verify that symbols mapped to COMMON in ELF
; work as expected.

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -O0 -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
; Check that a variable is always aligned as specified.

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
define double @test(double* %DP, double %Arg) nounwind {
%D = load double, double* %DP ; <double> [#uses=1]

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -mcjit-remote-process=lli-child-target%exeext %s > /dev/null
; XFAIL: win32
; XFAIL: mingw32,win32
@count = global i32 1, align 4

View File

@ -1,6 +1,6 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -mcjit-remote-process=lli-child-target%exeext \
; RUN: -relocation-model=pic -code-model=small %s > /dev/null
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, win32
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, mingw32, win32
@count = global i32 1, align 4

View File

@ -1,5 +1,5 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -O0 -mcjit-remote-process=lli-child-target%exeext %s
; XFAIL: win32
; XFAIL: mingw32,win32
@.str = private unnamed_addr constant [6 x i8] c"data1\00", align 1
@ptr = global i8* getelementptr inbounds ([6 x i8], [6 x i8]* @.str, i32 0, i32 0), align 4

View File

@ -1,6 +1,6 @@
; RUN: %lli -jit-kind=orc-mcjit -remote-mcjit -mcjit-remote-process=lli-child-target%exeext \
; RUN: -O0 -relocation-model=pic -code-model=small %s
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, win32
; XFAIL: mips-, mipsel-, aarch64, arm, i686, i386, mingw32, win32
@.str = private unnamed_addr constant [6 x i8] c"data1\00", align 1
@ptr = global i8* getelementptr inbounds ([6 x i8], [6 x i8]* @.str, i32 0, i32 0), align 4

View File

@ -1,7 +1,14 @@
// RUN: llvm-mc %s -triple=aarch64-none-linux-gnu -filetype=asm -o - \
// RUN: | FileCheck %s --check-prefix=CHECK-ASM
// RUN: llvm-mc %s -triple=aarch64-none-linux-gnu -filetype=obj -o - \
// RUN: | llvm-readobj -s -sd | FileCheck %s --check-prefix=CHECK-OBJ
// RUN: llvm-mc %s -triple=aarch64-none-linux-gnu -filetype=obj -o %t
// RUN: llvm-readobj -s -sd %t | FileCheck %s --check-prefix=CHECK-OBJ
// RUN: llvm-objdump -t %t | FileCheck %s --check-prefix=CHECK-SYMS
// RUN: llvm-mc %s -triple=aarch64_be-none-linux-gnu -filetype=asm -o - \
// RUN: | FileCheck %s --check-prefix=CHECK-ASM
// RUN: llvm-mc %s -triple=aarch64_be-none-linux-gnu -filetype=obj -o %t
// RUN: llvm-readobj -s -sd %t | FileCheck %s --check-prefix=CHECK-OBJ
// RUN: llvm-objdump -t %t | FileCheck %s --check-prefix=CHECK-SYMS
.section .inst.aarch64_inst
@ -22,3 +29,7 @@ aarch64_inst:
// CHECK-OBJ: SectionData (
// CHECK-OBJ-NEXT: 0000: 2040105E
// CHECK-OBJ-NEXT: )
// CHECK-SYMS-NOT: 0000000000000000 .inst.aarch64_inst 00000000 $d
// CHECK-SYMS: 0000000000000000 .inst.aarch64_inst 00000000 $x
// CHECK-SYMS-NOT: 0000000000000000 .inst.aarch64_inst 00000000 $d

View File

@ -0,0 +1,37 @@
; RUN: opt -S -loop-unroll -codegenprepare < %s | FileCheck %s
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
target triple = "armv7--linux-gnueabihf"
; CHECK-LABEL: @f
define i32 @f(i32 %a) #0 {
; CHECK: call i32 @llvm.bitreverse.i32
entry:
br label %for.body
for.cond.cleanup: ; preds = %for.body
ret i32 %or
for.body: ; preds = %for.body, %entry
%i.08 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%b.07 = phi i32 [ 0, %entry ], [ %or, %for.body ]
%shr = lshr i32 %a, %i.08
%and = and i32 %shr, 1
%sub = sub nuw nsw i32 31, %i.08
%shl = shl i32 %and, %sub
%or = or i32 %shl, %b.07
%inc = add nuw nsw i32 %i.08, 1
%exitcond = icmp eq i32 %inc, 32
br i1 %exitcond, label %for.cond.cleanup, label %for.body, !llvm.loop !3
}
attributes #0 = { norecurse nounwind readnone "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="cortex-a8" "target-features"="+dsp,+neon,+vfp3" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.module.flags = !{!0, !1}
!llvm.ident = !{!2}
!0 = !{i32 1, !"wchar_size", i32 4}
!1 = !{i32 1, !"min_enum_size", i32 4}
!2 = !{!"clang version 3.8.0 (http://llvm.org/git/clang.git b7441a0f42c43a8eea9e3e706be187252db747fa)"}
!3 = distinct !{!3, !4}
!4 = !{!"llvm.loop.unroll.full"}

View File

@ -0,0 +1,3 @@
if not 'ARM' in config.root.targets:
config.unsupported = True

View File

@ -0,0 +1,53 @@
; RUN: opt < %s -loop-unroll -codegenprepare -S | FileCheck %s
; This test is a worst-case scenario for bitreversal/byteswap detection.
; After loop unrolling (the unrolled loop is unreadably large so it has been kept
; rolled here), we have a binary tree of OR operands (as bitreversal detection
; looks straight through shifts):
;
; OR
; | \
; | LSHR
; | /
; OR
; | \
; | LSHR
; | /
; OR
;
; This results in exponential runtime. The loop here is 32 iterations which will
; totally hang if we don't deal with this case cleverly.
@b = common global i32 0, align 4
; CHECK: define i32 @fn1
define i32 @fn1() #0 {
entry:
%b.promoted = load i32, i32* @b, align 4, !tbaa !2
br label %for.body
for.body: ; preds = %for.body, %entry
%or4 = phi i32 [ %b.promoted, %entry ], [ %or, %for.body ]
%i.03 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%shr = lshr i32 %or4, 1
%or = or i32 %shr, %or4
%inc = add nuw nsw i32 %i.03, 1
%exitcond = icmp eq i32 %inc, 32
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
store i32 %or, i32* @b, align 4, !tbaa !2
ret i32 undef
}
attributes #0 = { norecurse nounwind ssp uwtable "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="core2" "target-features"="+cx16,+fxsr,+mmx,+sse,+sse2,+sse3,+ssse3" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.module.flags = !{!0}
!llvm.ident = !{!1}
!0 = !{i32 1, !"PIC Level", i32 2}
!1 = !{!"clang version 3.8.0 (http://llvm.org/git/clang.git eb70f4e9cc9a4dc3dd57b032fb858d56b4b64a0e)"}
!2 = !{!3, !3, i64 0}
!3 = !{!"int", !4, i64 0}
!4 = !{!"omnipotent char", !5, i64 0}
!5 = !{!"Simple C/C++ TBAA"}

View File

@ -0,0 +1,455 @@
; RUN: opt -inline -S %s | FileCheck %s
declare void @g()
;;; Test with a call in a funclet that needs to remain a call
;;; when inlined because the funclet doesn't unwind to caller.
;;; CHECK-LABEL: define void @test1(
define void @test1() personality void ()* @g {
entry:
; CHECK-NEXT: entry:
invoke void @test1_inlinee()
to label %exit unwind label %cleanup
cleanup:
%pad = cleanuppad within none []
call void @g() [ "funclet"(token %pad) ]
cleanupret from %pad unwind to caller
exit:
ret void
}
define void @test1_inlinee() alwaysinline personality void ()* @g {
entry:
invoke void @g()
to label %exit unwind label %cleanup.inner
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: unwind label %[[cleanup_inner:.+]]
cleanup.inner:
%pad.inner = cleanuppad within none []
call void @g() [ "funclet"(token %pad.inner) ]
cleanupret from %pad.inner unwind label %cleanup.outer
; CHECK: [[cleanup_inner]]:
; The call here needs to remain a call becuase pad.inner has a cleanupret
; that stays within the inlinee.
; CHECK-NEXT: %[[pad_inner:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: call void @g() [ "funclet"(token %[[pad_inner]]) ]
; CHECK-NEXT: cleanupret from %[[pad_inner]] unwind label %[[cleanup_outer:.+]]
cleanup.outer:
%pad.outer = cleanuppad within none []
call void @g() [ "funclet"(token %pad.outer) ]
cleanupret from %pad.outer unwind to caller
; CHECK: [[cleanup_outer]]:
; The call and cleanupret here need to be redirected to caller cleanup
; CHECK-NEXT: %[[pad_outer:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[pad_outer]]) ]
; CHECK-NEXT: unwind label %cleanup
; CHECK: cleanupret from %[[pad_outer]] unwind label %cleanup{{$}}
exit:
ret void
}
;;; Test with an "unwind to caller" catchswitch in a parent funclet
;;; that needs to remain "unwind to caller" because the parent
;;; doesn't unwind to caller.
;;; CHECK-LABEL: define void @test2(
define void @test2() personality void ()* @g {
entry:
; CHECK-NEXT: entry:
invoke void @test2_inlinee()
to label %exit unwind label %cleanup
cleanup:
%pad = cleanuppad within none []
call void @g() [ "funclet"(token %pad) ]
cleanupret from %pad unwind to caller
exit:
ret void
}
define void @test2_inlinee() alwaysinline personality void ()* @g {
entry:
invoke void @g()
to label %exit unwind label %cleanup1
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: unwind label %[[cleanup1:.+]]
cleanup1:
%outer = cleanuppad within none []
invoke void @g() [ "funclet"(token %outer) ]
to label %ret1 unwind label %catchswitch
; CHECK: [[cleanup1]]:
; CHECK-NEXT: %[[outer:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[outer]]) ]
; CHECK-NEXT: unwind label %[[catchswitch:.+]]
catchswitch:
%cs = catchswitch within %outer [label %catch] unwind to caller
; CHECK: [[catchswitch]]:
; The catchswitch here needs to remain "unwind to caller" since %outer
; has a cleanupret that remains within the inlinee.
; CHECK-NEXT: %[[cs:[^ ]+]] = catchswitch within %[[outer]] [label %[[catch:.+]]] unwind to caller
catch:
%inner = catchpad within %cs []
call void @g() [ "funclet"(token %inner) ]
catchret from %inner to label %ret1
; CHECK: [[catch]]:
; The call here needs to remain a call since it too is within %outer
; CHECK: %[[inner:[^ ]+]] = catchpad within %[[cs]]
; CHECK-NEXT: call void @g() [ "funclet"(token %[[inner]]) ]
ret1:
cleanupret from %outer unwind label %cleanup2
; CHECK: cleanupret from %[[outer]] unwind label %[[cleanup2:.+]]
cleanup2:
%later = cleanuppad within none []
cleanupret from %later unwind to caller
; CHECK: [[cleanup2]]:
; The cleanupret here needs to get redirected to the caller cleanup
; CHECK-NEXT: %[[later:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: cleanupret from %[[later]] unwind label %cleanup{{$}}
exit:
ret void
}
;;; Test with a call in a cleanup that has no definitive unwind
;;; destination, that must be rewritten to an invoke.
;;; CHECK-LABEL: define void @test3(
define void @test3() personality void ()* @g {
entry:
; CHECK-NEXT: entry:
invoke void @test3_inlinee()
to label %exit unwind label %cleanup
cleanup:
%pad = cleanuppad within none []
call void @g() [ "funclet"(token %pad) ]
cleanupret from %pad unwind to caller
exit:
ret void
}
define void @test3_inlinee() alwaysinline personality void ()* @g {
entry:
invoke void @g()
to label %exit unwind label %cleanup
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: unwind label %[[cleanup:.+]]
cleanup:
%pad = cleanuppad within none []
call void @g() [ "funclet"(token %pad) ]
unreachable
; CHECK: [[cleanup]]:
; The call must be rewritten to an invoke targeting the caller cleanup
; because it may well unwind to there.
; CHECK-NEXT: %[[pad:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[pad]]) ]
; CHECK-NEXT: unwind label %cleanup{{$}}
exit:
ret void
}
;;; Test with a catchswitch in a cleanup that has no definitive
;;; unwind destination, that must be rewritten to unwind to the
;;; inlined invoke's unwind dest
;;; CHECK-LABEL: define void @test4(
define void @test4() personality void ()* @g {
entry:
; CHECK-NEXT: entry:
invoke void @test4_inlinee()
to label %exit unwind label %cleanup
cleanup:
%pad = cleanuppad within none []
call void @g() [ "funclet"(token %pad) ]
cleanupret from %pad unwind to caller
exit:
ret void
}
define void @test4_inlinee() alwaysinline personality void ()* @g {
entry:
invoke void @g()
to label %exit unwind label %cleanup
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: unwind label %[[cleanup:.+]]
cleanup:
%clean = cleanuppad within none []
invoke void @g() [ "funclet"(token %clean) ]
to label %unreachable unwind label %dispatch
; CHECK: [[cleanup]]:
; CHECK-NEXT: %[[clean:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[clean]]) ]
; CHECK-NEXT: unwind label %[[dispatch:.+]]
dispatch:
%cs = catchswitch within %clean [label %catch] unwind to caller
; CHECK: [[dispatch]]:
; The catchswitch must be rewritten to unwind to %cleanup in the caller
; because it may well unwind to there.
; CHECK-NEXT: %[[cs:[^ ]+]] = catchswitch within %[[clean]] [label %[[catch:.+]]] unwind label %cleanup{{$}}
catch:
catchpad within %cs []
br label %unreachable
unreachable:
unreachable
exit:
ret void
}
;;; Test with multiple levels of nesting, and unwind dests
;;; that need to be inferred from ancestors, descendants,
;;; and cousins.
;;; CHECK-LABEL: define void @test5(
define void @test5() personality void ()* @g {
entry:
; CHECK-NEXT: entry:
invoke void @test5_inlinee()
to label %exit unwind label %cleanup
cleanup:
%pad = cleanuppad within none []
call void @g() [ "funclet"(token %pad) ]
cleanupret from %pad unwind to caller
exit:
ret void
}
define void @test5_inlinee() alwaysinline personality void ()* @g {
entry:
invoke void @g()
to label %cont unwind label %noinfo.root
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: to label %[[cont:[^ ]+]] unwind label %[[noinfo_root:.+]]
noinfo.root:
%noinfo.root.pad = cleanuppad within none []
call void @g() [ "funclet"(token %noinfo.root.pad) ]
invoke void @g() [ "funclet"(token %noinfo.root.pad) ]
to label %noinfo.root.cont unwind label %noinfo.left
; CHECK: [[noinfo_root]]:
; Nothing under "noinfo.root" has a definitive unwind destination, so
; we must assume all of it may actually unwind, and redirect unwinds
; to the cleanup in the caller.
; CHECK-NEXT: %[[noinfo_root_pad:[^ ]+]] = cleanuppad within none []
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[noinfo_root_pad]]) ]
; CHECK-NEXT: to label %[[next:[^ ]+]] unwind label %cleanup{{$}}
; CHECK: [[next]]:
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[noinfo_root_pad]]) ]
; CHECK-NEXT: to label %[[noinfo_root_cont:[^ ]+]] unwind label %[[noinfo_left:.+]]
noinfo.left:
%noinfo.left.pad = cleanuppad within %noinfo.root.pad []
invoke void @g() [ "funclet"(token %noinfo.left.pad) ]
to label %unreachable unwind label %noinfo.left.child
; CHECK: [[noinfo_left]]:
; CHECK-NEXT: %[[noinfo_left_pad:[^ ]+]] = cleanuppad within %[[noinfo_root_pad]]
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[noinfo_left_pad]]) ]
; CHECK-NEXT: unwind label %[[noinfo_left_child:.+]]
noinfo.left.child:
%noinfo.left.child.cs = catchswitch within %noinfo.left.pad [label %noinfo.left.child.catch] unwind to caller
; CHECK: [[noinfo_left_child]]:
; CHECK-NEXT: %[[noinfo_left_child_cs:[^ ]+]] = catchswitch within %[[noinfo_left_pad]] [label %[[noinfo_left_child_catch:[^ ]+]]] unwind label %cleanup{{$}}
noinfo.left.child.catch:
%noinfo.left.child.pad = catchpad within %noinfo.left.child.cs []
call void @g() [ "funclet"(token %noinfo.left.child.pad) ]
br label %unreachable
; CHECK: [[noinfo_left_child_catch]]:
; CHECK-NEXT: %[[noinfo_left_child_pad:[^ ]+]] = catchpad within %[[noinfo_left_child_cs]] []
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[noinfo_left_child_pad]]) ]
; CHECK-NEXT: unwind label %cleanup{{$}}
noinfo.root.cont:
invoke void @g() [ "funclet"(token %noinfo.root.pad) ]
to label %unreachable unwind label %noinfo.right
; CHECK: [[noinfo_root_cont]]:
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[noinfo_root_pad]]) ]
; CHECK-NEXT: unwind label %[[noinfo_right:.+]]
noinfo.right:
%noinfo.right.cs = catchswitch within %noinfo.root.pad [label %noinfo.right.catch] unwind to caller
; CHECK: [[noinfo_right]]:
; CHECK-NEXT: %[[noinfo_right_cs:[^ ]+]] = catchswitch within %[[noinfo_root_pad]] [label %[[noinfo_right_catch:[^ ]+]]] unwind label %cleanup{{$}}
noinfo.right.catch:
%noinfo.right.pad = catchpad within %noinfo.right.cs []
invoke void @g() [ "funclet"(token %noinfo.right.pad) ]
to label %unreachable unwind label %noinfo.right.child
; CHECK: [[noinfo_right_catch]]:
; CHECK-NEXT: %[[noinfo_right_pad:[^ ]+]] = catchpad within %[[noinfo_right_cs]]
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[noinfo_right_pad]]) ]
; CHECK-NEXT: unwind label %[[noinfo_right_child:.+]]
noinfo.right.child:
%noinfo.right.child.pad = cleanuppad within %noinfo.right.pad []
call void @g() [ "funclet"(token %noinfo.right.child.pad) ]
br label %unreachable
; CHECK: [[noinfo_right_child]]:
; CHECK-NEXT: %[[noinfo_right_child_pad:[^ ]+]] = cleanuppad within %[[noinfo_right_pad]]
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[noinfo_right_child_pad]]) ]
; CHECK-NEXT: unwind label %cleanup{{$}}
cont:
invoke void @g()
to label %exit unwind label %implicit.root
; CHECK: [[cont]]:
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: unwind label %[[implicit_root:.+]]
implicit.root:
%implicit.root.pad = cleanuppad within none []
call void @g() [ "funclet"(token %implicit.root.pad) ]
invoke void @g() [ "funclet"(token %implicit.root.pad) ]
to label %implicit.root.cont unwind label %implicit.left
; CHECK: [[implicit_root]]:
; There's an unwind edge to %internal in implicit.right, and we need to propagate that
; fact down to implicit.right.grandchild, up to implicit.root, and down to
; implicit.left.child.catch, leaving all calls and "unwind to caller" catchswitches
; alone to so they don't conflict with the unwind edge in implicit.right
; CHECK-NEXT: %[[implicit_root_pad:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: call void @g() [ "funclet"(token %[[implicit_root_pad]]) ]
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[implicit_root_pad]]) ]
; CHECK-NEXT: to label %[[implicit_root_cont:[^ ]+]] unwind label %[[implicit_left:.+]]
implicit.left:
%implicit.left.pad = cleanuppad within %implicit.root.pad []
invoke void @g() [ "funclet"(token %implicit.left.pad) ]
to label %unreachable unwind label %implicit.left.child
; CHECK: [[implicit_left]]:
; CHECK-NEXT: %[[implicit_left_pad:[^ ]+]] = cleanuppad within %[[implicit_root_pad:[^ ]+]]
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[implicit_left_pad]]) ]
; CHECK-NEXT: unwind label %[[implicit_left_child:.+]]
implicit.left.child:
%implicit.left.child.cs = catchswitch within %implicit.left.pad [label %implicit.left.child.catch] unwind to caller
; CHECK: [[implicit_left_child]]:
; CHECK-NEXT: %[[implicit_left_child_cs:[^ ]+]] = catchswitch within %[[implicit_left_pad]] [label %[[implicit_left_child_catch:[^ ]+]]] unwind to caller
implicit.left.child.catch:
%implicit.left.child.pad = catchpad within %implicit.left.child.cs []
call void @g() [ "funclet"(token %implicit.left.child.pad) ]
br label %unreachable
; CHECK: [[implicit_left_child_catch]]:
; CHECK-NEXT: %[[implicit_left_child_pad:[^ ]+]] = catchpad within %[[implicit_left_child_cs]]
; CHECK-NEXT: call void @g() [ "funclet"(token %[[implicit_left_child_pad]]) ]
implicit.root.cont:
invoke void @g() [ "funclet"(token %implicit.root.pad) ]
to label %unreachable unwind label %implicit.right
; CHECK: [[implicit_root_cont]]:
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[implicit_root_pad]]) ]
; CHECK-NEXT: unwind label %[[implicit_right:.+]]
implicit.right:
%implicit.right.cs = catchswitch within %implicit.root.pad [label %implicit.right.catch] unwind label %internal
; CHECK: [[implicit_right]]:
; This is the unwind edge (to %internal) whose existence needs to get propagated around the "implicit" tree
; CHECK-NEXT: %[[implicit_right_cs:[^ ]+]] = catchswitch within %[[implicit_root_pad]] [label %[[implicit_right_catch:[^ ]+]]] unwind label %[[internal:.+]]
implicit.right.catch:
%implicit.right.pad = catchpad within %implicit.right.cs []
invoke void @g() [ "funclet"(token %implicit.right.pad) ]
to label %unreachable unwind label %implicit.right.child
; CHECK: [[implicit_right_catch]]:
; CHECK-NEXT: %[[implicit_right_pad:[^ ]+]] = catchpad within %[[implicit_right_cs]]
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[implicit_right_pad]]) ]
; CHECK-NEXT: unwind label %[[implicit_right_child:.+]]
implicit.right.child:
%implicit.right.child.pad = cleanuppad within %implicit.right.pad []
invoke void @g() [ "funclet"(token %implicit.right.child.pad) ]
to label %unreachable unwind label %implicit.right.grandchild
; CHECK: [[implicit_right_child]]:
; CHECK-NEXT: %[[implicit_right_child_pad:[^ ]+]] = cleanuppad within %[[implicit_right_pad]]
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[implicit_right_child_pad]]) ]
; CHECK-NEXT: unwind label %[[implicit_right_grandchild:.+]]
implicit.right.grandchild:
%implicit.right.grandchild.cs = catchswitch within %implicit.right.child.pad [label %implicit.right.grandchild.catch] unwind to caller
; CHECK: [[implicit_right_grandchild]]:
; CHECK-NEXT: %[[implicit_right_grandchild_cs:[^ ]+]] = catchswitch within %[[implicit_right_child_pad]] [label %[[implicit_right_grandchild_catch:[^ ]+]]] unwind to caller
implicit.right.grandchild.catch:
%implicit.right.grandhcild.pad = catchpad within %implicit.right.grandchild.cs []
call void @g() [ "funclet"(token %implicit.right.grandhcild.pad) ]
br label %unreachable
; CHECK: [[implicit_right_grandchild_catch]]:
; CHECK-NEXT: %[[implicit_right_grandhcild_pad:[^ ]+]] = catchpad within %[[implicit_right_grandchild_cs]]
; CHECK-NEXT: call void @g() [ "funclet"(token %[[implicit_right_grandhcild_pad]]) ]
internal:
%internal.pad = cleanuppad within none []
call void @g() [ "funclet"(token %internal.pad) ]
cleanupret from %internal.pad unwind to caller
; CHECK: [[internal]]:
; internal is a cleanup with a "return to caller" cleanuppad; that needs to get redirected
; to %cleanup in the caller, and the call needs to get similarly rewritten to an invoke.
; CHECK-NEXT: %[[internal_pad:[^ ]+]] = cleanuppad within none
; CHECK-NEXT: invoke void @g() [ "funclet"(token %internal.pad.i) ]
; CHECK-NEXT: to label %[[next:[^ ]+]] unwind label %cleanup{{$}}
; CHECK: [[next]]:
; CHECK-NEXT: cleanupret from %[[internal_pad]] unwind label %cleanup{{$}}
unreachable:
unreachable
exit:
ret void
}
declare void @ProcessCLRException()
; Make sure the logic doesn't get tripped up when the inlined invoke is
; itself within a funclet in the caller.
; CHECK-LABEL: define void @test6(
define void @test6() personality void ()* @ProcessCLRException {
entry:
invoke void @g()
to label %exit unwind label %callsite_parent
callsite_parent:
%callsite_parent.pad = cleanuppad within none []
; CHECK: %callsite_parent.pad = cleanuppad within none
invoke void @test6_inlinee() [ "funclet"(token %callsite_parent.pad) ]
to label %ret unwind label %cleanup
ret:
cleanupret from %callsite_parent.pad unwind label %cleanup
cleanup:
%pad = cleanuppad within none []
call void @g() [ "funclet"(token %pad) ]
cleanupret from %pad unwind to caller
exit:
ret void
}
define void @test6_inlinee() alwaysinline personality void ()* @ProcessCLRException {
entry:
invoke void @g()
to label %exit unwind label %inlinee_cleanup
; CHECK-NEXT: invoke void @g() [ "funclet"(token %callsite_parent.pad) ]
; CHECK-NEXT: unwind label %[[inlinee_cleanup:.+]]
inlinee_cleanup:
%inlinee.pad = cleanuppad within none []
call void @g() [ "funclet"(token %inlinee.pad) ]
unreachable
; CHECK: [[inlinee_cleanup]]:
; CHECK-NEXT: %[[inlinee_pad:[^ ]+]] = cleanuppad within %callsite_parent.pad
; CHECK-NEXT: invoke void @g() [ "funclet"(token %[[inlinee_pad]]) ]
; CHECK-NEXT: unwind label %cleanup{{$}}
exit:
ret void
}

View File

@ -0,0 +1,53 @@
; RUN: opt < %s -loop-unroll -instcombine -S | FileCheck %s
; This test is a worst-case scenario for bitreversal/byteswap detection.
; After loop unrolling (the unrolled loop is unreadably large so it has been kept
; rolled here), we have a binary tree of OR operands (as bitreversal detection
; looks straight through shifts):
;
; OR
; | \
; | LSHR
; | /
; OR
; | \
; | LSHR
; | /
; OR
;
; This results in exponential runtime. The loop here is 32 iterations which will
; totally hang if we don't deal with this case cleverly.
@b = common global i32 0, align 4
; CHECK: define i32 @fn1
define i32 @fn1() #0 {
entry:
%b.promoted = load i32, i32* @b, align 4, !tbaa !2
br label %for.body
for.body: ; preds = %for.body, %entry
%or4 = phi i32 [ %b.promoted, %entry ], [ %or, %for.body ]
%i.03 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%shr = lshr i32 %or4, 1
%or = or i32 %shr, %or4
%inc = add nuw nsw i32 %i.03, 1
%exitcond = icmp eq i32 %inc, 32
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
store i32 %or, i32* @b, align 4, !tbaa !2
ret i32 undef
}
attributes #0 = { norecurse nounwind ssp uwtable "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="core2" "target-features"="+cx16,+fxsr,+mmx,+sse,+sse2,+sse3,+ssse3" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.module.flags = !{!0}
!llvm.ident = !{!1}
!0 = !{i32 1, !"PIC Level", i32 2}
!1 = !{!"clang version 3.8.0 (http://llvm.org/git/clang.git eb70f4e9cc9a4dc3dd57b032fb858d56b4b64a0e)"}
!2 = !{!3, !3, i64 0}
!3 = !{!"int", !4, i64 0}
!4 = !{!"omnipotent char", !5, i64 0}
!5 = !{!"Simple C/C++ TBAA"}

View File

@ -1,114 +0,0 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
define zeroext i8 @f_u8(i8 zeroext %a) {
; CHECK-LABEL: @f_u8
; CHECK-NEXT: %[[A:.*]] = call i8 @llvm.bitreverse.i8(i8 %a)
; CHECK-NEXT: ret i8 %[[A]]
%1 = shl i8 %a, 7
%2 = shl i8 %a, 5
%3 = and i8 %2, 64
%4 = shl i8 %a, 3
%5 = and i8 %4, 32
%6 = shl i8 %a, 1
%7 = and i8 %6, 16
%8 = lshr i8 %a, 1
%9 = and i8 %8, 8
%10 = lshr i8 %a, 3
%11 = and i8 %10, 4
%12 = lshr i8 %a, 5
%13 = and i8 %12, 2
%14 = lshr i8 %a, 7
%15 = or i8 %14, %1
%16 = or i8 %15, %3
%17 = or i8 %16, %5
%18 = or i8 %17, %7
%19 = or i8 %18, %9
%20 = or i8 %19, %11
%21 = or i8 %20, %13
ret i8 %21
}
; The ANDs with 32 and 64 have been swapped here, so the sequence does not
; completely match a bitreverse.
define zeroext i8 @f_u8_fail(i8 zeroext %a) {
; CHECK-LABEL: @f_u8_fail
; CHECK-NOT: call
; CHECK: ret i8
%1 = shl i8 %a, 7
%2 = shl i8 %a, 5
%3 = and i8 %2, 32
%4 = shl i8 %a, 3
%5 = and i8 %4, 64
%6 = shl i8 %a, 1
%7 = and i8 %6, 16
%8 = lshr i8 %a, 1
%9 = and i8 %8, 8
%10 = lshr i8 %a, 3
%11 = and i8 %10, 4
%12 = lshr i8 %a, 5
%13 = and i8 %12, 2
%14 = lshr i8 %a, 7
%15 = or i8 %14, %1
%16 = or i8 %15, %3
%17 = or i8 %16, %5
%18 = or i8 %17, %7
%19 = or i8 %18, %9
%20 = or i8 %19, %11
%21 = or i8 %20, %13
ret i8 %21
}
define zeroext i16 @f_u16(i16 zeroext %a) {
; CHECK-LABEL: @f_u16
; CHECK-NEXT: %[[A:.*]] = call i16 @llvm.bitreverse.i16(i16 %a)
; CHECK-NEXT: ret i16 %[[A]]
%1 = shl i16 %a, 15
%2 = shl i16 %a, 13
%3 = and i16 %2, 16384
%4 = shl i16 %a, 11
%5 = and i16 %4, 8192
%6 = shl i16 %a, 9
%7 = and i16 %6, 4096
%8 = shl i16 %a, 7
%9 = and i16 %8, 2048
%10 = shl i16 %a, 5
%11 = and i16 %10, 1024
%12 = shl i16 %a, 3
%13 = and i16 %12, 512
%14 = shl i16 %a, 1
%15 = and i16 %14, 256
%16 = lshr i16 %a, 1
%17 = and i16 %16, 128
%18 = lshr i16 %a, 3
%19 = and i16 %18, 64
%20 = lshr i16 %a, 5
%21 = and i16 %20, 32
%22 = lshr i16 %a, 7
%23 = and i16 %22, 16
%24 = lshr i16 %a, 9
%25 = and i16 %24, 8
%26 = lshr i16 %a, 11
%27 = and i16 %26, 4
%28 = lshr i16 %a, 13
%29 = and i16 %28, 2
%30 = lshr i16 %a, 15
%31 = or i16 %30, %1
%32 = or i16 %31, %3
%33 = or i16 %32, %5
%34 = or i16 %33, %7
%35 = or i16 %34, %9
%36 = or i16 %35, %11
%37 = or i16 %36, %13
%38 = or i16 %37, %15
%39 = or i16 %38, %17
%40 = or i16 %39, %19
%41 = or i16 %40, %21
%42 = or i16 %41, %23
%43 = or i16 %42, %25
%44 = or i16 %43, %27
%45 = or i16 %44, %29
ret i16 %45
}

View File

@ -1,12 +1,11 @@
; Test that the cos library call simplifier works correctly.
;
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
declare float @cos(double)
declare signext i8 @sqrt(...)
; Check that cos functions with the wrong prototype aren't simplified.
; Check that functions with the wrong prototype aren't simplified.
define float @test_no_simplify1(double %d) {
; CHECK-LABEL: @test_no_simplify1(
@ -15,3 +14,14 @@ define float @test_no_simplify1(double %d) {
; CHECK: call float @cos(double %neg)
ret float %cos
}
define i8 @bogus_sqrt() {
%fake_sqrt = call signext i8 (...) @sqrt()
ret i8 %fake_sqrt
; CHECK-LABEL: bogus_sqrt(
; CHECK-NEXT: %fake_sqrt = call signext i8 (...) @sqrt()
; CHECK-NEXT: ret i8 %fake_sqrt
}

View File

@ -364,6 +364,26 @@ define float @max1(float %a, float %b) {
; CHECK-NEXT: ret
}
; A function can have a name that matches a common libcall,
; but with the wrong type(s). Let it be.
define float @fake_fmin(float %a, float %b) {
%c = fpext float %a to fp128
%d = fpext float %b to fp128
%e = call fp128 @fmin(fp128 %c, fp128 %d)
%f = fptrunc fp128 %e to float
ret float %f
; CHECK-LABEL: fake_fmin(
; CHECK-NEXT: %c = fpext float %a to fp128
; CHECK-NEXT: %d = fpext float %b to fp128
; CHECK-NEXT: %e = call fp128 @fmin(fp128 %c, fp128 %d)
; CHECK-NEXT: %f = fptrunc fp128 %e to float
; CHECK-NEXT: ret float %f
}
declare fp128 @fmin(fp128, fp128) ; This is not the 'fmin' you're looking for.
declare double @fmax(double, double)
declare double @tanh(double) #1

View File

@ -16,6 +16,7 @@
#include "OrcLazyJIT.h"
#include "RemoteJITUtils.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/LinkAllCodegenComponents.h"
@ -741,11 +742,11 @@ std::unique_ptr<FDRPCChannel> launchRemote() {
ChildPath.reset(new char[ChildExecPath.size() + 1]);
std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]);
ChildPath[ChildExecPath.size()] = '\0';
std::string ChildInStr = std::to_string(PipeFD[0][0]);
std::string ChildInStr = utostr(PipeFD[0][0]);
ChildIn.reset(new char[ChildInStr.size() + 1]);
std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]);
ChildIn[ChildInStr.size()] = '\0';
std::string ChildOutStr = std::to_string(PipeFD[1][1]);
std::string ChildOutStr = utostr(PipeFD[1][1]);
ChildOut.reset(new char[ChildOutStr.size() + 1]);
std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]);
ChildOut[ChildOutStr.size()] = '\0';

View File

@ -65,11 +65,6 @@ function usage() {
echo " -no-openmp Disable check-out & build libomp"
}
if [ `uname -s` = "Darwin" ]; then
# compiler-rt doesn't yet build with CMake on Darwin.
use_autoconf="yes"
fi
while [ $# -gt 0 ]; do
case $1 in
-release | --release )
@ -288,10 +283,20 @@ function export_sources() {
if [ ! -h clang ]; then
ln -s ../../cfe.src clang
fi
cd $BuildDir/llvm.src/tools/clang/tools
if [ ! -h extra ]; then
ln -s ../../../../clang-tools-extra.src extra
# The autoconf and CMake builds want different symlinks here:
if [ "$use_autoconf" = "yes" ]; then
cd $BuildDir/llvm.src/tools/clang/tools
if [ ! -h extra ]; then
ln -s ../../../../clang-tools-extra.src extra
fi
else
cd $BuildDir/cfe.src/tools
if [ ! -h extra ]; then
ln -s ../../clang-tools-extra.src extra
fi
fi
cd $BuildDir/llvm.src/projects
if [ -d $BuildDir/test-suite.src ] && [ ! -h test-suite ]; then
ln -s ../../test-suite.src test-suite