From f48faea4fae4d253168056374fea4b83558bf804 Mon Sep 17 00:00:00 2001 From: Alexander Kabaev Date: Sat, 19 May 2007 02:18:38 +0000 Subject: [PATCH] Merge local changes for -mprofiler-epilogue support. --- contrib/gcc/function.c | 8196 ++++++++++++++-------------------------- 1 file changed, 2818 insertions(+), 5378 deletions(-) diff --git a/contrib/gcc/function.c b/contrib/gcc/function.c index 8679729412ab..d0c383e20432 100644 --- a/contrib/gcc/function.c +++ b/contrib/gcc/function.c @@ -1,6 +1,7 @@ /* Expands front end tree to back end RTL for GCC. Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, - 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. + 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 + Free Software Foundation, Inc. This file is part of GCC. @@ -16,8 +17,8 @@ for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ +Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA +02110-1301, USA. */ /* $FreeBSD$ */ @@ -33,12 +34,7 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA Call `assign_stack_local' to allocate a stack slot for a local variable. This is usually done during the RTL generation for the function body, but it can also be done in the reload pass when a pseudo-register does - not get a hard register. - - Call `put_var_into_stack' when you learn, belatedly, that a variable - previously given a pseudo-register must in fact go in the stack. - This function changes the DECL_RTL to be a stack slot instead of a reg - then scans all the RTL instructions so far generated to correct them. */ + not get a hard register. */ #include "config.h" #include "system.h" @@ -65,10 +61,11 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA #include "integrate.h" #include "langhooks.h" #include "target.h" - -#ifndef TRAMPOLINE_ALIGNMENT -#define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY -#endif +#include "cfglayout.h" +#include "tree-gimple.h" +#include "tree-pass.h" +#include "predict.h" +#include "vecprim.h" #ifndef LOCAL_ALIGNMENT #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT @@ -97,27 +94,12 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA alignment. */ #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) -/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp - during rtl generation. If they are different register numbers, this is - always true. It may also be true if - FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl - generation. See fix_lexical_addr for details. */ - -#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM -#define NEED_SEPARATE_AP -#endif - /* Nonzero if function being compiled doesn't contain any calls (ignoring the prologue and epilogue). This is set prior to local register allocation and is valid for the remaining compiler passes. */ int current_function_is_leaf; -/* Nonzero if function being compiled doesn't contain any instructions - that can throw an exception. This is set prior to final. */ - -int current_function_nothrow; - /* Nonzero if function being compiled doesn't modify the stack pointer (ignoring the prologue and epilogue). This is only valid after life_analysis has run. */ @@ -134,9 +116,6 @@ int current_function_uses_only_leaf_regs; post-instantiation libcalls. */ int virtuals_instantiated; -/* Nonzero if at least one trampoline has been created. */ -int trampolines_created; - /* Assign unique numbers to labels generated for profiling, debugging, etc. */ static GTY(()) int funcdef_no; @@ -144,19 +123,16 @@ static GTY(()) int funcdef_no; target specific, per-function data structures. */ struct machine_function * (*init_machine_status) (void); -/* The FUNCTION_DECL for an inline function currently being expanded. */ -tree inline_function_decl; - /* The currently compiled function. */ struct function *cfun = 0; /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */ -static GTY(()) varray_type prologue; -static GTY(()) varray_type epilogue; +static VEC(int,heap) *prologue; +static VEC(int,heap) *epilogue; /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue in this function. */ -static GTY(()) varray_type sibcall_epilogue; +static VEC(int,heap) *sibcall_epilogue; /* In order to evaluate some expressions, such as function calls returning structures in memory, we need to temporarily allocate stack locations. @@ -180,6 +156,9 @@ struct temp_slot GTY(()) { /* Points to next temporary slot. */ struct temp_slot *next; + /* Points to previous temporary slot. */ + struct temp_slot *prev; + /* The rtx to used to reference the slot. */ rtx slot; /* The rtx used to represent the address if not the address of the @@ -194,8 +173,6 @@ struct temp_slot GTY(()) It can be reused if objects of the type of the new slot will always conflict with objects of the type of the old slot. */ tree type; - /* The value of `sequence_rtl_expr' when this temporary is allocated. */ - tree rtl_expr; /* Nonzero if this temporary is currently in use. */ char in_use; /* Nonzero if this temporary has its address taken. */ @@ -212,96 +189,35 @@ struct temp_slot GTY(()) HOST_WIDE_INT full_size; }; -/* This structure is used to record MEMs or pseudos used to replace VAR, any - SUBREGs of VAR, and any MEMs containing VAR as an address. We need to - maintain this list in case two operands of an insn were required to match; - in that case we must ensure we use the same replacement. */ - -struct fixup_replacement GTY(()) -{ - rtx old; - rtx new; - struct fixup_replacement *next; -}; - -struct insns_for_mem_entry -{ - /* A MEM. */ - rtx key; - /* These are the INSNs which reference the MEM. */ - rtx insns; -}; - /* Forward declarations. */ static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int, struct function *); static struct temp_slot *find_temp_slot_from_address (rtx); -static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode, - unsigned int, bool, bool, bool, htab_t); -static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode, - htab_t); -static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t); -static struct fixup_replacement - *find_fixup_replacement (struct fixup_replacement **, rtx); -static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx); -static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx); -static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx); -static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx, - struct fixup_replacement **, rtx); -static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int); -static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int); -static rtx fixup_stack_1 (rtx, rtx); -static void optimize_bit_field (rtx, rtx, rtx *); -static void instantiate_decls (tree, int); -static void instantiate_decls_1 (tree, int); -static void instantiate_decl (rtx, HOST_WIDE_INT, int); -static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *); -static int instantiate_virtual_regs_1 (rtx *, rtx, int); -static void delete_handlers (void); static void pad_to_arg_alignment (struct args_size *, int, struct args_size *); static void pad_below (struct args_size *, enum machine_mode, tree); -static rtx round_trampoline_addr (rtx); -static rtx adjust_trampoline_addr (rtx); -static tree *identify_blocks_1 (rtx, tree *, tree *, tree *); -static void reorder_blocks_0 (tree); -static void reorder_blocks_1 (rtx, tree, varray_type *); -static void reorder_fix_fragments (tree); -static tree blocks_nreverse (tree); +static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **); static int all_blocks (tree, tree *); static tree *get_block_vector (tree, int *); extern tree debug_find_var_in_block_tree (tree, tree); -/* We always define `record_insns' even if its not used so that we +/* We always define `record_insns' even if it's not used so that we can always export `prologue_epilogue_contains'. */ -static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED; -static int contains (rtx, varray_type); +static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED; +static int contains (rtx, VEC(int,heap) **); #ifdef HAVE_return static void emit_return_into_block (basic_block, rtx); #endif -static void put_addressof_into_stack (rtx, htab_t); -static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t); -static void purge_single_hard_subreg_set (rtx); #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX) static rtx keep_stack_depressed (rtx); #endif -static int is_addressof (rtx *, void *); -static hashval_t insns_for_mem_hash (const void *); -static int insns_for_mem_comp (const void *, const void *); -static int insns_for_mem_walk (rtx *, void *); -static void compute_insns_for_mem (rtx, rtx, htab_t); static void prepare_function_start (tree); static void do_clobber_return_reg (rtx, void *); static void do_use_return_reg (rtx, void *); -static void instantiate_virtual_regs_lossage (rtx); -static tree split_complex_args (tree); static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED; /* Pointer to chain of `struct function' for containing functions. */ struct function *outer_function_chain; -/* List of insns that were postponed by purge_addressof_1. */ -static rtx postponed_insns; - /* Given a function decl for a containing function, return the `struct function' for it. */ @@ -314,7 +230,7 @@ find_function_data (tree decl) if (p->decl == decl) return p; - abort (); + gcc_unreachable (); } /* Save the current context for compilation of a nested function. @@ -324,30 +240,18 @@ find_function_data (tree decl) variables. */ void -push_function_context_to (tree context) +push_function_context_to (tree context ATTRIBUTE_UNUSED) { struct function *p; - if (context) - { - if (context == current_function_decl) - cfun->contains_functions = 1; - else - { - struct function *containing = find_function_data (context); - containing->contains_functions = 1; - } - } - if (cfun == 0) init_dummy_function_start (); p = cfun; p->outer = outer_function_chain; outer_function_chain = p; - p->fixup_var_refs_queue = 0; - (*lang_hooks.function.enter_nested) (p); + lang_hooks.function.enter_nested (p); cfun = 0; } @@ -365,46 +269,15 @@ void pop_function_context_from (tree context ATTRIBUTE_UNUSED) { struct function *p = outer_function_chain; - struct var_refs_queue *queue; cfun = p; outer_function_chain = p->outer; current_function_decl = p->decl; - reg_renumber = 0; - restore_emit_status (p); - - (*lang_hooks.function.leave_nested) (p); - - /* Finish doing put_var_into_stack for any of our variables which became - addressable during the nested function. If only one entry has to be - fixed up, just do that one. Otherwise, first make a list of MEMs that - are not to be unshared. */ - if (p->fixup_var_refs_queue == 0) - ; - else if (p->fixup_var_refs_queue->next == 0) - fixup_var_refs (p->fixup_var_refs_queue->modified, - p->fixup_var_refs_queue->promoted_mode, - p->fixup_var_refs_queue->unsignedp, - p->fixup_var_refs_queue->modified, 0); - else - { - rtx list = 0; - - for (queue = p->fixup_var_refs_queue; queue; queue = queue->next) - list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list); - - for (queue = p->fixup_var_refs_queue; queue; queue = queue->next) - fixup_var_refs (queue->modified, queue->promoted_mode, - queue->unsignedp, list, 0); - - } - - p->fixup_var_refs_queue = 0; + lang_hooks.function.leave_nested (p); /* Reset variables that have known state during rtx generation. */ - rtx_equal_function_value_matters = 1; virtuals_instantiated = 0; generating_concat_p = 1; } @@ -427,8 +300,7 @@ free_after_parsing (struct function *f) /* f->varasm is used by code generation. */ /* f->eh->eh_return_stub_label is used by code generation. */ - (*lang_hooks.function.final) (f); - f->stmt = NULL; + lang_hooks.function.final (f); } /* Clear out all parts of the state in F that can safely be discarded @@ -438,41 +310,29 @@ free_after_parsing (struct function *f) void free_after_compilation (struct function *f) { + VEC_free (int, heap, prologue); + VEC_free (int, heap, epilogue); + VEC_free (int, heap, sibcall_epilogue); + f->eh = NULL; f->expr = NULL; f->emit = NULL; f->varasm = NULL; f->machine = NULL; + f->cfg = NULL; - f->x_temp_slots = NULL; + f->x_avail_temp_slots = NULL; + f->x_used_temp_slots = NULL; f->arg_offset_rtx = NULL; f->return_rtx = NULL; f->internal_arg_pointer = NULL; - f->x_nonlocal_labels = NULL; - f->x_nonlocal_goto_handler_slots = NULL; f->x_nonlocal_goto_handler_labels = NULL; - f->x_nonlocal_goto_stack_level = NULL; - f->x_cleanup_label = NULL; f->x_return_label = NULL; f->x_naked_return_label = NULL; - f->computed_goto_common_label = NULL; - f->computed_goto_common_reg = NULL; - f->x_save_expr_regs = NULL; f->x_stack_slot_list = NULL; - f->x_rtl_expr_chain = NULL; - f->x_tail_recursion_label = NULL; - f->x_tail_recursion_reentry = NULL; + f->x_stack_check_probe_note = NULL; f->x_arg_pointer_save_area = NULL; - f->x_clobber_return_insn = NULL; - f->x_context_display = NULL; - f->x_trampoline_list = NULL; f->x_parm_birth_insn = NULL; - f->x_last_parm_insn = NULL; - f->x_parm_reg_stack_loc = NULL; - f->fixup_var_refs_queue = NULL; - f->original_arg_vector = NULL; - f->original_decl_initial = NULL; - f->inl_last_parm_insn = NULL; f->epilogue_delay_list = NULL; } @@ -483,25 +343,45 @@ free_after_compilation (struct function *f) This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; the caller may have to do that. */ -HOST_WIDE_INT +static HOST_WIDE_INT get_func_frame_size (struct function *f) { -#ifdef FRAME_GROWS_DOWNWARD - return -f->x_frame_offset; -#else - return f->x_frame_offset; -#endif + if (FRAME_GROWS_DOWNWARD) + return -f->x_frame_offset; + else + return f->x_frame_offset; } /* Return size needed for stack frame based on slots so far allocated. This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; the caller may have to do that. */ + HOST_WIDE_INT get_frame_size (void) { return get_func_frame_size (cfun); } +/* Issue an error message and return TRUE if frame OFFSET overflows in + the signed target pointer arithmetics for function FUNC. Otherwise + return FALSE. */ + +bool +frame_offset_overflow (HOST_WIDE_INT offset, tree func) +{ + unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset; + + if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1)) + /* Leave room for the fixed part of the frame. */ + - 64 * UNITS_PER_WORD) + { + error ("%Jtotal size of local objects too large", func); + return TRUE; + } + + return FALSE; +} + /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it with machine mode MODE. @@ -521,7 +401,7 @@ assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align, { rtx x, addr; int bigend_correction = 0; - int alignment; + unsigned int alignment; int frame_off, frame_alignment, frame_phase; if (align == 0) @@ -535,7 +415,7 @@ assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align, /* Allow the target to (possibly) increase the alignment of this stack slot. */ - type = (*lang_hooks.types.type_for_mode) (mode, 0); + type = lang_hooks.types.type_for_mode (mode, 0); if (type) alignment = LOCAL_ALIGNMENT (type, alignment); @@ -551,9 +431,8 @@ assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align, else alignment = align / BITS_PER_UNIT; -#ifdef FRAME_GROWS_DOWNWARD - function->x_frame_offset -= size; -#endif + if (FRAME_GROWS_DOWNWARD) + function->x_frame_offset -= size; /* Ignore alignment we can't do with expected alignment of the boundary. */ if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY) @@ -579,20 +458,21 @@ assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align, division with a negative dividend isn't as well defined as we might like. So we instead assume that ALIGNMENT is a power of two and use logical operations which are unambiguous. */ -#ifdef FRAME_GROWS_DOWNWARD - function->x_frame_offset - = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment) - + frame_phase); -#else - function->x_frame_offset - = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment) - + frame_phase); -#endif + if (FRAME_GROWS_DOWNWARD) + function->x_frame_offset + = (FLOOR_ROUND (function->x_frame_offset - frame_phase, + (unsigned HOST_WIDE_INT) alignment) + + frame_phase); + else + function->x_frame_offset + = (CEIL_ROUND (function->x_frame_offset - frame_phase, + (unsigned HOST_WIDE_INT) alignment) + + frame_phase); } /* On a big-endian machine, if we are allocating more space than we will use, use the least significant bytes of those that are allocated. */ - if (BYTES_BIG_ENDIAN && mode != BLKmode) + if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size) bigend_correction = size - GET_MODE_SIZE (mode); /* If we have already instantiated virtual registers, return the actual @@ -608,15 +488,18 @@ assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align, (function->x_frame_offset + bigend_correction, Pmode)); -#ifndef FRAME_GROWS_DOWNWARD - function->x_frame_offset += size; -#endif + if (!FRAME_GROWS_DOWNWARD) + function->x_frame_offset += size; x = gen_rtx_MEM (mode, addr); + MEM_NOTRAP_P (x) = 1; function->x_stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list); + if (frame_offset_overflow (function->x_frame_offset, function->decl)) + function->x_frame_offset = 0; + return x; } @@ -628,6 +511,85 @@ assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align) { return assign_stack_local_1 (mode, size, align, cfun); } + + +/* Removes temporary slot TEMP from LIST. */ + +static void +cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list) +{ + if (temp->next) + temp->next->prev = temp->prev; + if (temp->prev) + temp->prev->next = temp->next; + else + *list = temp->next; + + temp->prev = temp->next = NULL; +} + +/* Inserts temporary slot TEMP to LIST. */ + +static void +insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list) +{ + temp->next = *list; + if (*list) + (*list)->prev = temp; + temp->prev = NULL; + *list = temp; +} + +/* Returns the list of used temp slots at LEVEL. */ + +static struct temp_slot ** +temp_slots_at_level (int level) +{ + if (level >= (int) VEC_length (temp_slot_p, used_temp_slots)) + { + size_t old_length = VEC_length (temp_slot_p, used_temp_slots); + temp_slot_p *p; + + VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1); + p = VEC_address (temp_slot_p, used_temp_slots); + memset (&p[old_length], 0, + sizeof (temp_slot_p) * (level + 1 - old_length)); + } + + return &(VEC_address (temp_slot_p, used_temp_slots)[level]); +} + +/* Returns the maximal temporary slot level. */ + +static int +max_slot_level (void) +{ + if (!used_temp_slots) + return -1; + + return VEC_length (temp_slot_p, used_temp_slots) - 1; +} + +/* Moves temporary slot TEMP to LEVEL. */ + +static void +move_slot_to_level (struct temp_slot *temp, int level) +{ + cut_slot_from_list (temp, temp_slots_at_level (temp->level)); + insert_slot_to_list (temp, temp_slots_at_level (level)); + temp->level = level; +} + +/* Make temporary slot TEMP available. */ + +static void +make_slot_available (struct temp_slot *temp) +{ + cut_slot_from_list (temp, temp_slots_at_level (temp->level)); + insert_slot_to_list (temp, &avail_temp_slots); + temp->in_use = 0; + temp->level = -1; +} /* Allocate a temporary stack slot and record it for possible later reuse. @@ -639,25 +601,26 @@ assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align) KEEP is 1 if this slot is to be retained after a call to free_temp_slots. Automatic variables for a block are allocated - with this flag. KEEP is 2 if we allocate a longer term temporary, - whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3 - if we are to allocate something at an inner level to be treated as - a variable in the block (e.g., a SAVE_EXPR). + with this flag. KEEP values of 2 or 3 were needed respectively + for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs + or for SAVE_EXPRs, but they are now unused. TYPE is the type that will be used for the stack slot. */ rtx -assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep, - tree type) +assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, + int keep, tree type) { unsigned int align; - struct temp_slot *p, *best_p = 0; + struct temp_slot *p, *best_p = 0, *selected = NULL, **pp; rtx slot; /* If SIZE is -1 it means that somebody tried to allocate a temporary of a variable size. */ - if (size == -1) - abort (); + gcc_assert (size != -1); + + /* These are now unused. */ + gcc_assert (keep <= 1); if (mode == BLKmode) align = BIGGEST_ALIGNMENT; @@ -665,32 +628,46 @@ assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep align = GET_MODE_ALIGNMENT (mode); if (! type) - type = (*lang_hooks.types.type_for_mode) (mode, 0); + type = lang_hooks.types.type_for_mode (mode, 0); if (type) align = LOCAL_ALIGNMENT (type, align); /* Try to find an available, already-allocated temporary of the proper mode which meets the size and alignment requirements. Choose the - smallest one with the closest alignment. */ - for (p = temp_slots; p; p = p->next) - if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode - && ! p->in_use - && objects_must_conflict_p (p->type, type) - && (best_p == 0 || best_p->size > p->size - || (best_p->size == p->size && best_p->align > p->align))) - { - if (p->align == align && p->size == size) - { - best_p = 0; - break; - } - best_p = p; - } + smallest one with the closest alignment. + + If assign_stack_temp is called outside of the tree->rtl expansion, + we cannot reuse the stack slots (that may still refer to + VIRTUAL_STACK_VARS_REGNUM). */ + if (!virtuals_instantiated) + { + for (p = avail_temp_slots; p; p = p->next) + { + if (p->align >= align && p->size >= size + && GET_MODE (p->slot) == mode + && objects_must_conflict_p (p->type, type) + && (best_p == 0 || best_p->size > p->size + || (best_p->size == p->size && best_p->align > p->align))) + { + if (p->align == align && p->size == size) + { + selected = p; + cut_slot_from_list (selected, &avail_temp_slots); + best_p = 0; + break; + } + best_p = p; + } + } + } /* Make our best, if any, the one to use. */ if (best_p) { + selected = best_p; + cut_slot_from_list (selected, &avail_temp_slots); + /* If there are enough aligned bytes left over, make them into a new temp_slot so that the extra bytes don't get wasted. Do this only for BLKmode slots, so that we can be sure of the alignment. */ @@ -706,15 +683,11 @@ assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep p->size = best_p->size - rounded_size; p->base_offset = best_p->base_offset + rounded_size; p->full_size = best_p->full_size - rounded_size; - p->slot = gen_rtx_MEM (BLKmode, - plus_constant (XEXP (best_p->slot, 0), - rounded_size)); + p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size); p->align = best_p->align; p->address = 0; - p->rtl_expr = 0; p->type = best_p->type; - p->next = temp_slots; - temp_slots = p; + insert_slot_to_list (p, &avail_temp_slots); stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot, stack_slot_list); @@ -723,12 +696,10 @@ assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep best_p->full_size = rounded_size; } } - - p = best_p; } /* If we still didn't find one, make a new temporary. */ - if (p == 0) + if (selected == 0) { HOST_WIDE_INT frame_offset_old = frame_offset; @@ -741,8 +712,7 @@ assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep So for requests which depended on the rounding of SIZE, we go ahead and round it now. We also make sure ALIGNMENT is at least BIGGEST_ALIGNMENT. */ - if (mode == BLKmode && align < BIGGEST_ALIGNMENT) - abort (); + gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT); p->slot = assign_stack_local (mode, (mode == BLKmode ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT) @@ -758,46 +728,36 @@ assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep can be either above or below this stack slot depending on which way the frame grows. We include the extra space if and only if it is above this slot. */ -#ifdef FRAME_GROWS_DOWNWARD - p->size = frame_offset_old - frame_offset; -#else - p->size = size; -#endif + if (FRAME_GROWS_DOWNWARD) + p->size = frame_offset_old - frame_offset; + else + p->size = size; /* Now define the fields used by combine_temp_slots. */ -#ifdef FRAME_GROWS_DOWNWARD - p->base_offset = frame_offset; - p->full_size = frame_offset_old - frame_offset; -#else - p->base_offset = frame_offset_old; - p->full_size = frame_offset - frame_offset_old; -#endif + if (FRAME_GROWS_DOWNWARD) + { + p->base_offset = frame_offset; + p->full_size = frame_offset_old - frame_offset; + } + else + { + p->base_offset = frame_offset_old; + p->full_size = frame_offset - frame_offset_old; + } p->address = 0; - p->next = temp_slots; - temp_slots = p; + + selected = p; } + p = selected; p->in_use = 1; p->addr_taken = 0; - p->rtl_expr = seq_rtl_expr; p->type = type; + p->level = temp_slot_level; + p->keep = keep; - if (keep == 2) - { - p->level = target_temp_slot_level; - p->keep = 1; - } - else if (keep == 3) - { - p->level = var_temp_slot_level; - p->keep = 0; - } - else - { - p->level = temp_slot_level; - p->keep = keep; - } - + pp = temp_slots_at_level (p->level); + insert_slot_to_list (p, pp); /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */ slot = gen_rtx_MEM (mode, XEXP (p->slot, 0)); @@ -812,11 +772,10 @@ assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep /* If a type is specified, set the relevant flags. */ if (type != 0) { - RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly - && TYPE_READONLY (type)); MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type); MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type)); } + MEM_NOTRAP_P (slot) = 1; return slot; } @@ -846,7 +805,7 @@ assign_temp (tree type_or_decl, int keep, int memory_required, { tree type, decl; enum machine_mode mode; -#ifndef PROMOTE_FOR_CALL_ONLY +#ifdef PROMOTE_MODE int unsignedp; #endif @@ -856,8 +815,8 @@ assign_temp (tree type_or_decl, int keep, int memory_required, decl = NULL, type = type_or_decl; mode = TYPE_MODE (type); -#ifndef PROMOTE_FOR_CALL_ONLY - unsignedp = TREE_UNSIGNED (type); +#ifdef PROMOTE_MODE + unsignedp = TYPE_UNSIGNED (type); #endif if (mode == BLKmode || memory_required) @@ -871,22 +830,19 @@ assign_temp (tree type_or_decl, int keep, int memory_required, size = 1; /* Unfortunately, we don't yet know how to allocate variable-sized - temporaries. However, sometimes we have a fixed upper limit on - the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that - instead. This is the case for Chill variable-sized strings. */ - if (size == -1 && TREE_CODE (type) == ARRAY_TYPE - && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE - && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1)) - size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1); + temporaries. However, sometimes we can find a fixed upper limit on + the size, so try that instead. */ + else if (size == -1) + size = max_int_size_in_bytes (type); /* The size of the temporary may be too large to fit into an integer. */ /* ??? Not sure this should happen except for user silliness, so limit this to things that aren't compiler-generated temporaries. The - rest of the time we'll abort in assign_stack_temp_for_type. */ + rest of the time we'll die in assign_stack_temp_for_type. */ if (decl && size == -1 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST) { - error ("%Jsize of variable '%D' is too large", decl, decl); + error ("size of variable %q+D is too large", decl); size = 1; } @@ -894,7 +850,7 @@ assign_temp (tree type_or_decl, int keep, int memory_required, return tmp; } -#ifndef PROMOTE_FOR_CALL_ONLY +#ifdef PROMOTE_MODE if (! dont_promote) mode = promote_mode (type, mode, &unsignedp, 0); #endif @@ -908,11 +864,10 @@ assign_temp (tree type_or_decl, int keep, int memory_required, done for BLKmode slots because we can be sure that we won't have alignment problems in this case. */ -void +static void combine_temp_slots (void) { - struct temp_slot *p, *q; - struct temp_slot *prev_p, *prev_q; + struct temp_slot *p, *q, *next, *next_q; int num_slots; /* We can't combine slots, because the information about which slot @@ -923,52 +878,50 @@ combine_temp_slots (void) /* If there are a lot of temp slots, don't do anything unless high levels of optimization. */ if (! flag_expensive_optimizations) - for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++) + for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++) if (num_slots > 100 || (num_slots > 10 && optimize == 0)) return; - for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots) + for (p = avail_temp_slots; p; p = next) { int delete_p = 0; - if (! p->in_use && GET_MODE (p->slot) == BLKmode) - for (q = p->next, prev_q = p; q; q = prev_q->next) - { - int delete_q = 0; - if (! q->in_use && GET_MODE (q->slot) == BLKmode) - { - if (p->base_offset + p->full_size == q->base_offset) - { - /* Q comes after P; combine Q into P. */ - p->size += q->size; - p->full_size += q->full_size; - delete_q = 1; - } - else if (q->base_offset + q->full_size == p->base_offset) - { - /* P comes after Q; combine P into Q. */ - q->size += p->size; - q->full_size += p->full_size; - delete_p = 1; - break; - } - } - /* Either delete Q or advance past it. */ - if (delete_q) - prev_q->next = q->next; - else - prev_q = q; - } + next = p->next; + + if (GET_MODE (p->slot) != BLKmode) + continue; + + for (q = p->next; q; q = next_q) + { + int delete_q = 0; + + next_q = q->next; + + if (GET_MODE (q->slot) != BLKmode) + continue; + + if (p->base_offset + p->full_size == q->base_offset) + { + /* Q comes after P; combine Q into P. */ + p->size += q->size; + p->full_size += q->full_size; + delete_q = 1; + } + else if (q->base_offset + q->full_size == p->base_offset) + { + /* P comes after Q; combine P into Q. */ + q->size += p->size; + q->full_size += p->full_size; + delete_p = 1; + break; + } + if (delete_q) + cut_slot_from_list (q, &avail_temp_slots); + } + /* Either delete P or advance past it. */ if (delete_p) - { - if (prev_p) - prev_p->next = p->next; - else - temp_slots = p->next; - } - else - prev_p = p; + cut_slot_from_list (p, &avail_temp_slots); } } @@ -979,33 +932,32 @@ find_temp_slot_from_address (rtx x) { struct temp_slot *p; rtx next; + int i; - for (p = temp_slots; p; p = p->next) - { - if (! p->in_use) - continue; + for (i = max_slot_level (); i >= 0; i--) + for (p = *temp_slots_at_level (i); p; p = p->next) + { + if (XEXP (p->slot, 0) == x + || p->address == x + || (GET_CODE (x) == PLUS + && XEXP (x, 0) == virtual_stack_vars_rtx + && GET_CODE (XEXP (x, 1)) == CONST_INT + && INTVAL (XEXP (x, 1)) >= p->base_offset + && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)) + return p; - else if (XEXP (p->slot, 0) == x - || p->address == x - || (GET_CODE (x) == PLUS - && XEXP (x, 0) == virtual_stack_vars_rtx - && GET_CODE (XEXP (x, 1)) == CONST_INT - && INTVAL (XEXP (x, 1)) >= p->base_offset - && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)) - return p; - - else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST) - for (next = p->address; next; next = XEXP (next, 1)) - if (XEXP (next, 0) == x) - return p; - } + else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST) + for (next = p->address; next; next = XEXP (next, 1)) + if (XEXP (next, 0) == x) + return p; + } /* If we have a sum involving a register, see if it points to a temp slot. */ - if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG + if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0) return p; - else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG + else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1)) && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0) return p; @@ -1035,7 +987,7 @@ update_temp_slot_address (rtx old, rtx new) if (GET_CODE (old) != PLUS) return; - if (GET_CODE (new) == REG) + if (REG_P (new)) { update_temp_slot_address (XEXP (old, 0), new); update_temp_slot_address (XEXP (old, 1), new); @@ -1081,7 +1033,7 @@ mark_temp_addr_taken (rtx x) /* If X is not in memory or is at a constant address, it cannot be in a temporary slot. */ - if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))) + if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))) return; p = find_temp_slot_from_address (XEXP (x, 0)); @@ -1101,15 +1053,19 @@ mark_temp_addr_taken (rtx x) void preserve_temp_slots (rtx x) { - struct temp_slot *p = 0; + struct temp_slot *p = 0, *next; /* If there is no result, we still might have some objects whose address were taken, so we need to make sure they stay around. */ if (x == 0) { - for (p = temp_slots; p; p = p->next) - if (p->in_use && p->level == temp_slot_level && p->addr_taken) - p->level--; + for (p = *temp_slots_at_level (temp_slot_level); p; p = next) + { + next = p->next; + + if (p->addr_taken) + move_slot_to_level (p, temp_slot_level - 1); + } return; } @@ -1118,17 +1074,21 @@ preserve_temp_slots (rtx x) a temporary slot we know it points to. To be consistent with the code below, we really should preserve all non-kept slots if we can't find a match, but that seems to be much too costly. */ - if (GET_CODE (x) == REG && REG_POINTER (x)) + if (REG_P (x) && REG_POINTER (x)) p = find_temp_slot_from_address (x); /* If X is not in memory or is at a constant address, it cannot be in a temporary slot, but it can contain something whose address was taken. */ - if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))) + if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))) { - for (p = temp_slots; p; p = p->next) - if (p->in_use && p->level == temp_slot_level && p->addr_taken) - p->level--; + for (p = *temp_slots_at_level (temp_slot_level); p; p = next) + { + next = p->next; + + if (p->addr_taken) + move_slot_to_level (p, temp_slot_level - 1); + } return; } @@ -1145,105 +1105,47 @@ preserve_temp_slots (rtx x) if (p->level == temp_slot_level) { - for (q = temp_slots; q; q = q->next) - if (q != p && q->addr_taken && q->level == p->level) - q->level--; + for (q = *temp_slots_at_level (temp_slot_level); q; q = next) + { + next = q->next; - p->level--; + if (p != q && q->addr_taken) + move_slot_to_level (q, temp_slot_level - 1); + } + + move_slot_to_level (p, temp_slot_level - 1); p->addr_taken = 0; } return; } /* Otherwise, preserve all non-kept slots at this level. */ - for (p = temp_slots; p; p = p->next) - if (p->in_use && p->level == temp_slot_level && ! p->keep) - p->level--; -} - -/* X is the result of an RTL_EXPR. If it is a temporary slot associated - with that RTL_EXPR, promote it into a temporary slot at the present - level so it will not be freed when we free slots made in the - RTL_EXPR. */ - -void -preserve_rtl_expr_result (rtx x) -{ - struct temp_slot *p; - - /* If X is not in memory or is at a constant address, it cannot be in - a temporary slot. */ - if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))) - return; - - /* If we can find a match, move it to our level unless it is already at - an upper level. */ - p = find_temp_slot_from_address (XEXP (x, 0)); - if (p != 0) + for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { - p->level = MIN (p->level, temp_slot_level); - p->rtl_expr = 0; - } + next = p->next; - return; + if (!p->keep) + move_slot_to_level (p, temp_slot_level - 1); + } } -/* Free all temporaries used so far. This is normally called at the end - of generating code for a statement. Don't free any temporaries - currently in use for an RTL_EXPR that hasn't yet been emitted. - We could eventually do better than this since it can be reused while - generating the same RTL_EXPR, but this is complex and probably not - worthwhile. */ +/* Free all temporaries used so far. This is normally called at the + end of generating code for a statement. */ void free_temp_slots (void) { - struct temp_slot *p; + struct temp_slot *p, *next; - for (p = temp_slots; p; p = p->next) - if (p->in_use && p->level == temp_slot_level && ! p->keep - && p->rtl_expr == 0) - p->in_use = 0; - - combine_temp_slots (); -} - -/* Free all temporary slots used in T, an RTL_EXPR node. */ - -void -free_temps_for_rtl_expr (tree t) -{ - struct temp_slot *p; - - for (p = temp_slots; p; p = p->next) - if (p->rtl_expr == t) - { - /* If this slot is below the current TEMP_SLOT_LEVEL, then it - needs to be preserved. This can happen if a temporary in - the RTL_EXPR was addressed; preserve_temp_slots will move - the temporary into a higher level. */ - if (temp_slot_level <= p->level) - p->in_use = 0; - else - p->rtl_expr = NULL_TREE; - } - - combine_temp_slots (); -} - -/* Mark all temporaries ever allocated in this function as not suitable - for reuse until the current level is exited. */ - -void -mark_all_temps_used (void) -{ - struct temp_slot *p; - - for (p = temp_slots; p; p = p->next) + for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { - p->in_use = p->keep = 1; - p->level = MIN (p->level, temp_slot_level); + next = p->next; + + if (!p->keep) + make_slot_available (p); } + + combine_temp_slots (); } /* Push deeper into the nesting level for stack temporaries. */ @@ -1260,11 +1162,13 @@ push_temp_slots (void) void pop_temp_slots (void) { - struct temp_slot *p; + struct temp_slot *p, *next; - for (p = temp_slots; p; p = p->next) - if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0) - p->in_use = 0; + for (p = *temp_slots_at_level (temp_slot_level); p; p = next) + { + next = p->next; + make_slot_available (p); + } combine_temp_slots (); @@ -1277,1506 +1181,9 @@ void init_temp_slots (void) { /* We have not allocated any temporaries yet. */ - temp_slots = 0; + avail_temp_slots = 0; + used_temp_slots = 0; temp_slot_level = 0; - var_temp_slot_level = 0; - target_temp_slot_level = 0; -} - -/* Retroactively move an auto variable from a register to a stack - slot. This is done when an address-reference to the variable is - seen. If RESCAN is true, all previously emitted instructions are - examined and modified to handle the fact that DECL is now - addressable. */ - -void -put_var_into_stack (tree decl, int rescan) -{ - rtx reg; - enum machine_mode promoted_mode, decl_mode; - struct function *function = 0; - tree context; - bool can_use_addressof_p; - bool volatile_p = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl); - bool used_p = (TREE_USED (decl) - || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0)); - - context = decl_function_context (decl); - - /* Get the current rtl used for this object and its original mode. */ - reg = (TREE_CODE (decl) == SAVE_EXPR - ? SAVE_EXPR_RTL (decl) - : DECL_RTL_IF_SET (decl)); - - /* No need to do anything if decl has no rtx yet - since in that case caller is setting TREE_ADDRESSABLE - and a stack slot will be assigned when the rtl is made. */ - if (reg == 0) - return; - - /* Get the declared mode for this object. */ - decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl)) - : DECL_MODE (decl)); - /* Get the mode it's actually stored in. */ - promoted_mode = GET_MODE (reg); - - /* If this variable comes from an outer function, find that - function's saved context. Don't use find_function_data here, - because it might not be in any active function. - FIXME: Is that really supposed to happen? - It does in ObjC at least. */ - if (context != current_function_decl && context != inline_function_decl) - for (function = outer_function_chain; function; function = function->outer) - if (function->decl == context) - break; - - /* If this is a variable-sized object or a structure passed by invisible - reference, with a pseudo to address it, put that pseudo into the stack - if the var is non-local. */ - if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl) - && GET_CODE (reg) == MEM - && GET_CODE (XEXP (reg, 0)) == REG - && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER) - { - reg = XEXP (reg, 0); - decl_mode = promoted_mode = GET_MODE (reg); - } - - /* If this variable lives in the current function and we don't need to put it - in the stack for the sake of setjmp or the non-locality, try to keep it in - a register until we know we actually need the address. */ - can_use_addressof_p - = (function == 0 - && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)) - && optimize > 0 - /* FIXME make it work for promoted modes too */ - && decl_mode == promoted_mode -#ifdef NON_SAVING_SETJMP - && ! (NON_SAVING_SETJMP && current_function_calls_setjmp) -#endif - ); - - /* If we can't use ADDRESSOF, make sure we see through one we already - generated. */ - if (! can_use_addressof_p - && GET_CODE (reg) == MEM - && GET_CODE (XEXP (reg, 0)) == ADDRESSOF) - reg = XEXP (XEXP (reg, 0), 0); - - /* Now we should have a value that resides in one or more pseudo regs. */ - - if (GET_CODE (reg) == REG) - { - if (can_use_addressof_p) - gen_mem_addressof (reg, decl, rescan); - else - put_reg_into_stack (function, reg, TREE_TYPE (decl), decl_mode, - 0, volatile_p, used_p, false, 0); - } - else if (GET_CODE (reg) == CONCAT) - { - /* A CONCAT contains two pseudos; put them both in the stack. - We do it so they end up consecutive. - We fixup references to the parts only after we fixup references - to the whole CONCAT, lest we do double fixups for the latter - references. */ - enum machine_mode part_mode = GET_MODE (XEXP (reg, 0)); - tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0); - rtx lopart = XEXP (reg, 0); - rtx hipart = XEXP (reg, 1); -#ifdef FRAME_GROWS_DOWNWARD - /* Since part 0 should have a lower address, do it second. */ - put_reg_into_stack (function, hipart, part_type, part_mode, - 0, volatile_p, false, false, 0); - put_reg_into_stack (function, lopart, part_type, part_mode, - 0, volatile_p, false, true, 0); -#else - put_reg_into_stack (function, lopart, part_type, part_mode, - 0, volatile_p, false, false, 0); - put_reg_into_stack (function, hipart, part_type, part_mode, - 0, volatile_p, false, true, 0); -#endif - - /* Change the CONCAT into a combined MEM for both parts. */ - PUT_CODE (reg, MEM); - MEM_ATTRS (reg) = 0; - - /* set_mem_attributes uses DECL_RTL to avoid re-generating of - already computed alias sets. Here we want to re-generate. */ - if (DECL_P (decl)) - SET_DECL_RTL (decl, NULL); - set_mem_attributes (reg, decl, 1); - if (DECL_P (decl)) - SET_DECL_RTL (decl, reg); - - /* The two parts are in memory order already. - Use the lower parts address as ours. */ - XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0); - /* Prevent sharing of rtl that might lose. */ - if (GET_CODE (XEXP (reg, 0)) == PLUS) - XEXP (reg, 0) = copy_rtx (XEXP (reg, 0)); - if (used_p && rescan) - { - schedule_fixup_var_refs (function, reg, TREE_TYPE (decl), - promoted_mode, 0); - schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0); - schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0); - } - } - else - return; -} - -/* Subroutine of put_var_into_stack. This puts a single pseudo reg REG - into the stack frame of FUNCTION (0 means the current function). - TYPE is the user-level data type of the value hold in the register. - DECL_MODE is the machine mode of the user-level data type. - ORIGINAL_REGNO must be set if the real regno is not visible in REG. - VOLATILE_P is true if this is for a "volatile" decl. - USED_P is true if this reg might have already been used in an insn. - CONSECUTIVE_P is true if the stack slot assigned to reg must be - consecutive with the previous stack slot. */ - -static void -put_reg_into_stack (struct function *function, rtx reg, tree type, - enum machine_mode decl_mode, unsigned int original_regno, - bool volatile_p, bool used_p, bool consecutive_p, - htab_t ht) -{ - struct function *func = function ? function : cfun; - enum machine_mode mode = GET_MODE (reg); - unsigned int regno = original_regno; - rtx new = 0; - - if (regno == 0) - regno = REGNO (reg); - - if (regno < func->x_max_parm_reg) - { - if (!func->x_parm_reg_stack_loc) - abort (); - new = func->x_parm_reg_stack_loc[regno]; - } - - if (new == 0) - new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), - consecutive_p ? -2 : 0, func); - - PUT_CODE (reg, MEM); - PUT_MODE (reg, decl_mode); - XEXP (reg, 0) = XEXP (new, 0); - MEM_ATTRS (reg) = 0; - /* `volatil' bit means one thing for MEMs, another entirely for REGs. */ - MEM_VOLATILE_P (reg) = volatile_p; - - /* If this is a memory ref that contains aggregate components, - mark it as such for cse and loop optimize. If we are reusing a - previously generated stack slot, then we need to copy the bit in - case it was set for other reasons. For instance, it is set for - __builtin_va_alist. */ - if (type) - { - MEM_SET_IN_STRUCT_P (reg, - AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new)); - set_mem_alias_set (reg, get_alias_set (type)); - } - - if (used_p) - schedule_fixup_var_refs (function, reg, type, mode, ht); -} - -/* Make sure that all refs to the variable, previously made - when it was a register, are fixed up to be valid again. - See function above for meaning of arguments. */ - -static void -schedule_fixup_var_refs (struct function *function, rtx reg, tree type, - enum machine_mode promoted_mode, htab_t ht) -{ - int unsigned_p = type ? TREE_UNSIGNED (type) : 0; - - if (function != 0) - { - struct var_refs_queue *temp; - - temp = ggc_alloc (sizeof (struct var_refs_queue)); - temp->modified = reg; - temp->promoted_mode = promoted_mode; - temp->unsignedp = unsigned_p; - temp->next = function->fixup_var_refs_queue; - function->fixup_var_refs_queue = temp; - } - else - /* Variable is local; fix it up now. */ - fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht); -} - -static void -fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp, - rtx may_share, htab_t ht) -{ - tree pending; - rtx first_insn = get_insns (); - struct sequence_stack *stack = seq_stack; - tree rtl_exps = rtl_expr_chain; - - /* If there's a hash table, it must record all uses of VAR. */ - if (ht) - { - if (stack != 0) - abort (); - fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, - may_share); - return; - } - - fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp, - stack == 0, may_share); - - /* Scan all pending sequences too. */ - for (; stack; stack = stack->next) - { - push_to_full_sequence (stack->first, stack->last); - fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp, - stack->next != 0, may_share); - /* Update remembered end of sequence - in case we added an insn at the end. */ - stack->last = get_last_insn (); - end_sequence (); - } - - /* Scan all waiting RTL_EXPRs too. */ - for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending)) - { - rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending)); - if (seq != const0_rtx && seq != 0) - { - push_to_sequence (seq); - fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0, - may_share); - end_sequence (); - } - } -} - -/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is - some part of an insn. Return a struct fixup_replacement whose OLD - value is equal to X. Allocate a new structure if no such entry exists. */ - -static struct fixup_replacement * -find_fixup_replacement (struct fixup_replacement **replacements, rtx x) -{ - struct fixup_replacement *p; - - /* See if we have already replaced this. */ - for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next) - ; - - if (p == 0) - { - p = xmalloc (sizeof (struct fixup_replacement)); - p->old = x; - p->new = 0; - p->next = *replacements; - *replacements = p; - } - - return p; -} - -/* Scan the insn-chain starting with INSN for refs to VAR and fix them - up. TOPLEVEL is nonzero if this chain is the main chain of insns - for the current function. MAY_SHARE is either a MEM that is not - to be unshared or a list of them. */ - -static void -fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode, - int unsignedp, int toplevel, rtx may_share) -{ - while (insn) - { - /* fixup_var_refs_insn might modify insn, so save its next - pointer now. */ - rtx next = NEXT_INSN (insn); - - /* CALL_PLACEHOLDERs are special; we have to switch into each of - the three sequences they (potentially) contain, and process - them recursively. The CALL_INSN itself is not interesting. */ - - if (GET_CODE (insn) == CALL_INSN - && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) - { - int i; - - /* Look at the Normal call, sibling call and tail recursion - sequences attached to the CALL_PLACEHOLDER. */ - for (i = 0; i < 3; i++) - { - rtx seq = XEXP (PATTERN (insn), i); - if (seq) - { - push_to_sequence (seq); - fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0, - may_share); - XEXP (PATTERN (insn), i) = get_insns (); - end_sequence (); - } - } - } - - else if (INSN_P (insn)) - fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, - may_share); - - insn = next; - } -} - -/* Look up the insns which reference VAR in HT and fix them up. Other - arguments are the same as fixup_var_refs_insns. - - N.B. No need for special processing of CALL_PLACEHOLDERs here, - because the hash table will point straight to the interesting insn - (inside the CALL_PLACEHOLDER). */ - -static void -fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode, - int unsignedp, rtx may_share) -{ - struct insns_for_mem_entry tmp; - struct insns_for_mem_entry *ime; - rtx insn_list; - - tmp.key = var; - ime = htab_find (ht, &tmp); - for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1)) - if (INSN_P (XEXP (insn_list, 0)) && !INSN_DELETED_P (XEXP (insn_list, 0))) - fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode, - unsignedp, 1, may_share); -} - - -/* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is - the insn under examination, VAR is the variable to fix up - references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and - TOPLEVEL is nonzero if this is the main insn chain for this - function. */ - -static void -fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode, - int unsignedp, int toplevel, rtx no_share) -{ - rtx call_dest = 0; - rtx set, prev, prev_set; - rtx note; - - /* Remember the notes in case we delete the insn. */ - note = REG_NOTES (insn); - - /* If this is a CLOBBER of VAR, delete it. - - If it has a REG_LIBCALL note, delete the REG_LIBCALL - and REG_RETVAL notes too. */ - if (GET_CODE (PATTERN (insn)) == CLOBBER - && (XEXP (PATTERN (insn), 0) == var - || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT - && (XEXP (XEXP (PATTERN (insn), 0), 0) == var - || XEXP (XEXP (PATTERN (insn), 0), 1) == var)))) - { - if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0) - /* The REG_LIBCALL note will go away since we are going to - turn INSN into a NOTE, so just delete the - corresponding REG_RETVAL note. */ - remove_note (XEXP (note, 0), - find_reg_note (XEXP (note, 0), REG_RETVAL, - NULL_RTX)); - - delete_insn (insn); - } - - /* The insn to load VAR from a home in the arglist - is now a no-op. When we see it, just delete it. - Similarly if this is storing VAR from a register from which - it was loaded in the previous insn. This will occur - when an ADDRESSOF was made for an arglist slot. */ - else if (toplevel - && (set = single_set (insn)) != 0 - && SET_DEST (set) == var - /* If this represents the result of an insn group, - don't delete the insn. */ - && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0 - && (rtx_equal_p (SET_SRC (set), var) - || (GET_CODE (SET_SRC (set)) == REG - && (prev = prev_nonnote_insn (insn)) != 0 - && (prev_set = single_set (prev)) != 0 - && SET_DEST (prev_set) == SET_SRC (set) - && rtx_equal_p (SET_SRC (prev_set), var)))) - { - delete_insn (insn); - } - else - { - struct fixup_replacement *replacements = 0; - rtx next_insn = NEXT_INSN (insn); - - if (SMALL_REGISTER_CLASSES) - { - /* If the insn that copies the results of a CALL_INSN - into a pseudo now references VAR, we have to use an - intermediate pseudo since we want the life of the - return value register to be only a single insn. - - If we don't use an intermediate pseudo, such things as - address computations to make the address of VAR valid - if it is not can be placed between the CALL_INSN and INSN. - - To make sure this doesn't happen, we record the destination - of the CALL_INSN and see if the next insn uses both that - and VAR. */ - - if (call_dest != 0 && GET_CODE (insn) == INSN - && reg_mentioned_p (var, PATTERN (insn)) - && reg_mentioned_p (call_dest, PATTERN (insn))) - { - rtx temp = gen_reg_rtx (GET_MODE (call_dest)); - - emit_insn_before (gen_move_insn (temp, call_dest), insn); - - PATTERN (insn) = replace_rtx (PATTERN (insn), - call_dest, temp); - } - - if (GET_CODE (insn) == CALL_INSN - && GET_CODE (PATTERN (insn)) == SET) - call_dest = SET_DEST (PATTERN (insn)); - else if (GET_CODE (insn) == CALL_INSN - && GET_CODE (PATTERN (insn)) == PARALLEL - && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET) - call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0)); - else - call_dest = 0; - } - - /* See if we have to do anything to INSN now that VAR is in - memory. If it needs to be loaded into a pseudo, use a single - pseudo for the entire insn in case there is a MATCH_DUP - between two operands. We pass a pointer to the head of - a list of struct fixup_replacements. If fixup_var_refs_1 - needs to allocate pseudos or replacement MEMs (for SUBREGs), - it will record them in this list. - - If it allocated a pseudo for any replacement, we copy into - it here. */ - - fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn, - &replacements, no_share); - - /* If this is last_parm_insn, and any instructions were output - after it to fix it up, then we must set last_parm_insn to - the last such instruction emitted. */ - if (insn == last_parm_insn) - last_parm_insn = PREV_INSN (next_insn); - - while (replacements) - { - struct fixup_replacement *next; - - if (GET_CODE (replacements->new) == REG) - { - rtx insert_before; - rtx seq; - - /* OLD might be a (subreg (mem)). */ - if (GET_CODE (replacements->old) == SUBREG) - replacements->old - = fixup_memory_subreg (replacements->old, insn, - promoted_mode, 0); - else - replacements->old - = fixup_stack_1 (replacements->old, insn); - - insert_before = insn; - - /* If we are changing the mode, do a conversion. - This might be wasteful, but combine.c will - eliminate much of the waste. */ - - if (GET_MODE (replacements->new) - != GET_MODE (replacements->old)) - { - start_sequence (); - convert_move (replacements->new, - replacements->old, unsignedp); - seq = get_insns (); - end_sequence (); - } - else - seq = gen_move_insn (replacements->new, - replacements->old); - - emit_insn_before (seq, insert_before); - } - - next = replacements->next; - free (replacements); - replacements = next; - } - } - - /* Also fix up any invalid exprs in the REG_NOTES of this insn. - But don't touch other insns referred to by reg-notes; - we will get them elsewhere. */ - while (note) - { - if (GET_CODE (note) != INSN_LIST) - XEXP (note, 0) - = walk_fixup_memory_subreg (XEXP (note, 0), insn, - promoted_mode, 1); - note = XEXP (note, 1); - } -} - -/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE. - See if the rtx expression at *LOC in INSN needs to be changed. - - REPLACEMENTS is a pointer to a list head that starts out zero, but may - contain a list of original rtx's and replacements. If we find that we need - to modify this insn by replacing a memory reference with a pseudo or by - making a new MEM to implement a SUBREG, we consult that list to see if - we have already chosen a replacement. If none has already been allocated, - we allocate it and update the list. fixup_var_refs_insn will copy VAR - or the SUBREG, as appropriate, to the pseudo. */ - -static void -fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn, - struct fixup_replacement **replacements, rtx no_share) -{ - int i; - rtx x = *loc; - RTX_CODE code = GET_CODE (x); - const char *fmt; - rtx tem, tem1; - struct fixup_replacement *replacement; - - switch (code) - { - case ADDRESSOF: - if (XEXP (x, 0) == var) - { - /* Prevent sharing of rtl that might lose. */ - rtx sub = copy_rtx (XEXP (var, 0)); - - if (! validate_change (insn, loc, sub, 0)) - { - rtx y = gen_reg_rtx (GET_MODE (sub)); - rtx seq, new_insn; - - /* We should be able to replace with a register or all is lost. - Note that we can't use validate_change to verify this, since - we're not caring for replacing all dups simultaneously. */ - if (! validate_replace_rtx (*loc, y, insn)) - abort (); - - /* Careful! First try to recognize a direct move of the - value, mimicking how things are done in gen_reload wrt - PLUS. Consider what happens when insn is a conditional - move instruction and addsi3 clobbers flags. */ - - start_sequence (); - new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub)); - seq = get_insns (); - end_sequence (); - - if (recog_memoized (new_insn) < 0) - { - /* That failed. Fall back on force_operand and hope. */ - - start_sequence (); - sub = force_operand (sub, y); - if (sub != y) - emit_insn (gen_move_insn (y, sub)); - seq = get_insns (); - end_sequence (); - } - -#ifdef HAVE_cc0 - /* Don't separate setter from user. */ - if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn))) - insn = PREV_INSN (insn); -#endif - - emit_insn_before (seq, insn); - } - } - return; - - case MEM: - if (var == x) - { - /* If we already have a replacement, use it. Otherwise, - try to fix up this address in case it is invalid. */ - - replacement = find_fixup_replacement (replacements, var); - if (replacement->new) - { - *loc = replacement->new; - return; - } - - *loc = replacement->new = x = fixup_stack_1 (x, insn); - - /* Unless we are forcing memory to register or we changed the mode, - we can leave things the way they are if the insn is valid. */ - - INSN_CODE (insn) = -1; - if (! flag_force_mem && GET_MODE (x) == promoted_mode - && recog_memoized (insn) >= 0) - return; - - *loc = replacement->new = gen_reg_rtx (promoted_mode); - return; - } - - /* If X contains VAR, we need to unshare it here so that we update - each occurrence separately. But all identical MEMs in one insn - must be replaced with the same rtx because of the possibility of - MATCH_DUPs. */ - - if (reg_mentioned_p (var, x)) - { - replacement = find_fixup_replacement (replacements, x); - if (replacement->new == 0) - replacement->new = copy_most_rtx (x, no_share); - - *loc = x = replacement->new; - code = GET_CODE (x); - } - break; - - case REG: - case CC0: - case PC: - case CONST_INT: - case CONST: - case SYMBOL_REF: - case LABEL_REF: - case CONST_DOUBLE: - case CONST_VECTOR: - return; - - case SIGN_EXTRACT: - case ZERO_EXTRACT: - /* Note that in some cases those types of expressions are altered - by optimize_bit_field, and do not survive to get here. */ - if (XEXP (x, 0) == var - || (GET_CODE (XEXP (x, 0)) == SUBREG - && SUBREG_REG (XEXP (x, 0)) == var)) - { - /* Get TEM as a valid MEM in the mode presently in the insn. - - We don't worry about the possibility of MATCH_DUP here; it - is highly unlikely and would be tricky to handle. */ - - tem = XEXP (x, 0); - if (GET_CODE (tem) == SUBREG) - { - if (GET_MODE_BITSIZE (GET_MODE (tem)) - > GET_MODE_BITSIZE (GET_MODE (var))) - { - replacement = find_fixup_replacement (replacements, var); - if (replacement->new == 0) - replacement->new = gen_reg_rtx (GET_MODE (var)); - SUBREG_REG (tem) = replacement->new; - - /* The following code works only if we have a MEM, so we - need to handle the subreg here. We directly substitute - it assuming that a subreg must be OK here. We already - scheduled a replacement to copy the mem into the - subreg. */ - XEXP (x, 0) = tem; - return; - } - else - tem = fixup_memory_subreg (tem, insn, promoted_mode, 0); - } - else - tem = fixup_stack_1 (tem, insn); - - /* Unless we want to load from memory, get TEM into the proper mode - for an extract from memory. This can only be done if the - extract is at a constant position and length. */ - - if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT - && GET_CODE (XEXP (x, 2)) == CONST_INT - && ! mode_dependent_address_p (XEXP (tem, 0)) - && ! MEM_VOLATILE_P (tem)) - { - enum machine_mode wanted_mode = VOIDmode; - enum machine_mode is_mode = GET_MODE (tem); - HOST_WIDE_INT pos = INTVAL (XEXP (x, 2)); - - if (GET_CODE (x) == ZERO_EXTRACT) - { - enum machine_mode new_mode - = mode_for_extraction (EP_extzv, 1); - if (new_mode != MAX_MACHINE_MODE) - wanted_mode = new_mode; - } - else if (GET_CODE (x) == SIGN_EXTRACT) - { - enum machine_mode new_mode - = mode_for_extraction (EP_extv, 1); - if (new_mode != MAX_MACHINE_MODE) - wanted_mode = new_mode; - } - - /* If we have a narrower mode, we can do something. */ - if (wanted_mode != VOIDmode - && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode)) - { - HOST_WIDE_INT offset = pos / BITS_PER_UNIT; - rtx old_pos = XEXP (x, 2); - rtx newmem; - - /* If the bytes and bits are counted differently, we - must adjust the offset. */ - if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN) - offset = (GET_MODE_SIZE (is_mode) - - GET_MODE_SIZE (wanted_mode) - offset); - - pos %= GET_MODE_BITSIZE (wanted_mode); - - newmem = adjust_address_nv (tem, wanted_mode, offset); - - /* Make the change and see if the insn remains valid. */ - INSN_CODE (insn) = -1; - XEXP (x, 0) = newmem; - XEXP (x, 2) = GEN_INT (pos); - - if (recog_memoized (insn) >= 0) - return; - - /* Otherwise, restore old position. XEXP (x, 0) will be - restored later. */ - XEXP (x, 2) = old_pos; - } - } - - /* If we get here, the bitfield extract insn can't accept a memory - reference. Copy the input into a register. */ - - tem1 = gen_reg_rtx (GET_MODE (tem)); - emit_insn_before (gen_move_insn (tem1, tem), insn); - XEXP (x, 0) = tem1; - return; - } - break; - - case SUBREG: - if (SUBREG_REG (x) == var) - { - /* If this is a special SUBREG made because VAR was promoted - from a wider mode, replace it with VAR and call ourself - recursively, this time saying that the object previously - had its current mode (by virtue of the SUBREG). */ - - if (SUBREG_PROMOTED_VAR_P (x)) - { - *loc = var; - fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements, - no_share); - return; - } - - /* If this SUBREG makes VAR wider, it has become a paradoxical - SUBREG with VAR in memory, but these aren't allowed at this - stage of the compilation. So load VAR into a pseudo and take - a SUBREG of that pseudo. */ - if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var))) - { - replacement = find_fixup_replacement (replacements, var); - if (replacement->new == 0) - replacement->new = gen_reg_rtx (promoted_mode); - SUBREG_REG (x) = replacement->new; - return; - } - - /* See if we have already found a replacement for this SUBREG. - If so, use it. Otherwise, make a MEM and see if the insn - is recognized. If not, or if we should force MEM into a register, - make a pseudo for this SUBREG. */ - replacement = find_fixup_replacement (replacements, x); - if (replacement->new) - { - enum machine_mode mode = GET_MODE (x); - *loc = replacement->new; - - /* Careful! We may have just replaced a SUBREG by a MEM, which - means that the insn may have become invalid again. We can't - in this case make a new replacement since we already have one - and we must deal with MATCH_DUPs. */ - if (GET_CODE (replacement->new) == MEM) - { - INSN_CODE (insn) = -1; - if (recog_memoized (insn) >= 0) - return; - - fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn), - insn, replacements, no_share); - } - - return; - } - - replacement->new = *loc = fixup_memory_subreg (x, insn, - promoted_mode, 0); - - INSN_CODE (insn) = -1; - if (! flag_force_mem && recog_memoized (insn) >= 0) - return; - - *loc = replacement->new = gen_reg_rtx (GET_MODE (x)); - return; - } - break; - - case SET: - /* First do special simplification of bit-field references. */ - if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT - || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT) - optimize_bit_field (x, insn, 0); - if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT - || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT) - optimize_bit_field (x, insn, 0); - - /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object - into a register and then store it back out. */ - if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT - && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG - && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var - && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0))) - > GET_MODE_SIZE (GET_MODE (var)))) - { - replacement = find_fixup_replacement (replacements, var); - if (replacement->new == 0) - replacement->new = gen_reg_rtx (GET_MODE (var)); - - SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new; - emit_insn_after (gen_move_insn (var, replacement->new), insn); - } - - /* If SET_DEST is now a paradoxical SUBREG, put the result of this - insn into a pseudo and store the low part of the pseudo into VAR. */ - if (GET_CODE (SET_DEST (x)) == SUBREG - && SUBREG_REG (SET_DEST (x)) == var - && (GET_MODE_SIZE (GET_MODE (SET_DEST (x))) - > GET_MODE_SIZE (GET_MODE (var)))) - { - SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x))); - emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var), - tem)), - insn); - break; - } - - { - rtx dest = SET_DEST (x); - rtx src = SET_SRC (x); - rtx outerdest = dest; - - while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART - || GET_CODE (dest) == SIGN_EXTRACT - || GET_CODE (dest) == ZERO_EXTRACT) - dest = XEXP (dest, 0); - - if (GET_CODE (src) == SUBREG) - src = SUBREG_REG (src); - - /* If VAR does not appear at the top level of the SET - just scan the lower levels of the tree. */ - - if (src != var && dest != var) - break; - - /* We will need to rerecognize this insn. */ - INSN_CODE (insn) = -1; - - if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var - && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE) - { - /* Since this case will return, ensure we fixup all the - operands here. */ - fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1), - insn, replacements, no_share); - fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2), - insn, replacements, no_share); - fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x), - insn, replacements, no_share); - - tem = XEXP (outerdest, 0); - - /* Clean up (SUBREG:SI (MEM:mode ...) 0) - that may appear inside a ZERO_EXTRACT. - This was legitimate when the MEM was a REG. */ - if (GET_CODE (tem) == SUBREG - && SUBREG_REG (tem) == var) - tem = fixup_memory_subreg (tem, insn, promoted_mode, 0); - else - tem = fixup_stack_1 (tem, insn); - - if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT - && GET_CODE (XEXP (outerdest, 2)) == CONST_INT - && ! mode_dependent_address_p (XEXP (tem, 0)) - && ! MEM_VOLATILE_P (tem)) - { - enum machine_mode wanted_mode; - enum machine_mode is_mode = GET_MODE (tem); - HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2)); - - wanted_mode = mode_for_extraction (EP_insv, 0); - - /* If we have a narrower mode, we can do something. */ - if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode)) - { - HOST_WIDE_INT offset = pos / BITS_PER_UNIT; - rtx old_pos = XEXP (outerdest, 2); - rtx newmem; - - if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN) - offset = (GET_MODE_SIZE (is_mode) - - GET_MODE_SIZE (wanted_mode) - offset); - - pos %= GET_MODE_BITSIZE (wanted_mode); - - newmem = adjust_address_nv (tem, wanted_mode, offset); - - /* Make the change and see if the insn remains valid. */ - INSN_CODE (insn) = -1; - XEXP (outerdest, 0) = newmem; - XEXP (outerdest, 2) = GEN_INT (pos); - - if (recog_memoized (insn) >= 0) - return; - - /* Otherwise, restore old position. XEXP (x, 0) will be - restored later. */ - XEXP (outerdest, 2) = old_pos; - } - } - - /* If we get here, the bit-field store doesn't allow memory - or isn't located at a constant position. Load the value into - a register, do the store, and put it back into memory. */ - - tem1 = gen_reg_rtx (GET_MODE (tem)); - emit_insn_before (gen_move_insn (tem1, tem), insn); - emit_insn_after (gen_move_insn (tem, tem1), insn); - XEXP (outerdest, 0) = tem1; - return; - } - - /* STRICT_LOW_PART is a no-op on memory references - and it can cause combinations to be unrecognizable, - so eliminate it. */ - - if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART) - SET_DEST (x) = XEXP (SET_DEST (x), 0); - - /* A valid insn to copy VAR into or out of a register - must be left alone, to avoid an infinite loop here. - If the reference to VAR is by a subreg, fix that up, - since SUBREG is not valid for a memref. - Also fix up the address of the stack slot. - - Note that we must not try to recognize the insn until - after we know that we have valid addresses and no - (subreg (mem ...) ...) constructs, since these interfere - with determining the validity of the insn. */ - - if ((SET_SRC (x) == var - || (GET_CODE (SET_SRC (x)) == SUBREG - && SUBREG_REG (SET_SRC (x)) == var)) - && (GET_CODE (SET_DEST (x)) == REG - || (GET_CODE (SET_DEST (x)) == SUBREG - && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG)) - && GET_MODE (var) == promoted_mode - && x == single_set (insn)) - { - rtx pat, last; - - if (GET_CODE (SET_SRC (x)) == SUBREG - && (GET_MODE_SIZE (GET_MODE (SET_SRC (x))) - > GET_MODE_SIZE (GET_MODE (var)))) - { - /* This (subreg VAR) is now a paradoxical subreg. We need - to replace VAR instead of the subreg. */ - replacement = find_fixup_replacement (replacements, var); - if (replacement->new == NULL_RTX) - replacement->new = gen_reg_rtx (GET_MODE (var)); - SUBREG_REG (SET_SRC (x)) = replacement->new; - } - else - { - replacement = find_fixup_replacement (replacements, SET_SRC (x)); - if (replacement->new) - SET_SRC (x) = replacement->new; - else if (GET_CODE (SET_SRC (x)) == SUBREG) - SET_SRC (x) = replacement->new - = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode, - 0); - else - SET_SRC (x) = replacement->new - = fixup_stack_1 (SET_SRC (x), insn); - } - - if (recog_memoized (insn) >= 0) - return; - - /* INSN is not valid, but we know that we want to - copy SET_SRC (x) to SET_DEST (x) in some way. So - we generate the move and see whether it requires more - than one insn. If it does, we emit those insns and - delete INSN. Otherwise, we can just replace the pattern - of INSN; we have already verified above that INSN has - no other function that to do X. */ - - pat = gen_move_insn (SET_DEST (x), SET_SRC (x)); - if (NEXT_INSN (pat) != NULL_RTX) - { - last = emit_insn_before (pat, insn); - - /* INSN might have REG_RETVAL or other important notes, so - we need to store the pattern of the last insn in the - sequence into INSN similarly to the normal case. LAST - should not have REG_NOTES, but we allow them if INSN has - no REG_NOTES. */ - if (REG_NOTES (last) && REG_NOTES (insn)) - abort (); - if (REG_NOTES (last)) - REG_NOTES (insn) = REG_NOTES (last); - PATTERN (insn) = PATTERN (last); - - delete_insn (last); - } - else - PATTERN (insn) = PATTERN (pat); - - return; - } - - if ((SET_DEST (x) == var - || (GET_CODE (SET_DEST (x)) == SUBREG - && SUBREG_REG (SET_DEST (x)) == var)) - && (GET_CODE (SET_SRC (x)) == REG - || (GET_CODE (SET_SRC (x)) == SUBREG - && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG)) - && GET_MODE (var) == promoted_mode - && x == single_set (insn)) - { - rtx pat, last; - - if (GET_CODE (SET_DEST (x)) == SUBREG) - SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, - promoted_mode, 0); - else - SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn); - - if (recog_memoized (insn) >= 0) - return; - - pat = gen_move_insn (SET_DEST (x), SET_SRC (x)); - if (NEXT_INSN (pat) != NULL_RTX) - { - last = emit_insn_before (pat, insn); - - /* INSN might have REG_RETVAL or other important notes, so - we need to store the pattern of the last insn in the - sequence into INSN similarly to the normal case. LAST - should not have REG_NOTES, but we allow them if INSN has - no REG_NOTES. */ - if (REG_NOTES (last) && REG_NOTES (insn)) - abort (); - if (REG_NOTES (last)) - REG_NOTES (insn) = REG_NOTES (last); - PATTERN (insn) = PATTERN (last); - - delete_insn (last); - } - else - PATTERN (insn) = PATTERN (pat); - - return; - } - - /* Otherwise, storing into VAR must be handled specially - by storing into a temporary and copying that into VAR - with a new insn after this one. Note that this case - will be used when storing into a promoted scalar since - the insn will now have different modes on the input - and output and hence will be invalid (except for the case - of setting it to a constant, which does not need any - change if it is valid). We generate extra code in that case, - but combine.c will eliminate it. */ - - if (dest == var) - { - rtx temp; - rtx fixeddest = SET_DEST (x); - enum machine_mode temp_mode; - - /* STRICT_LOW_PART can be discarded, around a MEM. */ - if (GET_CODE (fixeddest) == STRICT_LOW_PART) - fixeddest = XEXP (fixeddest, 0); - /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */ - if (GET_CODE (fixeddest) == SUBREG) - { - fixeddest = fixup_memory_subreg (fixeddest, insn, - promoted_mode, 0); - temp_mode = GET_MODE (fixeddest); - } - else - { - fixeddest = fixup_stack_1 (fixeddest, insn); - temp_mode = promoted_mode; - } - - temp = gen_reg_rtx (temp_mode); - - emit_insn_after (gen_move_insn (fixeddest, - gen_lowpart (GET_MODE (fixeddest), - temp)), - insn); - - SET_DEST (x) = temp; - } - } - - default: - break; - } - - /* Nothing special about this RTX; fix its operands. */ - - fmt = GET_RTX_FORMAT (code); - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements, - no_share); - else if (fmt[i] == 'E') - { - int j; - for (j = 0; j < XVECLEN (x, i); j++) - fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j), - insn, replacements, no_share); - } - } -} - -/* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)). - The REG was placed on the stack, so X now has the form (SUBREG:m1 - (MEM:m2 ...)). - - Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns - must be emitted to compute NEWADDR, put them before INSN. - - UNCRITICAL nonzero means accept paradoxical subregs. - This is used for subregs found inside REG_NOTES. */ - -static rtx -fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical) -{ - int offset; - rtx mem = SUBREG_REG (x); - rtx addr = XEXP (mem, 0); - enum machine_mode mode = GET_MODE (x); - rtx result, seq; - - /* Paradoxical SUBREGs are usually invalid during RTL generation. */ - if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical) - abort (); - - offset = SUBREG_BYTE (x); - if (BYTES_BIG_ENDIAN) - /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust - the offset so that it points to the right location within the - MEM. */ - offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem))); - - if (!flag_force_addr - && memory_address_p (mode, plus_constant (addr, offset))) - /* Shortcut if no insns need be emitted. */ - return adjust_address (mem, mode, offset); - - start_sequence (); - result = adjust_address (mem, mode, offset); - seq = get_insns (); - end_sequence (); - - emit_insn_before (seq, insn); - return result; -} - -/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X. - Replace subexpressions of X in place. - If X itself is a (SUBREG (MEM ...) ...), return the replacement expression. - Otherwise return X, with its contents possibly altered. - - INSN, PROMOTED_MODE and UNCRITICAL are as for - fixup_memory_subreg. */ - -static rtx -walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, - int uncritical) -{ - enum rtx_code code; - const char *fmt; - int i; - - if (x == 0) - return 0; - - code = GET_CODE (x); - - if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM) - return fixup_memory_subreg (x, insn, promoted_mode, uncritical); - - /* Nothing special about this RTX; fix its operands. */ - - fmt = GET_RTX_FORMAT (code); - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, - promoted_mode, uncritical); - else if (fmt[i] == 'E') - { - int j; - for (j = 0; j < XVECLEN (x, i); j++) - XVECEXP (x, i, j) - = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, - promoted_mode, uncritical); - } - } - return x; -} - -/* For each memory ref within X, if it refers to a stack slot - with an out of range displacement, put the address in a temp register - (emitting new insns before INSN to load these registers) - and alter the memory ref to use that register. - Replace each such MEM rtx with a copy, to avoid clobberage. */ - -static rtx -fixup_stack_1 (rtx x, rtx insn) -{ - int i; - RTX_CODE code = GET_CODE (x); - const char *fmt; - - if (code == MEM) - { - rtx ad = XEXP (x, 0); - /* If we have address of a stack slot but it's not valid - (displacement is too large), compute the sum in a register. */ - if (GET_CODE (ad) == PLUS - && GET_CODE (XEXP (ad, 0)) == REG - && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER - && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER) - || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM -#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM - || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM -#endif - || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM - || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM - || XEXP (ad, 0) == current_function_internal_arg_pointer) - && GET_CODE (XEXP (ad, 1)) == CONST_INT) - { - rtx temp, seq; - if (memory_address_p (GET_MODE (x), ad)) - return x; - - start_sequence (); - temp = copy_to_reg (ad); - seq = get_insns (); - end_sequence (); - emit_insn_before (seq, insn); - return replace_equiv_address (x, temp); - } - return x; - } - - fmt = GET_RTX_FORMAT (code); - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn); - else if (fmt[i] == 'E') - { - int j; - for (j = 0; j < XVECLEN (x, i); j++) - XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn); - } - } - return x; -} - -/* Optimization: a bit-field instruction whose field - happens to be a byte or halfword in memory - can be changed to a move instruction. - - We call here when INSN is an insn to examine or store into a bit-field. - BODY is the SET-rtx to be altered. - - EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0. - (Currently this is called only from function.c, and EQUIV_MEM - is always 0.) */ - -static void -optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem) -{ - rtx bitfield; - int destflag; - rtx seq = 0; - enum machine_mode mode; - - if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT - || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT) - bitfield = SET_DEST (body), destflag = 1; - else - bitfield = SET_SRC (body), destflag = 0; - - /* First check that the field being stored has constant size and position - and is in fact a byte or halfword suitably aligned. */ - - if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT - && GET_CODE (XEXP (bitfield, 2)) == CONST_INT - && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1)) - != BLKmode) - && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0) - { - rtx memref = 0; - - /* Now check that the containing word is memory, not a register, - and that it is safe to change the machine mode. */ - - if (GET_CODE (XEXP (bitfield, 0)) == MEM) - memref = XEXP (bitfield, 0); - else if (GET_CODE (XEXP (bitfield, 0)) == REG - && equiv_mem != 0) - memref = equiv_mem[REGNO (XEXP (bitfield, 0))]; - else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG - && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM) - memref = SUBREG_REG (XEXP (bitfield, 0)); - else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG - && equiv_mem != 0 - && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG) - memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))]; - - if (memref - && ! mode_dependent_address_p (XEXP (memref, 0)) - && ! MEM_VOLATILE_P (memref)) - { - /* Now adjust the address, first for any subreg'ing - that we are now getting rid of, - and then for which byte of the word is wanted. */ - - HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2)); - rtx insns; - - /* Adjust OFFSET to count bits from low-address byte. */ - if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) - offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0))) - - offset - INTVAL (XEXP (bitfield, 1))); - - /* Adjust OFFSET to count bytes from low-address byte. */ - offset /= BITS_PER_UNIT; - if (GET_CODE (XEXP (bitfield, 0)) == SUBREG) - { - offset += (SUBREG_BYTE (XEXP (bitfield, 0)) - / UNITS_PER_WORD) * UNITS_PER_WORD; - if (BYTES_BIG_ENDIAN) - offset -= (MIN (UNITS_PER_WORD, - GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0)))) - - MIN (UNITS_PER_WORD, - GET_MODE_SIZE (GET_MODE (memref)))); - } - - start_sequence (); - memref = adjust_address (memref, mode, offset); - insns = get_insns (); - end_sequence (); - emit_insn_before (insns, insn); - - /* Store this memory reference where - we found the bit field reference. */ - - if (destflag) - { - validate_change (insn, &SET_DEST (body), memref, 1); - if (! CONSTANT_ADDRESS_P (SET_SRC (body))) - { - rtx src = SET_SRC (body); - while (GET_CODE (src) == SUBREG - && SUBREG_BYTE (src) == 0) - src = SUBREG_REG (src); - if (GET_MODE (src) != GET_MODE (memref)) - src = gen_lowpart (GET_MODE (memref), SET_SRC (body)); - validate_change (insn, &SET_SRC (body), src, 1); - } - else if (GET_MODE (SET_SRC (body)) != VOIDmode - && GET_MODE (SET_SRC (body)) != GET_MODE (memref)) - /* This shouldn't happen because anything that didn't have - one of these modes should have got converted explicitly - and then referenced through a subreg. - This is so because the original bit-field was - handled by agg_mode and so its tree structure had - the same mode that memref now has. */ - abort (); - } - else - { - rtx dest = SET_DEST (body); - - while (GET_CODE (dest) == SUBREG - && SUBREG_BYTE (dest) == 0 - && (GET_MODE_CLASS (GET_MODE (dest)) - == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))) - && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - <= UNITS_PER_WORD)) - dest = SUBREG_REG (dest); - - validate_change (insn, &SET_DEST (body), dest, 1); - - if (GET_MODE (dest) == GET_MODE (memref)) - validate_change (insn, &SET_SRC (body), memref, 1); - else - { - /* Convert the mem ref to the destination mode. */ - rtx newreg = gen_reg_rtx (GET_MODE (dest)); - - start_sequence (); - convert_move (newreg, memref, - GET_CODE (SET_SRC (body)) == ZERO_EXTRACT); - seq = get_insns (); - end_sequence (); - - validate_change (insn, &SET_SRC (body), newreg, 1); - } - } - - /* See if we can convert this extraction or insertion into - a simple move insn. We might not be able to do so if this - was, for example, part of a PARALLEL. - - If we succeed, write out any needed conversions. If we fail, - it is hard to guess why we failed, so don't do anything - special; just let the optimization be suppressed. */ - - if (apply_change_group () && seq) - emit_insn_before (seq, insn); - } - } } /* These routines are responsible for converting virtual register references @@ -2826,903 +1233,6 @@ static int cfa_offset; #endif #endif -/* On most machines, the CFA coincides with the first incoming parm. */ - -#ifndef ARG_POINTER_CFA_OFFSET -#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL) -#endif - -/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just - had its address taken. DECL is the decl or SAVE_EXPR for the - object stored in the register, for later use if we do need to force - REG into the stack. REG is overwritten by the MEM like in - put_reg_into_stack. RESCAN is true if previously emitted - instructions must be rescanned and modified now that the REG has - been transformed. */ - -rtx -gen_mem_addressof (rtx reg, tree decl, int rescan) -{ - rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)), - REGNO (reg), decl); - - /* Calculate this before we start messing with decl's RTL. */ - HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0; - - /* If the original REG was a user-variable, then so is the REG whose - address is being taken. Likewise for unchanging. */ - REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg); - RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg); - - PUT_CODE (reg, MEM); - MEM_ATTRS (reg) = 0; - XEXP (reg, 0) = r; - - if (decl) - { - tree type = TREE_TYPE (decl); - enum machine_mode decl_mode - = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl))); - rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) - : DECL_RTL_IF_SET (decl)); - - PUT_MODE (reg, decl_mode); - - /* Clear DECL_RTL momentarily so functions below will work - properly, then set it again. */ - if (DECL_P (decl) && decl_rtl == reg) - SET_DECL_RTL (decl, 0); - - set_mem_attributes (reg, decl, 1); - set_mem_alias_set (reg, set); - - if (DECL_P (decl) && decl_rtl == reg) - SET_DECL_RTL (decl, reg); - - if (rescan - && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0))) - fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0); - } - else if (rescan) - { - /* This can only happen during reload. Clear the same flag bits as - reload. */ - MEM_VOLATILE_P (reg) = 0; - RTX_UNCHANGING_P (reg) = 0; - MEM_IN_STRUCT_P (reg) = 0; - MEM_SCALAR_P (reg) = 0; - MEM_ATTRS (reg) = 0; - - fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0); - } - - return reg; -} - -/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */ - -void -flush_addressof (tree decl) -{ - if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL) - && DECL_RTL (decl) != 0 - && GET_CODE (DECL_RTL (decl)) == MEM - && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF - && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG) - put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0); -} - -/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */ - -static void -put_addressof_into_stack (rtx r, htab_t ht) -{ - tree decl, type; - bool volatile_p, used_p; - - rtx reg = XEXP (r, 0); - - if (GET_CODE (reg) != REG) - abort (); - - decl = ADDRESSOF_DECL (r); - if (decl) - { - type = TREE_TYPE (decl); - volatile_p = (TREE_CODE (decl) != SAVE_EXPR - && TREE_THIS_VOLATILE (decl)); - used_p = (TREE_USED (decl) - || (DECL_P (decl) && DECL_INITIAL (decl) != 0)); - } - else - { - type = NULL_TREE; - volatile_p = false; - used_p = true; - } - - put_reg_into_stack (0, reg, type, GET_MODE (reg), ADDRESSOF_REGNO (r), - volatile_p, used_p, false, ht); -} - -/* List of replacements made below in purge_addressof_1 when creating - bitfield insertions. */ -static rtx purge_bitfield_addressof_replacements; - -/* List of replacements made below in purge_addressof_1 for patterns - (MEM (ADDRESSOF (REG ...))). The key of the list entry is the - corresponding (ADDRESSOF (REG ...)) and value is a substitution for - the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not - enough in complex cases, e.g. when some field values can be - extracted by usage MEM with narrower mode. */ -static rtx purge_addressof_replacements; - -/* Helper function for purge_addressof. See if the rtx expression at *LOC - in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into - the stack. If the function returns FALSE then the replacement could not - be made. If MAY_POSTPONE is true and we would not put the addressof - to stack, postpone processing of the insn. */ - -static bool -purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone, - htab_t ht) -{ - rtx x; - RTX_CODE code; - int i, j; - const char *fmt; - bool result = true; - bool libcall = false; - - /* Re-start here to avoid recursion in common cases. */ - restart: - - x = *loc; - if (x == 0) - return true; - - /* Is this a libcall? */ - if (!insn) - libcall = REG_NOTE_KIND (*loc) == REG_RETVAL; - - code = GET_CODE (x); - - /* If we don't return in any of the cases below, we will recurse inside - the RTX, which will normally result in any ADDRESSOF being forced into - memory. */ - if (code == SET) - { - result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, - may_postpone, ht); - result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, - may_postpone, ht); - return result; - } - else if (code == ADDRESSOF) - { - rtx sub, insns; - - if (GET_CODE (XEXP (x, 0)) != MEM) - put_addressof_into_stack (x, ht); - - /* We must create a copy of the rtx because it was created by - overwriting a REG rtx which is always shared. */ - sub = copy_rtx (XEXP (XEXP (x, 0), 0)); - if (validate_change (insn, loc, sub, 0) - || validate_replace_rtx (x, sub, insn)) - return true; - - start_sequence (); - - /* If SUB is a hard or virtual register, try it as a pseudo-register. - Otherwise, perhaps SUB is an expression, so generate code to compute - it. */ - if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER) - sub = copy_to_reg (sub); - else - sub = force_operand (sub, NULL_RTX); - - if (! validate_change (insn, loc, sub, 0) - && ! validate_replace_rtx (x, sub, insn)) - abort (); - - insns = get_insns (); - end_sequence (); - emit_insn_before (insns, insn); - return true; - } - - else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force) - { - rtx sub = XEXP (XEXP (x, 0), 0); - - if (GET_CODE (sub) == MEM) - sub = adjust_address_nv (sub, GET_MODE (x), 0); - else if (GET_CODE (sub) == REG - && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)) - ; - else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub)) - { - int size_x, size_sub; - - if (may_postpone) - { - /* Postpone for now, so that we do not emit bitfield arithmetics - unless there is some benefit from it. */ - if (!postponed_insns || XEXP (postponed_insns, 0) != insn) - postponed_insns = alloc_INSN_LIST (insn, postponed_insns); - return true; - } - - if (!insn) - { - /* When processing REG_NOTES look at the list of - replacements done on the insn to find the register that X - was replaced by. */ - rtx tem; - - for (tem = purge_bitfield_addressof_replacements; - tem != NULL_RTX; - tem = XEXP (XEXP (tem, 1), 1)) - if (rtx_equal_p (x, XEXP (tem, 0))) - { - *loc = XEXP (XEXP (tem, 1), 0); - return true; - } - - /* See comment for purge_addressof_replacements. */ - for (tem = purge_addressof_replacements; - tem != NULL_RTX; - tem = XEXP (XEXP (tem, 1), 1)) - if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0))) - { - rtx z = XEXP (XEXP (tem, 1), 0); - - if (GET_MODE (x) == GET_MODE (z) - || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG - && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG)) - abort (); - - /* It can happen that the note may speak of things - in a wider (or just different) mode than the - code did. This is especially true of - REG_RETVAL. */ - - if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0) - z = SUBREG_REG (z); - - if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD - && (GET_MODE_SIZE (GET_MODE (x)) - > GET_MODE_SIZE (GET_MODE (z)))) - { - /* This can occur as a result in invalid - pointer casts, e.g. float f; ... - *(long long int *)&f. - ??? We could emit a warning here, but - without a line number that wouldn't be - very helpful. */ - z = gen_rtx_SUBREG (GET_MODE (x), z, 0); - } - else - z = gen_lowpart (GET_MODE (x), z); - - *loc = z; - return true; - } - - /* When we are processing the REG_NOTES of the last instruction - of a libcall, there will be typically no replacements - for that insn; the replacements happened before, piecemeal - fashion. OTOH we are not interested in the details of - this for the REG_EQUAL note, we want to know the big picture, - which can be succinctly described with a simple SUBREG. - Note that removing the REG_EQUAL note is not an option - on the last insn of a libcall, so we must do a replacement. */ - - /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf, - we got - (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510) - [0 S8 A32]), which can be expressed with a simple - same-size subreg */ - if ((GET_MODE_SIZE (GET_MODE (x)) - <= GET_MODE_SIZE (GET_MODE (sub))) - /* Again, invalid pointer casts (as in - compile/990203-1.c) can require paradoxical - subregs. */ - || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD - && (GET_MODE_SIZE (GET_MODE (x)) - > GET_MODE_SIZE (GET_MODE (sub))) - && libcall)) - { - *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0); - return true; - } - /* ??? Are there other cases we should handle? */ - - /* Sometimes we may not be able to find the replacement. For - example when the original insn was a MEM in a wider mode, - and the note is part of a sign extension of a narrowed - version of that MEM. Gcc testcase compile/990829-1.c can - generate an example of this situation. Rather than complain - we return false, which will prompt our caller to remove the - offending note. */ - return false; - } - - size_x = GET_MODE_BITSIZE (GET_MODE (x)); - size_sub = GET_MODE_BITSIZE (GET_MODE (sub)); - - /* Do not frob unchanging MEMs. If a later reference forces the - pseudo to the stack, we can wind up with multiple writes to - an unchanging memory, which is invalid. */ - if (RTX_UNCHANGING_P (x) && size_x != size_sub) - ; - - /* Don't even consider working with paradoxical subregs, - or the moral equivalent seen here. */ - else if (size_x <= size_sub - && int_mode_for_mode (GET_MODE (sub)) != BLKmode) - { - /* Do a bitfield insertion to mirror what would happen - in memory. */ - - rtx val, seq; - - if (store) - { - rtx p = PREV_INSN (insn); - - start_sequence (); - val = gen_reg_rtx (GET_MODE (x)); - if (! validate_change (insn, loc, val, 0)) - { - /* Discard the current sequence and put the - ADDRESSOF on stack. */ - end_sequence (); - goto give_up; - } - seq = get_insns (); - end_sequence (); - emit_insn_before (seq, insn); - compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (), - insn, ht); - - start_sequence (); - store_bit_field (sub, size_x, 0, GET_MODE (x), - val, GET_MODE_SIZE (GET_MODE (sub))); - - /* Make sure to unshare any shared rtl that store_bit_field - might have created. */ - unshare_all_rtl_again (get_insns ()); - - seq = get_insns (); - end_sequence (); - p = emit_insn_after (seq, insn); - if (NEXT_INSN (insn)) - compute_insns_for_mem (NEXT_INSN (insn), - p ? NEXT_INSN (p) : NULL_RTX, - ht); - } - else - { - rtx p = PREV_INSN (insn); - - start_sequence (); - val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX, - GET_MODE (x), GET_MODE (x), - GET_MODE_SIZE (GET_MODE (sub))); - - if (! validate_change (insn, loc, val, 0)) - { - /* Discard the current sequence and put the - ADDRESSOF on stack. */ - end_sequence (); - goto give_up; - } - - seq = get_insns (); - end_sequence (); - emit_insn_before (seq, insn); - compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (), - insn, ht); - } - - /* Remember the replacement so that the same one can be done - on the REG_NOTES. */ - purge_bitfield_addressof_replacements - = gen_rtx_EXPR_LIST (VOIDmode, x, - gen_rtx_EXPR_LIST - (VOIDmode, val, - purge_bitfield_addressof_replacements)); - - /* We replaced with a reg -- all done. */ - return true; - } - } - - else if (validate_change (insn, loc, sub, 0)) - { - /* Remember the replacement so that the same one can be done - on the REG_NOTES. */ - if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG) - { - rtx tem; - - for (tem = purge_addressof_replacements; - tem != NULL_RTX; - tem = XEXP (XEXP (tem, 1), 1)) - if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0))) - { - XEXP (XEXP (tem, 1), 0) = sub; - return true; - } - purge_addressof_replacements - = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0), - gen_rtx_EXPR_LIST (VOIDmode, sub, - purge_addressof_replacements)); - return true; - } - goto restart; - } - } - - give_up: - /* Scan all subexpressions. */ - fmt = GET_RTX_FORMAT (code); - for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) - { - if (*fmt == 'e') - result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, - may_postpone, ht); - else if (*fmt == 'E') - for (j = 0; j < XVECLEN (x, i); j++) - result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, - may_postpone, ht); - } - - return result; -} - -/* Return a hash value for K, a REG. */ - -static hashval_t -insns_for_mem_hash (const void *k) -{ - /* Use the address of the key for the hash value. */ - struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k; - return htab_hash_pointer (m->key); -} - -/* Return nonzero if K1 and K2 (two REGs) are the same. */ - -static int -insns_for_mem_comp (const void *k1, const void *k2) -{ - struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1; - struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2; - return m1->key == m2->key; -} - -struct insns_for_mem_walk_info -{ - /* The hash table that we are using to record which INSNs use which - MEMs. */ - htab_t ht; - - /* The INSN we are currently processing. */ - rtx insn; - - /* Zero if we are walking to find ADDRESSOFs, one if we are walking - to find the insns that use the REGs in the ADDRESSOFs. */ - int pass; -}; - -/* Called from compute_insns_for_mem via for_each_rtx. If R is a REG - that might be used in an ADDRESSOF expression, record this INSN in - the hash table given by DATA (which is really a pointer to an - insns_for_mem_walk_info structure). */ - -static int -insns_for_mem_walk (rtx *r, void *data) -{ - struct insns_for_mem_walk_info *ifmwi - = (struct insns_for_mem_walk_info *) data; - struct insns_for_mem_entry tmp; - tmp.insns = NULL_RTX; - - if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF - && GET_CODE (XEXP (*r, 0)) == REG) - { - void **e; - tmp.key = XEXP (*r, 0); - e = htab_find_slot (ifmwi->ht, &tmp, INSERT); - if (*e == NULL) - { - *e = ggc_alloc (sizeof (tmp)); - memcpy (*e, &tmp, sizeof (tmp)); - } - } - else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG) - { - struct insns_for_mem_entry *ifme; - tmp.key = *r; - ifme = htab_find (ifmwi->ht, &tmp); - - /* If we have not already recorded this INSN, do so now. Since - we process the INSNs in order, we know that if we have - recorded it it must be at the front of the list. */ - if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn)) - ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn, - ifme->insns); - } - - return 0; -} - -/* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use - which REGs in HT. */ - -static void -compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht) -{ - rtx insn; - struct insns_for_mem_walk_info ifmwi; - ifmwi.ht = ht; - - for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass) - for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn)) - if (INSN_P (insn)) - { - ifmwi.insn = insn; - for_each_rtx (&insn, insns_for_mem_walk, &ifmwi); - } -} - -/* Helper function for purge_addressof called through for_each_rtx. - Returns true iff the rtl is an ADDRESSOF. */ - -static int -is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED) -{ - return GET_CODE (*rtl) == ADDRESSOF; -} - -/* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining - (MEM (ADDRESSOF)) patterns, and force any needed registers into the - stack. */ - -void -purge_addressof (rtx insns) -{ - rtx insn, tmp; - htab_t ht; - - /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That - requires a fixup pass over the instruction stream to correct - INSNs that depended on the REG being a REG, and not a MEM. But, - these fixup passes are slow. Furthermore, most MEMs are not - mentioned in very many instructions. So, we speed up the process - by pre-calculating which REGs occur in which INSNs; that allows - us to perform the fixup passes much more quickly. */ - ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL); - compute_insns_for_mem (insns, NULL_RTX, ht); - - postponed_insns = NULL; - - for (insn = insns; insn; insn = NEXT_INSN (insn)) - if (INSN_P (insn)) - { - if (! purge_addressof_1 (&PATTERN (insn), insn, - asm_noperands (PATTERN (insn)) > 0, 0, 1, ht)) - /* If we could not replace the ADDRESSOFs in the insn, - something is wrong. */ - abort (); - - if (! purge_addressof_1 (®_NOTES (insn), NULL_RTX, 0, 0, 0, ht)) - { - /* If we could not replace the ADDRESSOFs in the insn's notes, - we can just remove the offending notes instead. */ - rtx note; - - for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) - { - /* If we find a REG_RETVAL note then the insn is a libcall. - Such insns must have REG_EQUAL notes as well, in order - for later passes of the compiler to work. So it is not - safe to delete the notes here, and instead we abort. */ - if (REG_NOTE_KIND (note) == REG_RETVAL) - abort (); - if (for_each_rtx (¬e, is_addressof, NULL)) - remove_note (insn, note); - } - } - } - - /* Process the postponed insns. */ - while (postponed_insns) - { - insn = XEXP (postponed_insns, 0); - tmp = postponed_insns; - postponed_insns = XEXP (postponed_insns, 1); - free_INSN_LIST_node (tmp); - - if (! purge_addressof_1 (&PATTERN (insn), insn, - asm_noperands (PATTERN (insn)) > 0, 0, 0, ht)) - abort (); - } - - /* Clean up. */ - purge_bitfield_addressof_replacements = 0; - purge_addressof_replacements = 0; - - /* REGs are shared. purge_addressof will destructively replace a REG - with a MEM, which creates shared MEMs. - - Unfortunately, the children of put_reg_into_stack assume that MEMs - referring to the same stack slot are shared (fixup_var_refs and - the associated hash table code). - - So, we have to do another unsharing pass after we have flushed any - REGs that had their address taken into the stack. - - It may be worth tracking whether or not we converted any REGs into - MEMs to avoid this overhead when it is not needed. */ - unshare_all_rtl_again (get_insns ()); -} - -/* Convert a SET of a hard subreg to a set of the appropriate hard - register. A subroutine of purge_hard_subreg_sets. */ - -static void -purge_single_hard_subreg_set (rtx pattern) -{ - rtx reg = SET_DEST (pattern); - enum machine_mode mode = GET_MODE (SET_DEST (pattern)); - int offset = 0; - - if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG - && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER) - { - offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)), - GET_MODE (SUBREG_REG (reg)), - SUBREG_BYTE (reg), - GET_MODE (reg)); - reg = SUBREG_REG (reg); - } - - - if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER) - { - reg = gen_rtx_REG (mode, REGNO (reg) + offset); - SET_DEST (pattern) = reg; - } -} - -/* Eliminate all occurrences of SETs of hard subregs from INSNS. The - only such SETs that we expect to see are those left in because - integrate can't handle sets of parts of a return value register. - - We don't use alter_subreg because we only want to eliminate subregs - of hard registers. */ - -void -purge_hard_subreg_sets (rtx insn) -{ - for (; insn; insn = NEXT_INSN (insn)) - { - if (INSN_P (insn)) - { - rtx pattern = PATTERN (insn); - switch (GET_CODE (pattern)) - { - case SET: - if (GET_CODE (SET_DEST (pattern)) == SUBREG) - purge_single_hard_subreg_set (pattern); - break; - case PARALLEL: - { - int j; - for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--) - { - rtx inner_pattern = XVECEXP (pattern, 0, j); - if (GET_CODE (inner_pattern) == SET - && GET_CODE (SET_DEST (inner_pattern)) == SUBREG) - purge_single_hard_subreg_set (inner_pattern); - } - } - break; - default: - break; - } - } - } -} - -/* Pass through the INSNS of function FNDECL and convert virtual register - references to hard register references. */ - -void -instantiate_virtual_regs (tree fndecl, rtx insns) -{ - rtx insn; - unsigned int i; - - /* Compute the offsets to use for this function. */ - in_arg_offset = FIRST_PARM_OFFSET (fndecl); - var_offset = STARTING_FRAME_OFFSET; - dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl); - out_arg_offset = STACK_POINTER_OFFSET; - cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl); - - /* Scan all variables and parameters of this function. For each that is - in memory, instantiate all virtual registers if the result is a valid - address. If not, we do it later. That will handle most uses of virtual - regs on many machines. */ - instantiate_decls (fndecl, 1); - - /* Initialize recognition, indicating that volatile is OK. */ - init_recog (); - - /* Scan through all the insns, instantiating every virtual register still - present. */ - for (insn = insns; insn; insn = NEXT_INSN (insn)) - if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN - || GET_CODE (insn) == CALL_INSN) - { - instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1); - if (INSN_DELETED_P (insn)) - continue; - instantiate_virtual_regs_1 (®_NOTES (insn), NULL_RTX, 0); - /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */ - if (GET_CODE (insn) == CALL_INSN) - instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn), - NULL_RTX, 0); - - /* Past this point all ASM statements should match. Verify that - to avoid failures later in the compilation process. */ - if (asm_noperands (PATTERN (insn)) >= 0 - && ! check_asm_operands (PATTERN (insn))) - instantiate_virtual_regs_lossage (insn); - } - - /* Instantiate the stack slots for the parm registers, for later use in - addressof elimination. */ - for (i = 0; i < max_parm_reg; ++i) - if (parm_reg_stack_loc[i]) - instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0); - - /* Now instantiate the remaining register equivalences for debugging info. - These will not be valid addresses. */ - instantiate_decls (fndecl, 0); - - /* Indicate that, from now on, assign_stack_local should use - frame_pointer_rtx. */ - virtuals_instantiated = 1; -} - -/* Scan all decls in FNDECL (both variables and parameters) and instantiate - all virtual registers in their DECL_RTL's. - - If VALID_ONLY, do this only if the resulting address is still valid. - Otherwise, always do it. */ - -static void -instantiate_decls (tree fndecl, int valid_only) -{ - tree decl; - - /* Process all parameters of the function. */ - for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl)) - { - HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl)); - HOST_WIDE_INT size_rtl; - - instantiate_decl (DECL_RTL (decl), size, valid_only); - - /* If the parameter was promoted, then the incoming RTL mode may be - larger than the declared type size. We must use the larger of - the two sizes. */ - size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))); - size = MAX (size_rtl, size); - instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only); - } - - /* Now process all variables defined in the function or its subblocks. */ - instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only); -} - -/* Subroutine of instantiate_decls: Process all decls in the given - BLOCK node and all its subblocks. */ - -static void -instantiate_decls_1 (tree let, int valid_only) -{ - tree t; - - for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t)) - if (DECL_RTL_SET_P (t)) - instantiate_decl (DECL_RTL (t), - int_size_in_bytes (TREE_TYPE (t)), - valid_only); - - /* Process all subblocks. */ - for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t)) - instantiate_decls_1 (t, valid_only); -} - -/* Subroutine of the preceding procedures: Given RTL representing a - decl and the size of the object, do any instantiation required. - - If VALID_ONLY is nonzero, it means that the RTL should only be - changed if the new address is valid. */ - -static void -instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only) -{ - enum machine_mode mode; - rtx addr; - - if (x == 0) - return; - - /* If this is a CONCAT, recurse for the pieces. */ - if (GET_CODE (x) == CONCAT) - { - instantiate_decl (XEXP (x, 0), size / 2, valid_only); - instantiate_decl (XEXP (x, 1), size / 2, valid_only); - return; - } - - /* If this is not a MEM, no need to do anything. Similarly if the - address is a constant or a register that is not a virtual register. */ - if (GET_CODE (x) != MEM) - return; - - addr = XEXP (x, 0); - if (CONSTANT_P (addr) - || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG) - || (GET_CODE (addr) == REG - && (REGNO (addr) < FIRST_VIRTUAL_REGISTER - || REGNO (addr) > LAST_VIRTUAL_REGISTER))) - return; - - /* If we should only do this if the address is valid, copy the address. - We need to do this so we can undo any changes that might make the - address invalid. This copy is unfortunate, but probably can't be - avoided. */ - - if (valid_only) - addr = copy_rtx (addr); - - instantiate_virtual_regs_1 (&addr, NULL_RTX, 0); - - if (valid_only && size >= 0) - { - unsigned HOST_WIDE_INT decl_size = size; - - /* Now verify that the resulting address is valid for every integer or - floating-point mode up to and including SIZE bytes long. We do this - since the object might be accessed in any mode and frame addresses - are shared. */ - - for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); - mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size; - mode = GET_MODE_WIDER_MODE (mode)) - if (! memory_address_p (mode, addr)) - return; - - for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); - mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size; - mode = GET_MODE_WIDER_MODE (mode)) - if (! memory_address_p (mode, addr)) - return; - } - - /* Put back the address now that we have updated it and we either know - it is valid or we don't care whether it is valid. */ - - XEXP (x, 0) = addr; -} /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX is a virtual register, return the equivalent hard register and set the @@ -3743,495 +1253,497 @@ instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset) else if (x == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (x == virtual_cfa_rtx) - new = arg_pointer_rtx, offset = cfa_offset; + { +#ifdef FRAME_POINTER_CFA_OFFSET + new = frame_pointer_rtx; +#else + new = arg_pointer_rtx; +#endif + offset = cfa_offset; + } else - return 0; + return NULL_RTX; *poffset = offset; return new; } - -/* Called when instantiate_virtual_regs has failed to update the instruction. - Usually this means that non-matching instruction has been emit, however for - asm statements it may be the problem in the constraints. */ -static void -instantiate_virtual_regs_lossage (rtx insn) -{ - if (asm_noperands (PATTERN (insn)) >= 0) - { - error_for_asm (insn, "impossible constraint in `asm'"); - delete_insn (insn); - } - else - abort (); -} -/* Given a pointer to a piece of rtx and an optional pointer to the - containing object, instantiate any virtual registers present in it. - - If EXTRA_INSNS, we always do the replacement and generate - any extra insns before OBJECT. If it zero, we do nothing if replacement - is not valid. - - Return 1 if we either had nothing to do or if we were able to do the - needed replacement. Return 0 otherwise; we only return zero if - EXTRA_INSNS is zero. - - We first try some simple transformations to avoid the creation of extra - pseudos. */ +/* A subroutine of instantiate_virtual_regs, called via for_each_rtx. + Instantiate any virtual registers present inside of *LOC. The expression + is simplified, as much as possible, but is not to be considered "valid" + in any sense implied by the target. If any change is made, set CHANGED + to true. */ static int -instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns) +instantiate_virtual_regs_in_rtx (rtx *loc, void *data) { - rtx x; - RTX_CODE code; - rtx new = 0; - HOST_WIDE_INT offset = 0; - rtx temp; - rtx seq; - int i, j; - const char *fmt; - - /* Re-start here to avoid recursion in common cases. */ - restart: + HOST_WIDE_INT offset; + bool *changed = (bool *) data; + rtx x, new; x = *loc; if (x == 0) - return 1; + return 0; - /* We may have detected and deleted invalid asm statements. */ - if (object && INSN_P (object) && INSN_DELETED_P (object)) - return 1; - - code = GET_CODE (x); - - /* Check for some special cases. */ - switch (code) + switch (GET_CODE (x)) { - case CONST_INT: - case CONST_DOUBLE: - case CONST_VECTOR: - case CONST: - case SYMBOL_REF: - case CODE_LABEL: - case PC: - case CC0: - case ASM_INPUT: - case ADDR_VEC: - case ADDR_DIFF_VEC: - case RETURN: - return 1; - - case SET: - /* We are allowed to set the virtual registers. This means that - the actual register should receive the source minus the - appropriate offset. This is used, for example, in the handling - of non-local gotos. */ - if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0) + case REG: + new = instantiate_new_reg (x, &offset); + if (new) { - rtx src = SET_SRC (x); - - /* We are setting the register, not using it, so the relevant - offset is the negative of the offset to use were we using - the register. */ - offset = - offset; - instantiate_virtual_regs_1 (&src, NULL_RTX, 0); - - /* The only valid sources here are PLUS or REG. Just do - the simplest possible thing to handle them. */ - if (GET_CODE (src) != REG && GET_CODE (src) != PLUS) - { - instantiate_virtual_regs_lossage (object); - return 1; - } - - start_sequence (); - if (GET_CODE (src) != REG) - temp = force_operand (src, NULL_RTX); - else - temp = src; - temp = force_operand (plus_constant (temp, offset), NULL_RTX); - seq = get_insns (); - end_sequence (); - - emit_insn_before (seq, object); - SET_DEST (x) = new; - - if (! validate_change (object, &SET_SRC (x), temp, 0) - || ! extra_insns) - instantiate_virtual_regs_lossage (object); - - return 1; + *loc = plus_constant (new, offset); + if (changed) + *changed = true; } - - instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns); - loc = &SET_SRC (x); - goto restart; + return -1; case PLUS: - /* Handle special case of virtual register plus constant. */ - if (CONSTANT_P (XEXP (x, 1))) + new = instantiate_new_reg (XEXP (x, 0), &offset); + if (new) { - rtx old, new_offset; + new = plus_constant (new, offset); + *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1)); + if (changed) + *changed = true; + return -1; + } - /* Check for (plus (plus VIRT foo) (const_int)) first. */ - if (GET_CODE (XEXP (x, 0)) == PLUS) - { - if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset))) - { - instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object, - extra_insns); - new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1)); - } - else - { - loc = &XEXP (x, 0); - goto restart; - } - } - -#ifdef POINTERS_EXTEND_UNSIGNED + /* FIXME -- from old code */ /* If we have (plus (subreg (virtual-reg)) (const_int)), we know we can commute the PLUS and SUBREG because pointers into the frame are well-behaved. */ - else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode - && GET_CODE (XEXP (x, 1)) == CONST_INT - && 0 != (new - = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)), - &offset)) - && validate_change (object, loc, - plus_constant (gen_lowpart (ptr_mode, - new), - offset - + INTVAL (XEXP (x, 1))), - 0)) - return 1; -#endif - else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0) - { - /* We know the second operand is a constant. Unless the - first operand is a REG (which has been already checked), - it needs to be checked. */ - if (GET_CODE (XEXP (x, 0)) != REG) - { - loc = &XEXP (x, 0); - goto restart; - } - return 1; - } - - new_offset = plus_constant (XEXP (x, 1), offset); - - /* If the new constant is zero, try to replace the sum with just - the register. */ - if (new_offset == const0_rtx - && validate_change (object, loc, new, 0)) - return 1; - - /* Next try to replace the register and new offset. - There are two changes to validate here and we can't assume that - in the case of old offset equals new just changing the register - will yield a valid insn. In the interests of a little efficiency, - however, we only call validate change once (we don't queue up the - changes and then call apply_change_group). */ - - old = XEXP (x, 0); - if (offset == 0 - ? ! validate_change (object, &XEXP (x, 0), new, 0) - : (XEXP (x, 0) = new, - ! validate_change (object, &XEXP (x, 1), new_offset, 0))) - { - if (! extra_insns) - { - XEXP (x, 0) = old; - return 0; - } - - /* Otherwise copy the new constant into a register and replace - constant with that register. */ - temp = gen_reg_rtx (Pmode); - XEXP (x, 0) = new; - if (validate_change (object, &XEXP (x, 1), temp, 0)) - emit_insn_before (gen_move_insn (temp, new_offset), object); - else - { - /* If that didn't work, replace this expression with a - register containing the sum. */ - - XEXP (x, 0) = old; - new = gen_rtx_PLUS (Pmode, new, new_offset); - - start_sequence (); - temp = force_operand (new, NULL_RTX); - seq = get_insns (); - end_sequence (); - - emit_insn_before (seq, object); - if (! validate_change (object, loc, temp, 0) - && ! validate_replace_rtx (x, temp, object)) - { - instantiate_virtual_regs_lossage (object); - return 1; - } - } - } - - return 1; - } - - /* Fall through to generic two-operand expression case. */ - case EXPR_LIST: - case CALL: - case COMPARE: - case MINUS: - case MULT: - case DIV: case UDIV: - case MOD: case UMOD: - case AND: case IOR: case XOR: - case ROTATERT: case ROTATE: - case ASHIFTRT: case LSHIFTRT: case ASHIFT: - case NE: case EQ: - case GE: case GT: case GEU: case GTU: - case LE: case LT: case LEU: case LTU: - if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1))) - instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns); - loc = &XEXP (x, 0); - goto restart; - - case MEM: - /* Most cases of MEM that convert to valid addresses have already been - handled by our scan of decls. The only special handling we - need here is to make a copy of the rtx to ensure it isn't being - shared if we have to change it to a pseudo. - - If the rtx is a simple reference to an address via a virtual register, - it can potentially be shared. In such cases, first try to make it - a valid address, which can also be shared. Otherwise, copy it and - proceed normally. - - First check for common cases that need no processing. These are - usually due to instantiation already being done on a previous instance - of a shared rtx. */ - - temp = XEXP (x, 0); - if (CONSTANT_ADDRESS_P (temp) -#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM - || temp == arg_pointer_rtx -#endif -#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM - || temp == hard_frame_pointer_rtx -#endif - || temp == frame_pointer_rtx) - return 1; - - if (GET_CODE (temp) == PLUS - && CONSTANT_ADDRESS_P (XEXP (temp, 1)) - && (XEXP (temp, 0) == frame_pointer_rtx -#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM - || XEXP (temp, 0) == hard_frame_pointer_rtx -#endif -#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM - || XEXP (temp, 0) == arg_pointer_rtx -#endif - )) - return 1; - - if (temp == virtual_stack_vars_rtx - || temp == virtual_incoming_args_rtx - || (GET_CODE (temp) == PLUS - && CONSTANT_ADDRESS_P (XEXP (temp, 1)) - && (XEXP (temp, 0) == virtual_stack_vars_rtx - || XEXP (temp, 0) == virtual_incoming_args_rtx))) - { - /* This MEM may be shared. If the substitution can be done without - the need to generate new pseudos, we want to do it in place - so all copies of the shared rtx benefit. The call below will - only make substitutions if the resulting address is still - valid. - - Note that we cannot pass X as the object in the recursive call - since the insn being processed may not allow all valid - addresses. However, if we were not passed on object, we can - only modify X without copying it if X will have a valid - address. - - ??? Also note that this can still lose if OBJECT is an insn that - has less restrictions on an address that some other insn. - In that case, we will modify the shared address. This case - doesn't seem very likely, though. One case where this could - happen is in the case of a USE or CLOBBER reference, but we - take care of that below. */ - - if (instantiate_virtual_regs_1 (&XEXP (x, 0), - object ? object : x, 0)) - return 1; - - /* Otherwise make a copy and process that copy. We copy the entire - RTL expression since it might be a PLUS which could also be - shared. */ - *loc = x = copy_rtx (x); - } - - /* Fall through to generic unary operation case. */ - case PREFETCH: - case SUBREG: - case STRICT_LOW_PART: - case NEG: case NOT: - case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC: - case SIGN_EXTEND: case ZERO_EXTEND: - case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: - case FLOAT: case FIX: - case UNSIGNED_FIX: case UNSIGNED_FLOAT: - case ABS: - case SQRT: - case FFS: - case CLZ: case CTZ: - case POPCOUNT: case PARITY: - /* These case either have just one operand or we know that we need not - check the rest of the operands. */ - loc = &XEXP (x, 0); - goto restart; - - case USE: - case CLOBBER: - /* If the operand is a MEM, see if the change is a valid MEM. If not, - go ahead and make the invalid one, but do it to a copy. For a REG, - just make the recursive call, since there's no chance of a problem. */ - - if ((GET_CODE (XEXP (x, 0)) == MEM - && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0), - 0)) - || (GET_CODE (XEXP (x, 0)) == REG - && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0))) - return 1; - - XEXP (x, 0) = copy_rtx (XEXP (x, 0)); - loc = &XEXP (x, 0); - goto restart; - - case REG: - /* Try to replace with a PLUS. If that doesn't work, compute the sum - in front of this insn and substitute the temporary. */ - if ((new = instantiate_new_reg (x, &offset)) != 0) - { - temp = plus_constant (new, offset); - if (!validate_change (object, loc, temp, 0)) - { - if (! extra_insns) - return 0; - - start_sequence (); - temp = force_operand (temp, NULL_RTX); - seq = get_insns (); - end_sequence (); - - emit_insn_before (seq, object); - if (! validate_change (object, loc, temp, 0) - && ! validate_replace_rtx (x, temp, object)) - instantiate_virtual_regs_lossage (object); - } - } - - return 1; - - case ADDRESSOF: - if (GET_CODE (XEXP (x, 0)) == REG) - return 1; - - else if (GET_CODE (XEXP (x, 0)) == MEM) - { - /* If we have a (addressof (mem ..)), do any instantiation inside - since we know we'll be making the inside valid when we finally - remove the ADDRESSOF. */ - instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0); - return 1; - } break; default: break; } - /* Scan all subexpressions. */ - fmt = GET_RTX_FORMAT (code); - for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) - if (*fmt == 'e') - { - if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns)) - return 0; - } - else if (*fmt == 'E') - for (j = 0; j < XVECLEN (x, i); j++) - if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object, - extra_insns)) - return 0; - - return 1; + return 0; } - -/* Optimization: assuming this function does not receive nonlocal gotos, - delete the handlers for such, as well as the insns to establish - and disestablish them. */ + +/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X + matches the predicate for insn CODE operand OPERAND. */ + +static int +safe_insn_predicate (int code, int operand, rtx x) +{ + const struct insn_operand_data *op_data; + + if (code < 0) + return true; + + op_data = &insn_data[code].operand[operand]; + if (op_data->predicate == NULL) + return true; + + return op_data->predicate (x, op_data->mode); +} + +/* A subroutine of instantiate_virtual_regs. Instantiate any virtual + registers present inside of insn. The result will be a valid insn. */ static void -delete_handlers (void) +instantiate_virtual_regs_in_insn (rtx insn) { - rtx insn; - for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + HOST_WIDE_INT offset; + int insn_code, i; + bool any_change = false; + rtx set, new, x, seq; + + /* There are some special cases to be handled first. */ + set = single_set (insn); + if (set) { - /* Delete the handler by turning off the flag that would - prevent jump_optimize from deleting it. - Also permit deletion of the nonlocal labels themselves - if nothing local refers to them. */ - if (GET_CODE (insn) == CODE_LABEL) + /* We're allowed to assign to a virtual register. This is interpreted + to mean that the underlying register gets assigned the inverse + transformation. This is used, for example, in the handling of + non-local gotos. */ + new = instantiate_new_reg (SET_DEST (set), &offset); + if (new) { - tree t, last_t; + start_sequence (); - LABEL_PRESERVE_P (insn) = 0; + for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL); + x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set), + GEN_INT (-offset)); + x = force_operand (x, new); + if (x != new) + emit_move_insn (new, x); - /* Remove it from the nonlocal_label list, to avoid confusing - flow. */ - for (t = nonlocal_labels, last_t = 0; t; - last_t = t, t = TREE_CHAIN (t)) - if (DECL_RTL (TREE_VALUE (t)) == insn) - break; - if (t) + seq = get_insns (); + end_sequence (); + + emit_insn_before (seq, insn); + delete_insn (insn); + return; + } + + /* Handle a straight copy from a virtual register by generating a + new add insn. The difference between this and falling through + to the generic case is avoiding a new pseudo and eliminating a + move insn in the initial rtl stream. */ + new = instantiate_new_reg (SET_SRC (set), &offset); + if (new && offset != 0 + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) + { + start_sequence (); + + x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, + new, GEN_INT (offset), SET_DEST (set), + 1, OPTAB_LIB_WIDEN); + if (x != SET_DEST (set)) + emit_move_insn (SET_DEST (set), x); + + seq = get_insns (); + end_sequence (); + + emit_insn_before (seq, insn); + delete_insn (insn); + return; + } + + extract_insn (insn); + insn_code = INSN_CODE (insn); + + /* Handle a plus involving a virtual register by determining if the + operands remain valid if they're modified in place. */ + if (GET_CODE (SET_SRC (set)) == PLUS + && recog_data.n_operands >= 3 + && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0) + && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1) + && GET_CODE (recog_data.operand[2]) == CONST_INT + && (new = instantiate_new_reg (recog_data.operand[1], &offset))) + { + offset += INTVAL (recog_data.operand[2]); + + /* If the sum is zero, then replace with a plain move. */ + if (offset == 0 + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) { - if (! last_t) - nonlocal_labels = TREE_CHAIN (nonlocal_labels); - else - TREE_CHAIN (last_t) = TREE_CHAIN (t); + start_sequence (); + emit_move_insn (SET_DEST (set), new); + seq = get_insns (); + end_sequence (); + + emit_insn_before (seq, insn); + delete_insn (insn); + return; + } + + x = gen_int_mode (offset, recog_data.operand_mode[2]); + + /* Using validate_change and apply_change_group here leaves + recog_data in an invalid state. Since we know exactly what + we want to check, do those two by hand. */ + if (safe_insn_predicate (insn_code, 1, new) + && safe_insn_predicate (insn_code, 2, x)) + { + *recog_data.operand_loc[1] = recog_data.operand[1] = new; + *recog_data.operand_loc[2] = recog_data.operand[2] = x; + any_change = true; + + /* Fall through into the regular operand fixup loop in + order to take care of operands other than 1 and 2. */ } } - if (GET_CODE (insn) == INSN) + } + else + { + extract_insn (insn); + insn_code = INSN_CODE (insn); + } + + /* In the general case, we expect virtual registers to appear only in + operands, and then only as either bare registers or inside memories. */ + for (i = 0; i < recog_data.n_operands; ++i) + { + x = recog_data.operand[i]; + switch (GET_CODE (x)) { - int can_delete = 0; - rtx t; - for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1)) - if (reg_mentioned_p (t, PATTERN (insn))) - { - can_delete = 1; - break; - } - if (can_delete - || (nonlocal_goto_stack_level != 0 - && reg_mentioned_p (nonlocal_goto_stack_level, - PATTERN (insn)))) - delete_related_insns (insn); + case MEM: + { + rtx addr = XEXP (x, 0); + bool changed = false; + + for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed); + if (!changed) + continue; + + start_sequence (); + x = replace_equiv_address (x, addr); + seq = get_insns (); + end_sequence (); + if (seq) + emit_insn_before (seq, insn); + } + break; + + case REG: + new = instantiate_new_reg (x, &offset); + if (new == NULL) + continue; + if (offset == 0) + x = new; + else + { + start_sequence (); + + /* Careful, special mode predicates may have stuff in + insn_data[insn_code].operand[i].mode that isn't useful + to us for computing a new value. */ + /* ??? Recognize address_operand and/or "p" constraints + to see if (plus new offset) is a valid before we put + this through expand_simple_binop. */ + x = expand_simple_binop (GET_MODE (x), PLUS, new, + GEN_INT (offset), NULL_RTX, + 1, OPTAB_LIB_WIDEN); + seq = get_insns (); + end_sequence (); + emit_insn_before (seq, insn); + } + break; + + case SUBREG: + new = instantiate_new_reg (SUBREG_REG (x), &offset); + if (new == NULL) + continue; + if (offset != 0) + { + start_sequence (); + new = expand_simple_binop (GET_MODE (new), PLUS, new, + GEN_INT (offset), NULL_RTX, + 1, OPTAB_LIB_WIDEN); + seq = get_insns (); + end_sequence (); + emit_insn_before (seq, insn); + } + x = simplify_gen_subreg (recog_data.operand_mode[i], new, + GET_MODE (new), SUBREG_BYTE (x)); + break; + + default: + continue; + } + + /* At this point, X contains the new value for the operand. + Validate the new value vs the insn predicate. Note that + asm insns will have insn_code -1 here. */ + if (!safe_insn_predicate (insn_code, i, x)) + { + start_sequence (); + x = force_reg (insn_data[insn_code].operand[i].mode, x); + seq = get_insns (); + end_sequence (); + if (seq) + emit_insn_before (seq, insn); + } + + *recog_data.operand_loc[i] = recog_data.operand[i] = x; + any_change = true; + } + + if (any_change) + { + /* Propagate operand changes into the duplicates. */ + for (i = 0; i < recog_data.n_dups; ++i) + *recog_data.dup_loc[i] + = recog_data.operand[(unsigned)recog_data.dup_num[i]]; + + /* Force re-recognition of the instruction for validation. */ + INSN_CODE (insn) = -1; + } + + if (asm_noperands (PATTERN (insn)) >= 0) + { + if (!check_asm_operands (PATTERN (insn))) + { + error_for_asm (insn, "impossible constraint in %"); + delete_insn (insn); } } + else + { + if (recog_memoized (insn) < 0) + fatal_insn_not_found (insn); + } } - -/* Return the first insn following those generated by `assign_parms'. */ -rtx -get_first_nonparm_insn (void) +/* Subroutine of instantiate_decls. Given RTL representing a decl, + do any instantiation required. */ + +static void +instantiate_decl (rtx x) { - if (last_parm_insn) - return NEXT_INSN (last_parm_insn); - return get_insns (); + rtx addr; + + if (x == 0) + return; + + /* If this is a CONCAT, recurse for the pieces. */ + if (GET_CODE (x) == CONCAT) + { + instantiate_decl (XEXP (x, 0)); + instantiate_decl (XEXP (x, 1)); + return; + } + + /* If this is not a MEM, no need to do anything. Similarly if the + address is a constant or a register that is not a virtual register. */ + if (!MEM_P (x)) + return; + + addr = XEXP (x, 0); + if (CONSTANT_P (addr) + || (REG_P (addr) + && (REGNO (addr) < FIRST_VIRTUAL_REGISTER + || REGNO (addr) > LAST_VIRTUAL_REGISTER))) + return; + + for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL); } +/* Helper for instantiate_decls called via walk_tree: Process all decls + in the given DECL_VALUE_EXPR. */ + +static tree +instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) +{ + tree t = *tp; + if (! EXPR_P (t)) + { + *walk_subtrees = 0; + if (DECL_P (t) && DECL_RTL_SET_P (t)) + instantiate_decl (DECL_RTL (t)); + } + return NULL; +} + +/* Subroutine of instantiate_decls: Process all decls in the given + BLOCK node and all its subblocks. */ + +static void +instantiate_decls_1 (tree let) +{ + tree t; + + for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t)) + { + if (DECL_RTL_SET_P (t)) + instantiate_decl (DECL_RTL (t)); + if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t)) + { + tree v = DECL_VALUE_EXPR (t); + walk_tree (&v, instantiate_expr, NULL, NULL); + } + } + + /* Process all subblocks. */ + for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t)) + instantiate_decls_1 (t); +} + +/* Scan all decls in FNDECL (both variables and parameters) and instantiate + all virtual registers in their DECL_RTL's. */ + +static void +instantiate_decls (tree fndecl) +{ + tree decl; + + /* Process all parameters of the function. */ + for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl)) + { + instantiate_decl (DECL_RTL (decl)); + instantiate_decl (DECL_INCOMING_RTL (decl)); + if (DECL_HAS_VALUE_EXPR_P (decl)) + { + tree v = DECL_VALUE_EXPR (decl); + walk_tree (&v, instantiate_expr, NULL, NULL); + } + } + + /* Now process all variables defined in the function or its subblocks. */ + instantiate_decls_1 (DECL_INITIAL (fndecl)); +} + +/* Pass through the INSNS of function FNDECL and convert virtual register + references to hard register references. */ + +static unsigned int +instantiate_virtual_regs (void) +{ + rtx insn; + + /* Compute the offsets to use for this function. */ + in_arg_offset = FIRST_PARM_OFFSET (current_function_decl); + var_offset = STARTING_FRAME_OFFSET; + dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl); + out_arg_offset = STACK_POINTER_OFFSET; +#ifdef FRAME_POINTER_CFA_OFFSET + cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl); +#else + cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl); +#endif + + /* Initialize recognition, indicating that volatile is OK. */ + init_recog (); + + /* Scan through all the insns, instantiating every virtual register still + present. */ + for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + if (INSN_P (insn)) + { + /* These patterns in the instruction stream can never be recognized. + Fortunately, they shouldn't contain virtual registers either. */ + if (GET_CODE (PATTERN (insn)) == USE + || GET_CODE (PATTERN (insn)) == CLOBBER + || GET_CODE (PATTERN (insn)) == ADDR_VEC + || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC + || GET_CODE (PATTERN (insn)) == ASM_INPUT) + continue; + + instantiate_virtual_regs_in_insn (insn); + + if (INSN_DELETED_P (insn)) + continue; + + for_each_rtx (®_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL); + + /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */ + if (GET_CODE (insn) == CALL_INSN) + for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn), + instantiate_virtual_regs_in_rtx, NULL); + } + + /* Instantiate the virtual registers in the DECLs for debugging purposes. */ + instantiate_decls (current_function_decl); + + /* Indicate that, from now on, assign_stack_local should use + frame_pointer_rtx. */ + virtuals_instantiated = 1; + return 0; +} + +struct tree_opt_pass pass_instantiate_virtual_regs = +{ + "vregs", /* name */ + NULL, /* gate */ + instantiate_virtual_regs, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func, /* todo_flags_finish */ + 0 /* letter */ +}; + + /* Return 1 if EXP is an aggregate type (or a value with aggregate type). This means a type for which function calls must pass an address to the function or get an address back from the function. @@ -4245,15 +1757,21 @@ aggregate_value_p (tree exp, tree fntype) tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp); + /* DECL node associated with FNTYPE when relevant, which we might need to + check for by-invisible-reference returns, typically for CALL_EXPR input + EXPressions. */ + tree fndecl = NULL_TREE; + if (fntype) switch (TREE_CODE (fntype)) { case CALL_EXPR: - fntype = get_callee_fndecl (fntype); - fntype = fntype ? TREE_TYPE (fntype) : 0; + fndecl = get_callee_fndecl (fntype); + fntype = fndecl ? TREE_TYPE (fndecl) : 0; break; case FUNCTION_DECL: - fntype = TREE_TYPE (fntype); + fndecl = fntype; + fntype = TREE_TYPE (fndecl); break; case FUNCTION_TYPE: case METHOD_TYPE: @@ -4263,11 +1781,28 @@ aggregate_value_p (tree exp, tree fntype) break; default: /* We don't expect other rtl types here. */ - abort(); + gcc_unreachable (); } if (TREE_CODE (type) == VOID_TYPE) return 0; + + /* If the front end has decided that this needs to be passed by + reference, do so. */ + if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL) + && DECL_BY_REFERENCE (exp)) + return 1; + + /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the + called function RESULT_DECL, meaning the function returns in memory by + invisible reference. This check lets front-ends not set TREE_ADDRESSABLE + on the function type, which used to be the way to request such a return + mechanism but might now be causing troubles at gimplification time if + temporaries with the function type need to be created. */ + if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl) + && DECL_BY_REFERENCE (DECL_RESULT (fndecl))) + return 1; + if (targetm.calls.return_in_memory (type, fntype)) return 1; /* Types that are TREE_ADDRESSABLE must be constructed in memory, @@ -4278,1116 +1813,141 @@ aggregate_value_p (tree exp, tree fntype) return 1; /* Make sure we have suitable call-clobbered regs to return the value in; if not, we must return it in memory. */ - reg = hard_function_value (type, 0, 0); + reg = hard_function_value (type, 0, fntype, 0); /* If we have something other than a REG (e.g. a PARALLEL), then assume it is OK. */ - if (GET_CODE (reg) != REG) + if (!REG_P (reg)) return 0; regno = REGNO (reg); - nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type)); + nregs = hard_regno_nregs[regno][TYPE_MODE (type)]; for (i = 0; i < nregs; i++) if (! call_used_regs[regno + i]) return 1; return 0; } -/* Assign RTL expressions to the function's parameters. - This may involve copying them into registers and using - those registers as the RTL for them. */ +/* Return true if we should assign DECL a pseudo register; false if it + should live on the local stack. */ -void -assign_parms (tree fndecl) +bool +use_register_for_decl (tree decl) { - tree parm; - CUMULATIVE_ARGS args_so_far; - /* Total space needed so far for args on the stack, - given as a constant and a tree-expression. */ - struct args_size stack_args_size; - tree fntype = TREE_TYPE (fndecl); - tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs; - /* This is used for the arg pointer when referring to stack args. */ - rtx internal_arg_pointer; - /* This is a dummy PARM_DECL that we used for the function result if - the function returns a structure. */ - tree function_result_decl = 0; - int varargs_setup = 0; - int reg_parm_stack_space ATTRIBUTE_UNUSED = 0; - rtx conversion_insns = 0; + /* Honor volatile. */ + if (TREE_SIDE_EFFECTS (decl)) + return false; - /* Nonzero if function takes extra anonymous args. - This means the last named arg must be on the stack - right before the anonymous ones. */ - int stdarg - = (TYPE_ARG_TYPES (fntype) != 0 - && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) - != void_type_node)); + /* Honor addressability. */ + if (TREE_ADDRESSABLE (decl)) + return false; - current_function_stdarg = stdarg; + /* Only register-like things go in registers. */ + if (DECL_MODE (decl) == BLKmode) + return false; - /* If the reg that the virtual arg pointer will be translated into is - not a fixed reg or is the stack pointer, make a copy of the virtual - arg pointer, and address parms via the copy. The frame pointer is - considered fixed even though it is not marked as such. + /* If -ffloat-store specified, don't put explicit float variables + into registers. */ + /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa + propagates values across these stores, and it probably shouldn't. */ + if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))) + return false; - The second time through, simply use ap to avoid generating rtx. */ + /* If we're not interested in tracking debugging information for + this decl, then we can certainly put it in a register. */ + if (DECL_IGNORED_P (decl)) + return true; - if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM - || ! (fixed_regs[ARG_POINTER_REGNUM] - || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))) - internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx); - else - internal_arg_pointer = virtual_incoming_args_rtx; - current_function_internal_arg_pointer = internal_arg_pointer; + return (optimize || DECL_REGISTER (decl)); +} - stack_args_size.constant = 0; - stack_args_size.var = 0; +/* Return true if TYPE should be passed by invisible reference. */ - /* If struct value address is treated as the first argument, make it so. */ - if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) - && ! current_function_returns_pcc_struct - && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) +bool +pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode, + tree type, bool named_arg) +{ + if (type) { - tree type = build_pointer_type (TREE_TYPE (fntype)); + /* If this type contains non-trivial constructors, then it is + forbidden for the middle-end to create any new copies. */ + if (TREE_ADDRESSABLE (type)) + return true; - function_result_decl = build_decl (PARM_DECL, NULL_TREE, type); - - DECL_ARG_TYPE (function_result_decl) = type; - TREE_CHAIN (function_result_decl) = fnargs; - fnargs = function_result_decl; + /* GCC post 3.4 passes *all* variable sized types by reference. */ + if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) + return true; } - orig_fnargs = fnargs; + return targetm.calls.pass_by_reference (ca, mode, type, named_arg); +} - max_parm_reg = LAST_VIRTUAL_REGISTER + 1; - parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx)); +/* Return true if TYPE, which is passed by reference, should be callee + copied instead of caller copied. */ - /* If the target wants to split complex arguments into scalars, do so. */ - if (targetm.calls.split_complex_arg) - fnargs = split_complex_args (fnargs); +bool +reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode, + tree type, bool named_arg) +{ + if (type && TREE_ADDRESSABLE (type)) + return false; + return targetm.calls.callee_copies (ca, mode, type, named_arg); +} -#ifdef REG_PARM_STACK_SPACE -#ifdef MAYBE_REG_PARM_STACK_SPACE - reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; -#else - reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); -#endif -#endif +/* Structures to communicate between the subroutines of assign_parms. + The first holds data persistent across all parameters, the second + is cleared out for each parameter. */ + +struct assign_parm_data_all +{ + CUMULATIVE_ARGS args_so_far; + struct args_size stack_args_size; + tree function_result_decl; + tree orig_fnargs; + rtx conversion_insns; + HOST_WIDE_INT pretend_args_size; + HOST_WIDE_INT extra_pretend_bytes; + int reg_parm_stack_space; +}; + +struct assign_parm_data_one +{ + tree nominal_type; + tree passed_type; + rtx entry_parm; + rtx stack_parm; + enum machine_mode nominal_mode; + enum machine_mode passed_mode; + enum machine_mode promoted_mode; + struct locate_and_pad_arg_data locate; + int partial; + BOOL_BITFIELD named_arg : 1; + BOOL_BITFIELD passed_pointer : 1; + BOOL_BITFIELD on_stack : 1; + BOOL_BITFIELD loaded_in_reg : 1; +}; + +/* A subroutine of assign_parms. Initialize ALL. */ + +static void +assign_parms_initialize_all (struct assign_parm_data_all *all) +{ + tree fntype; + + memset (all, 0, sizeof (*all)); + + fntype = TREE_TYPE (current_function_decl); #ifdef INIT_CUMULATIVE_INCOMING_ARGS - INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX); + INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX); #else - INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl, -1); + INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX, + current_function_decl, -1); #endif - /* We haven't yet found an argument that we must push and pretend the - caller did. */ - current_function_pretend_args_size = 0; - - for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) - { - rtx entry_parm; - rtx stack_parm; - enum machine_mode promoted_mode, passed_mode; - enum machine_mode nominal_mode, promoted_nominal_mode; - int unsignedp; - struct locate_and_pad_arg_data locate; - int passed_pointer = 0; - int did_conversion = 0; - tree passed_type = DECL_ARG_TYPE (parm); - tree nominal_type = TREE_TYPE (parm); - int last_named = 0, named_arg; - int in_regs; - int partial = 0; - int pretend_bytes = 0; - - /* Set LAST_NAMED if this is last named arg before last - anonymous args. */ - if (stdarg) - { - tree tem; - - for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem)) - if (DECL_NAME (tem)) - break; - - if (tem == 0) - last_named = 1; - } - /* Set NAMED_ARG if this arg should be treated as a named arg. For - most machines, if this is a varargs/stdarg function, then we treat - the last named arg as if it were anonymous too. */ - named_arg = targetm.calls.strict_argument_naming (&args_so_far) ? 1 : ! last_named; - - if (TREE_TYPE (parm) == error_mark_node - /* This can happen after weird syntax errors - or if an enum type is defined among the parms. */ - || TREE_CODE (parm) != PARM_DECL - || passed_type == NULL) - { - SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx)); - DECL_INCOMING_RTL (parm) = DECL_RTL (parm); - TREE_USED (parm) = 1; - continue; - } - - /* Find mode of arg as it is passed, and mode of arg - as it should be during execution of this function. */ - passed_mode = TYPE_MODE (passed_type); - nominal_mode = TYPE_MODE (nominal_type); - - /* If the parm's mode is VOID, its value doesn't matter, - and avoid the usual things like emit_move_insn that could crash. */ - if (nominal_mode == VOIDmode) - { - SET_DECL_RTL (parm, const0_rtx); - DECL_INCOMING_RTL (parm) = DECL_RTL (parm); - continue; - } - - /* If the parm is to be passed as a transparent union, use the - type of the first field for the tests below. We have already - verified that the modes are the same. */ - if (DECL_TRANSPARENT_UNION (parm) - || (TREE_CODE (passed_type) == UNION_TYPE - && TYPE_TRANSPARENT_UNION (passed_type))) - passed_type = TREE_TYPE (TYPE_FIELDS (passed_type)); - - /* See if this arg was passed by invisible reference. It is if - it is an object whose size depends on the contents of the - object itself or if the machine requires these objects be passed - that way. */ - - if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type)) - || TREE_ADDRESSABLE (passed_type) -#ifdef FUNCTION_ARG_PASS_BY_REFERENCE - || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode, - passed_type, named_arg) -#endif - ) - { - passed_type = nominal_type = build_pointer_type (passed_type); - passed_pointer = 1; - passed_mode = nominal_mode = Pmode; - } - /* See if the frontend wants to pass this by invisible reference. */ - else if (passed_type != nominal_type - && POINTER_TYPE_P (passed_type) - && TREE_TYPE (passed_type) == nominal_type) - { - nominal_type = passed_type; - passed_pointer = 1; - passed_mode = nominal_mode = Pmode; - } - - promoted_mode = passed_mode; - - if (targetm.calls.promote_function_args (TREE_TYPE (fndecl))) - { - /* Compute the mode in which the arg is actually extended to. */ - unsignedp = TREE_UNSIGNED (passed_type); - promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1); - } - - /* Let machine desc say which reg (if any) the parm arrives in. - 0 means it arrives on the stack. */ -#ifdef FUNCTION_INCOMING_ARG - entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, - passed_type, named_arg); -#else - entry_parm = FUNCTION_ARG (args_so_far, promoted_mode, - passed_type, named_arg); -#endif - - if (entry_parm == 0) - promoted_mode = passed_mode; - - /* If this is the last named parameter, do any required setup for - varargs or stdargs. We need to know about the case of this being an - addressable type, in which case we skip the registers it - would have arrived in. - - For stdargs, LAST_NAMED will be set for two parameters, the one that - is actually the last named, and the dummy parameter. We only - want to do this action once. - - Also, indicate when RTL generation is to be suppressed. */ - if (last_named && !varargs_setup) - { - int varargs_pretend_bytes = 0; - targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode, - passed_type, - &varargs_pretend_bytes, 0); - varargs_setup = 1; - - /* If the back-end has requested extra stack space, record how - much is needed. Do not change pretend_args_size otherwise - since it may be nonzero from an earlier partial argument. */ - if (varargs_pretend_bytes > 0) - current_function_pretend_args_size = varargs_pretend_bytes; - } - - /* Determine parm's home in the stack, - in case it arrives in the stack or we should pretend it did. - - Compute the stack position and rtx where the argument arrives - and its size. - - There is one complexity here: If this was a parameter that would - have been passed in registers, but wasn't only because it is - __builtin_va_alist, we want locate_and_pad_parm to treat it as if - it came in a register so that REG_PARM_STACK_SPACE isn't skipped. - In this case, we call FUNCTION_ARG with NAMED set to 1 instead of - 0 as it was the previous time. */ - in_regs = entry_parm != 0; -#ifdef STACK_PARMS_IN_REG_PARM_AREA - in_regs = 1; -#endif - if (!in_regs && !named_arg) - { - int pretend_named = - targetm.calls.pretend_outgoing_varargs_named (&args_so_far); - if (pretend_named) - { -#ifdef FUNCTION_INCOMING_ARG - in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, - passed_type, - pretend_named) != 0; -#else - in_regs = FUNCTION_ARG (args_so_far, promoted_mode, - passed_type, - pretend_named) != 0; -#endif - } - } - - /* If this parameter was passed both in registers and in the stack, - use the copy on the stack. */ - if (MUST_PASS_IN_STACK (promoted_mode, passed_type)) - entry_parm = 0; - -#ifdef FUNCTION_ARG_PARTIAL_NREGS - if (entry_parm) - { - partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode, - passed_type, named_arg); - if (partial -#ifndef MAYBE_REG_PARM_STACK_SPACE - /* The caller might already have allocated stack space - for the register parameters. */ - && reg_parm_stack_space == 0 -#endif - ) - { - /* Part of this argument is passed in registers and part - is passed on the stack. Ask the prologue code to extend - the stack part so that we can recreate the full value. - - PRETEND_BYTES is the size of the registers we need to store. - CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra - stack space that the prologue should allocate. - - Internally, gcc assumes that the argument pointer is - aligned to STACK_BOUNDARY bits. This is used both for - alignment optimizations (see init_emit) and to locate - arguments that are aligned to more than PARM_BOUNDARY - bits. We must preserve this invariant by rounding - CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack - boundary. */ - pretend_bytes = partial * UNITS_PER_WORD; - current_function_pretend_args_size - = CEIL_ROUND (pretend_bytes, STACK_BYTES); - - /* If PRETEND_BYTES != CURRENT_FUNCTION_PRETEND_ARGS_SIZE, - insert the padding before the start of the first pretend - argument. */ - stack_args_size.constant - = (current_function_pretend_args_size - pretend_bytes); - } - } -#endif - - memset (&locate, 0, sizeof (locate)); - locate_and_pad_parm (promoted_mode, passed_type, in_regs, - entry_parm ? partial : 0, fndecl, - &stack_args_size, &locate); - - { - rtx offset_rtx; - unsigned int align, boundary; - - /* If we're passing this arg using a reg, make its stack home - the aligned stack slot. */ - if (entry_parm) - offset_rtx = ARGS_SIZE_RTX (locate.slot_offset); - else - offset_rtx = ARGS_SIZE_RTX (locate.offset); - - if (offset_rtx == const0_rtx) - stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer); - else - stack_parm = gen_rtx_MEM (promoted_mode, - gen_rtx_PLUS (Pmode, - internal_arg_pointer, - offset_rtx)); - - set_mem_attributes (stack_parm, parm, 1); - - boundary = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type); - align = 0; - - /* If we're padding upward, we know that the alignment of the slot - is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're - intentionally forcing upward padding. Otherwise we have to come - up with a guess at the alignment based on OFFSET_RTX. */ - if (locate.where_pad == upward || entry_parm) - align = boundary; - else if (GET_CODE (offset_rtx) == CONST_INT) - { - align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary; - align = align & -align; - } - if (align > 0) - set_mem_align (stack_parm, align); - - if (entry_parm) - set_reg_attrs_for_parm (entry_parm, stack_parm); - } - - /* If this parm was passed part in regs and part in memory, - pretend it arrived entirely in memory - by pushing the register-part onto the stack. - - In the special case of a DImode or DFmode that is split, - we could put it together in a pseudoreg directly, - but for now that's not worth bothering with. */ - - if (partial) - { - /* Handle calls that pass values in multiple non-contiguous - locations. The Irix 6 ABI has examples of this. */ - if (GET_CODE (entry_parm) == PARALLEL) - emit_group_store (validize_mem (stack_parm), entry_parm, - TREE_TYPE (parm), - int_size_in_bytes (TREE_TYPE (parm))); - - else - move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), - partial); - - entry_parm = stack_parm; - } - - /* If we didn't decide this parm came in a register, - by default it came on the stack. */ - if (entry_parm == 0) - entry_parm = stack_parm; - - /* Record permanently how this parm was passed. */ - DECL_INCOMING_RTL (parm) = entry_parm; - - /* If there is actually space on the stack for this parm, - count it in stack_args_size; otherwise set stack_parm to 0 - to indicate there is no preallocated stack slot for the parm. */ - - if (entry_parm == stack_parm - || (GET_CODE (entry_parm) == PARALLEL - && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX) -#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE) - /* On some machines, even if a parm value arrives in a register - there is still an (uninitialized) stack slot allocated for it. - - ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell - whether this parameter already has a stack slot allocated, - because an arg block exists only if current_function_args_size - is larger than some threshold, and we haven't calculated that - yet. So, for now, we just assume that stack slots never exist - in this case. */ - || REG_PARM_STACK_SPACE (fndecl) > 0 -#endif - ) - { - stack_args_size.constant += pretend_bytes + locate.size.constant; - if (locate.size.var) - ADD_PARM_SIZE (stack_args_size, locate.size.var); - } - else - /* No stack slot was pushed for this parm. */ - stack_parm = 0; - - /* Update info on where next arg arrives in registers. */ - - FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode, - passed_type, named_arg); - - /* If we can't trust the parm stack slot to be aligned enough - for its ultimate type, don't use that slot after entry. - We'll make another stack slot, if we need one. */ - if (STRICT_ALIGNMENT && stack_parm - && GET_MODE_ALIGNMENT (nominal_mode) > MEM_ALIGN (stack_parm)) - stack_parm = 0; - - /* If parm was passed in memory, and we need to convert it on entry, - don't store it back in that same slot. */ - if (entry_parm == stack_parm - && nominal_mode != BLKmode && nominal_mode != passed_mode) - stack_parm = 0; - - /* When an argument is passed in multiple locations, we can't - make use of this information, but we can save some copying if - the whole argument is passed in a single register. */ - if (GET_CODE (entry_parm) == PARALLEL - && nominal_mode != BLKmode && passed_mode != BLKmode) - { - int i, len = XVECLEN (entry_parm, 0); - - for (i = 0; i < len; i++) - if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX - && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG - && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) - == passed_mode) - && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) - { - entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); - DECL_INCOMING_RTL (parm) = entry_parm; - break; - } - } - - /* ENTRY_PARM is an RTX for the parameter as it arrives, - in the mode in which it arrives. - STACK_PARM is an RTX for a stack slot where the parameter can live - during the function (in case we want to put it there). - STACK_PARM is 0 if no stack slot was pushed for it. - - Now output code if necessary to convert ENTRY_PARM to - the type in which this function declares it, - and store that result in an appropriate place, - which may be a pseudo reg, may be STACK_PARM, - or may be a local stack slot if STACK_PARM is 0. - - Set DECL_RTL to that place. */ - - if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode - && XVECLEN (entry_parm, 0) > 1) - { - /* Reconstitute objects the size of a register or larger using - register operations instead of the stack. */ - rtx parmreg = gen_reg_rtx (nominal_mode); - - if (REG_P (parmreg)) - { - unsigned int regno = REGNO (parmreg); - - emit_group_store (parmreg, entry_parm, TREE_TYPE (parm), - int_size_in_bytes (TREE_TYPE (parm))); - SET_DECL_RTL (parm, parmreg); - - if (regno >= max_parm_reg) - { - rtx *new; - int old_max_parm_reg = max_parm_reg; - - /* It's slow to expand this one register at a time, - but it's also rare and we need max_parm_reg to be - precisely correct. */ - max_parm_reg = regno + 1; - new = ggc_realloc (parm_reg_stack_loc, - max_parm_reg * sizeof (rtx)); - memset (new + old_max_parm_reg, 0, - (max_parm_reg - old_max_parm_reg) * sizeof (rtx)); - parm_reg_stack_loc = new; - parm_reg_stack_loc[regno] = stack_parm; - } - } - } - - if (nominal_mode == BLKmode -#ifdef BLOCK_REG_PADDING - || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward) - && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD) -#endif - || GET_CODE (entry_parm) == PARALLEL) - { - /* If a BLKmode arrives in registers, copy it to a stack slot. - Handle calls that pass values in multiple non-contiguous - locations. The Irix 6 ABI has examples of this. */ - if (GET_CODE (entry_parm) == REG - || GET_CODE (entry_parm) == PARALLEL) - { - int size = int_size_in_bytes (TREE_TYPE (parm)); - int size_stored = CEIL_ROUND (size, UNITS_PER_WORD); - rtx mem; - - /* Note that we will be storing an integral number of words. - So we have to be careful to ensure that we allocate an - integral number of words. We do this below in the - assign_stack_local if space was not allocated in the argument - list. If it was, this will not work if PARM_BOUNDARY is not - a multiple of BITS_PER_WORD. It isn't clear how to fix this - if it becomes a problem. Exception is when BLKmode arrives - with arguments not conforming to word_mode. */ - - if (stack_parm == 0) - { - stack_parm = assign_stack_local (BLKmode, size_stored, 0); - PUT_MODE (stack_parm, GET_MODE (entry_parm)); - set_mem_attributes (stack_parm, parm, 1); - } - else if (GET_CODE (entry_parm) == PARALLEL) - ; - else if (PARM_BOUNDARY % BITS_PER_WORD != 0) - abort (); - - mem = validize_mem (stack_parm); - - /* Handle calls that pass values in multiple non-contiguous - locations. The Irix 6 ABI has examples of this. */ - if (GET_CODE (entry_parm) == PARALLEL) - emit_group_store (mem, entry_parm, TREE_TYPE (parm), size); - - else if (size == 0) - ; - - /* If SIZE is that of a mode no bigger than a word, just use - that mode's store operation. */ - else if (size <= UNITS_PER_WORD) - { - enum machine_mode mode - = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); - - if (mode != BLKmode -#ifdef BLOCK_REG_PADDING - && (size == UNITS_PER_WORD - || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1) - != (BYTES_BIG_ENDIAN ? upward : downward))) -#endif - ) - { - rtx reg = gen_rtx_REG (mode, REGNO (entry_parm)); - emit_move_insn (change_address (mem, mode, 0), reg); - } - - /* Blocks smaller than a word on a BYTES_BIG_ENDIAN - machine must be aligned to the left before storing - to memory. Note that the previous test doesn't - handle all cases (e.g. SIZE == 3). */ - else if (size != UNITS_PER_WORD -#ifdef BLOCK_REG_PADDING - && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1) - == downward) -#else - && BYTES_BIG_ENDIAN -#endif - ) - { - rtx tem, x; - int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; - rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); - - x = expand_binop (word_mode, ashl_optab, reg, - GEN_INT (by), 0, 1, OPTAB_WIDEN); - tem = change_address (mem, word_mode, 0); - emit_move_insn (tem, x); - } - else - move_block_from_reg (REGNO (entry_parm), mem, - size_stored / UNITS_PER_WORD); - } - else - move_block_from_reg (REGNO (entry_parm), mem, - size_stored / UNITS_PER_WORD); - } - /* If parm is already bound to register pair, don't change - this binding. */ - if (! DECL_RTL_SET_P (parm)) - SET_DECL_RTL (parm, stack_parm); - } - else if (! ((! optimize - && ! DECL_REGISTER (parm)) - || TREE_SIDE_EFFECTS (parm) - /* If -ffloat-store specified, don't put explicit - float variables into registers. */ - || (flag_float_store - && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)) - /* Always assign pseudo to structure return or item passed - by invisible reference. */ - || passed_pointer || parm == function_result_decl) - { - /* Store the parm in a pseudoregister during the function, but we - may need to do it in a wider mode. */ - - rtx parmreg; - unsigned int regno, regnoi = 0, regnor = 0; - - unsignedp = TREE_UNSIGNED (TREE_TYPE (parm)); - - promoted_nominal_mode - = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0); - - parmreg = gen_reg_rtx (promoted_nominal_mode); - mark_user_reg (parmreg); - - /* If this was an item that we received a pointer to, set DECL_RTL - appropriately. */ - if (passed_pointer) - { - rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), - parmreg); - set_mem_attributes (x, parm, 1); - SET_DECL_RTL (parm, x); - } - else - { - SET_DECL_RTL (parm, parmreg); - maybe_set_unchanging (DECL_RTL (parm), parm); - } - - /* Copy the value into the register. */ - if (nominal_mode != passed_mode - || promoted_nominal_mode != promoted_mode) - { - int save_tree_used; - /* ENTRY_PARM has been converted to PROMOTED_MODE, its - mode, by the caller. We now have to convert it to - NOMINAL_MODE, if different. However, PARMREG may be in - a different mode than NOMINAL_MODE if it is being stored - promoted. - - If ENTRY_PARM is a hard register, it might be in a register - not valid for operating in its mode (e.g., an odd-numbered - register for a DFmode). In that case, moves are the only - thing valid, so we can't do a convert from there. This - occurs when the calling sequence allow such misaligned - usages. - - In addition, the conversion may involve a call, which could - clobber parameters which haven't been copied to pseudo - registers yet. Therefore, we must first copy the parm to - a pseudo reg here, and save the conversion until after all - parameters have been moved. */ - - rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); - - emit_move_insn (tempreg, validize_mem (entry_parm)); - - push_to_sequence (conversion_insns); - tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp); - - if (GET_CODE (tempreg) == SUBREG - && GET_MODE (tempreg) == nominal_mode - && GET_CODE (SUBREG_REG (tempreg)) == REG - && nominal_mode == passed_mode - && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm) - && GET_MODE_SIZE (GET_MODE (tempreg)) - < GET_MODE_SIZE (GET_MODE (entry_parm))) - { - /* The argument is already sign/zero extended, so note it - into the subreg. */ - SUBREG_PROMOTED_VAR_P (tempreg) = 1; - SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp); - } - - /* TREE_USED gets set erroneously during expand_assignment. */ - save_tree_used = TREE_USED (parm); - expand_assignment (parm, - make_tree (nominal_type, tempreg), 0); - TREE_USED (parm) = save_tree_used; - conversion_insns = get_insns (); - did_conversion = 1; - end_sequence (); - } - else - emit_move_insn (parmreg, validize_mem (entry_parm)); - - /* If we were passed a pointer but the actual value - can safely live in a register, put it in one. */ - if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode - /* If by-reference argument was promoted, demote it. */ - && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm)) - || ! ((! optimize - && ! DECL_REGISTER (parm)) - || TREE_SIDE_EFFECTS (parm) - /* If -ffloat-store specified, don't put explicit - float variables into registers. */ - || (flag_float_store - && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))) - { - /* We can't use nominal_mode, because it will have been set to - Pmode above. We must use the actual mode of the parm. */ - parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); - mark_user_reg (parmreg); - if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm))) - { - rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm))); - int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm)); - push_to_sequence (conversion_insns); - emit_move_insn (tempreg, DECL_RTL (parm)); - SET_DECL_RTL (parm, - convert_to_mode (GET_MODE (parmreg), - tempreg, - unsigned_p)); - emit_move_insn (parmreg, DECL_RTL (parm)); - conversion_insns = get_insns(); - did_conversion = 1; - end_sequence (); - } - else - emit_move_insn (parmreg, DECL_RTL (parm)); - SET_DECL_RTL (parm, parmreg); - /* STACK_PARM is the pointer, not the parm, and PARMREG is - now the parm. */ - stack_parm = 0; - } -#ifdef FUNCTION_ARG_CALLEE_COPIES - /* If we are passed an arg by reference and it is our responsibility - to make a copy, do it now. - PASSED_TYPE and PASSED mode now refer to the pointer, not the - original argument, so we must recreate them in the call to - FUNCTION_ARG_CALLEE_COPIES. */ - /* ??? Later add code to handle the case that if the argument isn't - modified, don't do the copy. */ - - else if (passed_pointer - && FUNCTION_ARG_CALLEE_COPIES (args_so_far, - TYPE_MODE (TREE_TYPE (passed_type)), - TREE_TYPE (passed_type), - named_arg) - && ! TREE_ADDRESSABLE (TREE_TYPE (passed_type))) - { - rtx copy; - tree type = TREE_TYPE (passed_type); - - /* This sequence may involve a library call perhaps clobbering - registers that haven't been copied to pseudos yet. */ - - push_to_sequence (conversion_insns); - - if (!COMPLETE_TYPE_P (type) - || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) - /* This is a variable sized object. */ - copy = gen_rtx_MEM (BLKmode, - allocate_dynamic_stack_space - (expr_size (parm), NULL_RTX, - TYPE_ALIGN (type))); - else - copy = assign_stack_temp (TYPE_MODE (type), - int_size_in_bytes (type), 1); - set_mem_attributes (copy, parm, 1); - - store_expr (parm, copy, 0); - emit_move_insn (parmreg, XEXP (copy, 0)); - conversion_insns = get_insns (); - did_conversion = 1; - end_sequence (); - } -#endif /* FUNCTION_ARG_CALLEE_COPIES */ - - /* In any case, record the parm's desired stack location - in case we later discover it must live in the stack. - - If it is a COMPLEX value, store the stack location for both - halves. */ - - if (GET_CODE (parmreg) == CONCAT) - regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1))); - else - regno = REGNO (parmreg); - - if (regno >= max_parm_reg) - { - rtx *new; - int old_max_parm_reg = max_parm_reg; - - /* It's slow to expand this one register at a time, - but it's also rare and we need max_parm_reg to be - precisely correct. */ - max_parm_reg = regno + 1; - new = ggc_realloc (parm_reg_stack_loc, - max_parm_reg * sizeof (rtx)); - memset (new + old_max_parm_reg, 0, - (max_parm_reg - old_max_parm_reg) * sizeof (rtx)); - parm_reg_stack_loc = new; - } - - if (GET_CODE (parmreg) == CONCAT) - { - enum machine_mode submode = GET_MODE (XEXP (parmreg, 0)); - - regnor = REGNO (gen_realpart (submode, parmreg)); - regnoi = REGNO (gen_imagpart (submode, parmreg)); - - if (stack_parm != 0) - { - parm_reg_stack_loc[regnor] - = gen_realpart (submode, stack_parm); - parm_reg_stack_loc[regnoi] - = gen_imagpart (submode, stack_parm); - } - else - { - parm_reg_stack_loc[regnor] = 0; - parm_reg_stack_loc[regnoi] = 0; - } - } - else - parm_reg_stack_loc[REGNO (parmreg)] = stack_parm; - - /* Mark the register as eliminable if we did no conversion - and it was copied from memory at a fixed offset, - and the arg pointer was not copied to a pseudo-reg. - If the arg pointer is a pseudo reg or the offset formed - an invalid address, such memory-equivalences - as we make here would screw up life analysis for it. */ - if (nominal_mode == passed_mode - && ! did_conversion - && stack_parm != 0 - && GET_CODE (stack_parm) == MEM - && locate.offset.var == 0 - && reg_mentioned_p (virtual_incoming_args_rtx, - XEXP (stack_parm, 0))) - { - rtx linsn = get_last_insn (); - rtx sinsn, set; - - /* Mark complex types separately. */ - if (GET_CODE (parmreg) == CONCAT) - /* Scan backwards for the set of the real and - imaginary parts. */ - for (sinsn = linsn; sinsn != 0; - sinsn = prev_nonnote_insn (sinsn)) - { - set = single_set (sinsn); - if (set != 0 - && SET_DEST (set) == regno_reg_rtx [regnoi]) - REG_NOTES (sinsn) - = gen_rtx_EXPR_LIST (REG_EQUIV, - parm_reg_stack_loc[regnoi], - REG_NOTES (sinsn)); - else if (set != 0 - && SET_DEST (set) == regno_reg_rtx [regnor]) - REG_NOTES (sinsn) - = gen_rtx_EXPR_LIST (REG_EQUIV, - parm_reg_stack_loc[regnor], - REG_NOTES (sinsn)); - } - else if ((set = single_set (linsn)) != 0 - && SET_DEST (set) == parmreg) - REG_NOTES (linsn) - = gen_rtx_EXPR_LIST (REG_EQUIV, - stack_parm, REG_NOTES (linsn)); - } - - /* For pointer data type, suggest pointer register. */ - if (POINTER_TYPE_P (TREE_TYPE (parm))) - mark_reg_pointer (parmreg, - TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); - - /* If something wants our address, try to use ADDRESSOF. */ - if (TREE_ADDRESSABLE (parm)) - { - /* If we end up putting something into the stack, - fixup_var_refs_insns will need to make a pass over - all the instructions. It looks through the pending - sequences -- but it can't see the ones in the - CONVERSION_INSNS, if they're not on the sequence - stack. So, we go back to that sequence, just so that - the fixups will happen. */ - push_to_sequence (conversion_insns); - put_var_into_stack (parm, /*rescan=*/true); - conversion_insns = get_insns (); - end_sequence (); - } - } - else - { - /* Value must be stored in the stack slot STACK_PARM - during function execution. */ - - if (promoted_mode != nominal_mode) - { - /* Conversion is required. */ - rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); - - emit_move_insn (tempreg, validize_mem (entry_parm)); - - push_to_sequence (conversion_insns); - entry_parm = convert_to_mode (nominal_mode, tempreg, - TREE_UNSIGNED (TREE_TYPE (parm))); - if (stack_parm) - /* ??? This may need a big-endian conversion on sparc64. */ - stack_parm = adjust_address (stack_parm, nominal_mode, 0); - - conversion_insns = get_insns (); - did_conversion = 1; - end_sequence (); - } - - if (entry_parm != stack_parm) - { - if (stack_parm == 0) - { - stack_parm - = assign_stack_local (GET_MODE (entry_parm), - GET_MODE_SIZE (GET_MODE (entry_parm)), - 0); - set_mem_attributes (stack_parm, parm, 1); - } - - if (promoted_mode != nominal_mode) - { - push_to_sequence (conversion_insns); - emit_move_insn (validize_mem (stack_parm), - validize_mem (entry_parm)); - conversion_insns = get_insns (); - end_sequence (); - } - else - emit_move_insn (validize_mem (stack_parm), - validize_mem (entry_parm)); - } - - SET_DECL_RTL (parm, stack_parm); - } - } - - if (targetm.calls.split_complex_arg && fnargs != orig_fnargs) - { - for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm)) - { - if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE - && targetm.calls.split_complex_arg (TREE_TYPE (parm))) - { - rtx tmp, real, imag; - enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm)); - - real = DECL_RTL (fnargs); - imag = DECL_RTL (TREE_CHAIN (fnargs)); - if (inner != GET_MODE (real)) - { - real = gen_lowpart_SUBREG (inner, real); - imag = gen_lowpart_SUBREG (inner, imag); - } - tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); - SET_DECL_RTL (parm, tmp); - - real = DECL_INCOMING_RTL (fnargs); - imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs)); - if (inner != GET_MODE (real)) - { - real = gen_lowpart_SUBREG (inner, real); - imag = gen_lowpart_SUBREG (inner, imag); - } - tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); - DECL_INCOMING_RTL (parm) = tmp; - fnargs = TREE_CHAIN (fnargs); - } - else - { - SET_DECL_RTL (parm, DECL_RTL (fnargs)); - DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs); - } - fnargs = TREE_CHAIN (fnargs); - } - } - - /* Output all parameter conversion instructions (possibly including calls) - now that all parameters have been copied out of hard registers. */ - emit_insn (conversion_insns); - - /* If we are receiving a struct value address as the first argument, set up - the RTL for the function result. As this might require code to convert - the transmitted address to Pmode, we do this here to ensure that possible - preliminary conversions of the address have been emitted already. */ - if (function_result_decl) - { - tree result = DECL_RESULT (fndecl); - rtx addr = DECL_RTL (function_result_decl); - rtx x; - - addr = convert_memory_address (Pmode, addr); - x = gen_rtx_MEM (DECL_MODE (result), addr); - set_mem_attributes (x, result, 1); - SET_DECL_RTL (result, x); - } - - last_parm_insn = get_last_insn (); - - current_function_args_size = stack_args_size.constant; - - /* Adjust function incoming argument size for alignment and - minimum length. */ - #ifdef REG_PARM_STACK_SPACE -#ifndef MAYBE_REG_PARM_STACK_SPACE - current_function_args_size = MAX (current_function_args_size, - REG_PARM_STACK_SPACE (fndecl)); + all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl); #endif -#endif - - current_function_args_size - = ((current_function_args_size + STACK_BYTES - 1) - / STACK_BYTES) * STACK_BYTES; - -#ifdef ARGS_GROW_DOWNWARD - current_function_arg_offset_rtx - = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant) - : expand_expr (size_diffop (stack_args_size.var, - size_int (-stack_args_size.constant)), - NULL_RTX, VOIDmode, 0)); -#else - current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size); -#endif - - /* See how many bytes, if any, of its args a function should try to pop - on return. */ - - current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl), - current_function_args_size); - - /* For stdarg.h function, save info about - regs and stack space used by the named args. */ - - current_function_args_info = args_so_far; - - /* Set the rtx used for the function return value. Put this in its - own variable so any optimizers that need this information don't have - to include tree.h. Do this here so it gets done when an inlined - function gets output. */ - - current_function_return_rtx - = (DECL_RTL_SET_P (DECL_RESULT (fndecl)) - ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX); - - /* If scalar return value was computed in a pseudo-reg, or was a named - return value that got dumped to the stack, copy that to the hard - return register. */ - if (DECL_RTL_SET_P (DECL_RESULT (fndecl))) - { - tree decl_result = DECL_RESULT (fndecl); - rtx decl_rtl = DECL_RTL (decl_result); - - if (REG_P (decl_rtl) - ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER - : DECL_REGISTER (decl_result)) - { - rtx real_decl_rtl; - -#ifdef FUNCTION_OUTGOING_VALUE - real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result), - fndecl); -#else - real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result), - fndecl); -#endif - REG_FUNCTION_VALUE_P (real_decl_rtl) = 1; - /* The delay slot scheduler assumes that current_function_return_rtx - holds the hard register containing the return value, not a - temporary pseudo. */ - current_function_return_rtx = real_decl_rtl; - } - } } /* If ARGS contains entries with complex types, split the entry into two @@ -5420,6 +1980,7 @@ split_complex_args (tree args) { tree decl; tree subtype = TREE_TYPE (type); + bool addressable = TREE_ADDRESSABLE (p); /* Rewrite the PARM_DECL's type with its component. */ TREE_TYPE (p) = subtype; @@ -5427,11 +1988,20 @@ split_complex_args (tree args) DECL_MODE (p) = VOIDmode; DECL_SIZE (p) = NULL; DECL_SIZE_UNIT (p) = NULL; + /* If this arg must go in memory, put it in a pseudo here. + We can't allow it to go in memory as per normal parms, + because the usual place might not have the imag part + adjacent to the real part. */ + DECL_ARTIFICIAL (p) = addressable; + DECL_IGNORED_P (p) = addressable; + TREE_ADDRESSABLE (p) = 0; layout_decl (p, 0); /* Build a second synthetic decl. */ decl = build_decl (PARM_DECL, NULL_TREE, subtype); DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p); + DECL_ARTIFICIAL (decl) = addressable; + DECL_IGNORED_P (decl) = addressable; layout_decl (decl, 0); /* Splice it in; skip the new decl. */ @@ -5443,6 +2013,1237 @@ split_complex_args (tree args) return args; } + +/* A subroutine of assign_parms. Adjust the parameter list to incorporate + the hidden struct return argument, and (abi willing) complex args. + Return the new parameter list. */ + +static tree +assign_parms_augmented_arg_list (struct assign_parm_data_all *all) +{ + tree fndecl = current_function_decl; + tree fntype = TREE_TYPE (fndecl); + tree fnargs = DECL_ARGUMENTS (fndecl); + + /* If struct value address is treated as the first argument, make it so. */ + if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) + && ! current_function_returns_pcc_struct + && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) + { + tree type = build_pointer_type (TREE_TYPE (fntype)); + tree decl; + + decl = build_decl (PARM_DECL, NULL_TREE, type); + DECL_ARG_TYPE (decl) = type; + DECL_ARTIFICIAL (decl) = 1; + DECL_IGNORED_P (decl) = 1; + + TREE_CHAIN (decl) = fnargs; + fnargs = decl; + all->function_result_decl = decl; + } + + all->orig_fnargs = fnargs; + + /* If the target wants to split complex arguments into scalars, do so. */ + if (targetm.calls.split_complex_arg) + fnargs = split_complex_args (fnargs); + + return fnargs; +} + +/* A subroutine of assign_parms. Examine PARM and pull out type and mode + data for the parameter. Incorporate ABI specifics such as pass-by- + reference and type promotion. */ + +static void +assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm, + struct assign_parm_data_one *data) +{ + tree nominal_type, passed_type; + enum machine_mode nominal_mode, passed_mode, promoted_mode; + + memset (data, 0, sizeof (*data)); + + /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */ + if (!current_function_stdarg) + data->named_arg = 1; /* No varadic parms. */ + else if (TREE_CHAIN (parm)) + data->named_arg = 1; /* Not the last non-varadic parm. */ + else if (targetm.calls.strict_argument_naming (&all->args_so_far)) + data->named_arg = 1; /* Only varadic ones are unnamed. */ + else + data->named_arg = 0; /* Treat as varadic. */ + + nominal_type = TREE_TYPE (parm); + passed_type = DECL_ARG_TYPE (parm); + + /* Look out for errors propagating this far. Also, if the parameter's + type is void then its value doesn't matter. */ + if (TREE_TYPE (parm) == error_mark_node + /* This can happen after weird syntax errors + or if an enum type is defined among the parms. */ + || TREE_CODE (parm) != PARM_DECL + || passed_type == NULL + || VOID_TYPE_P (nominal_type)) + { + nominal_type = passed_type = void_type_node; + nominal_mode = passed_mode = promoted_mode = VOIDmode; + goto egress; + } + + /* Find mode of arg as it is passed, and mode of arg as it should be + during execution of this function. */ + passed_mode = TYPE_MODE (passed_type); + nominal_mode = TYPE_MODE (nominal_type); + + /* If the parm is to be passed as a transparent union, use the type of + the first field for the tests below. We have already verified that + the modes are the same. */ + if (TREE_CODE (passed_type) == UNION_TYPE + && TYPE_TRANSPARENT_UNION (passed_type)) + passed_type = TREE_TYPE (TYPE_FIELDS (passed_type)); + + /* See if this arg was passed by invisible reference. */ + if (pass_by_reference (&all->args_so_far, passed_mode, + passed_type, data->named_arg)) + { + passed_type = nominal_type = build_pointer_type (passed_type); + data->passed_pointer = true; + passed_mode = nominal_mode = Pmode; + } + + /* Find mode as it is passed by the ABI. */ + promoted_mode = passed_mode; + if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl))) + { + int unsignedp = TYPE_UNSIGNED (passed_type); + promoted_mode = promote_mode (passed_type, promoted_mode, + &unsignedp, 1); + } + + egress: + data->nominal_type = nominal_type; + data->passed_type = passed_type; + data->nominal_mode = nominal_mode; + data->passed_mode = passed_mode; + data->promoted_mode = promoted_mode; +} + +/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */ + +static void +assign_parms_setup_varargs (struct assign_parm_data_all *all, + struct assign_parm_data_one *data, bool no_rtl) +{ + int varargs_pretend_bytes = 0; + + targetm.calls.setup_incoming_varargs (&all->args_so_far, + data->promoted_mode, + data->passed_type, + &varargs_pretend_bytes, no_rtl); + + /* If the back-end has requested extra stack space, record how much is + needed. Do not change pretend_args_size otherwise since it may be + nonzero from an earlier partial argument. */ + if (varargs_pretend_bytes > 0) + all->pretend_args_size = varargs_pretend_bytes; +} + +/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to + the incoming location of the current parameter. */ + +static void +assign_parm_find_entry_rtl (struct assign_parm_data_all *all, + struct assign_parm_data_one *data) +{ + HOST_WIDE_INT pretend_bytes = 0; + rtx entry_parm; + bool in_regs; + + if (data->promoted_mode == VOIDmode) + { + data->entry_parm = data->stack_parm = const0_rtx; + return; + } + +#ifdef FUNCTION_INCOMING_ARG + entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode, + data->passed_type, data->named_arg); +#else + entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode, + data->passed_type, data->named_arg); +#endif + + if (entry_parm == 0) + data->promoted_mode = data->passed_mode; + + /* Determine parm's home in the stack, in case it arrives in the stack + or we should pretend it did. Compute the stack position and rtx where + the argument arrives and its size. + + There is one complexity here: If this was a parameter that would + have been passed in registers, but wasn't only because it is + __builtin_va_alist, we want locate_and_pad_parm to treat it as if + it came in a register so that REG_PARM_STACK_SPACE isn't skipped. + In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 + as it was the previous time. */ + in_regs = entry_parm != 0; +#ifdef STACK_PARMS_IN_REG_PARM_AREA + in_regs = true; +#endif + if (!in_regs && !data->named_arg) + { + if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far)) + { + rtx tem; +#ifdef FUNCTION_INCOMING_ARG + tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode, + data->passed_type, true); +#else + tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode, + data->passed_type, true); +#endif + in_regs = tem != NULL; + } + } + + /* If this parameter was passed both in registers and in the stack, use + the copy on the stack. */ + if (targetm.calls.must_pass_in_stack (data->promoted_mode, + data->passed_type)) + entry_parm = 0; + + if (entry_parm) + { + int partial; + + partial = targetm.calls.arg_partial_bytes (&all->args_so_far, + data->promoted_mode, + data->passed_type, + data->named_arg); + data->partial = partial; + + /* The caller might already have allocated stack space for the + register parameters. */ + if (partial != 0 && all->reg_parm_stack_space == 0) + { + /* Part of this argument is passed in registers and part + is passed on the stack. Ask the prologue code to extend + the stack part so that we can recreate the full value. + + PRETEND_BYTES is the size of the registers we need to store. + CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra + stack space that the prologue should allocate. + + Internally, gcc assumes that the argument pointer is aligned + to STACK_BOUNDARY bits. This is used both for alignment + optimizations (see init_emit) and to locate arguments that are + aligned to more than PARM_BOUNDARY bits. We must preserve this + invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to + a stack boundary. */ + + /* We assume at most one partial arg, and it must be the first + argument on the stack. */ + gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size); + + pretend_bytes = partial; + all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES); + + /* We want to align relative to the actual stack pointer, so + don't include this in the stack size until later. */ + all->extra_pretend_bytes = all->pretend_args_size; + } + } + + locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs, + entry_parm ? data->partial : 0, current_function_decl, + &all->stack_args_size, &data->locate); + + /* Adjust offsets to include the pretend args. */ + pretend_bytes = all->extra_pretend_bytes - pretend_bytes; + data->locate.slot_offset.constant += pretend_bytes; + data->locate.offset.constant += pretend_bytes; + + data->entry_parm = entry_parm; +} + +/* A subroutine of assign_parms. If there is actually space on the stack + for this parm, count it in stack_args_size and return true. */ + +static bool +assign_parm_is_stack_parm (struct assign_parm_data_all *all, + struct assign_parm_data_one *data) +{ + /* Trivially true if we've no incoming register. */ + if (data->entry_parm == NULL) + ; + /* Also true if we're partially in registers and partially not, + since we've arranged to drop the entire argument on the stack. */ + else if (data->partial != 0) + ; + /* Also true if the target says that it's passed in both registers + and on the stack. */ + else if (GET_CODE (data->entry_parm) == PARALLEL + && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX) + ; + /* Also true if the target says that there's stack allocated for + all register parameters. */ + else if (all->reg_parm_stack_space > 0) + ; + /* Otherwise, no, this parameter has no ABI defined stack slot. */ + else + return false; + + all->stack_args_size.constant += data->locate.size.constant; + if (data->locate.size.var) + ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var); + + return true; +} + +/* A subroutine of assign_parms. Given that this parameter is allocated + stack space by the ABI, find it. */ + +static void +assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data) +{ + rtx offset_rtx, stack_parm; + unsigned int align, boundary; + + /* If we're passing this arg using a reg, make its stack home the + aligned stack slot. */ + if (data->entry_parm) + offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset); + else + offset_rtx = ARGS_SIZE_RTX (data->locate.offset); + + stack_parm = current_function_internal_arg_pointer; + if (offset_rtx != const0_rtx) + stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx); + stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm); + + set_mem_attributes (stack_parm, parm, 1); + + boundary = data->locate.boundary; + align = BITS_PER_UNIT; + + /* If we're padding upward, we know that the alignment of the slot + is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're + intentionally forcing upward padding. Otherwise we have to come + up with a guess at the alignment based on OFFSET_RTX. */ + if (data->locate.where_pad != downward || data->entry_parm) + align = boundary; + else if (GET_CODE (offset_rtx) == CONST_INT) + { + align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary; + align = align & -align; + } + set_mem_align (stack_parm, align); + + if (data->entry_parm) + set_reg_attrs_for_parm (data->entry_parm, stack_parm); + + data->stack_parm = stack_parm; +} + +/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's + always valid and contiguous. */ + +static void +assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data) +{ + rtx entry_parm = data->entry_parm; + rtx stack_parm = data->stack_parm; + + /* If this parm was passed part in regs and part in memory, pretend it + arrived entirely in memory by pushing the register-part onto the stack. + In the special case of a DImode or DFmode that is split, we could put + it together in a pseudoreg directly, but for now that's not worth + bothering with. */ + if (data->partial != 0) + { + /* Handle calls that pass values in multiple non-contiguous + locations. The Irix 6 ABI has examples of this. */ + if (GET_CODE (entry_parm) == PARALLEL) + emit_group_store (validize_mem (stack_parm), entry_parm, + data->passed_type, + int_size_in_bytes (data->passed_type)); + else + { + gcc_assert (data->partial % UNITS_PER_WORD == 0); + move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), + data->partial / UNITS_PER_WORD); + } + + entry_parm = stack_parm; + } + + /* If we didn't decide this parm came in a register, by default it came + on the stack. */ + else if (entry_parm == NULL) + entry_parm = stack_parm; + + /* When an argument is passed in multiple locations, we can't make use + of this information, but we can save some copying if the whole argument + is passed in a single register. */ + else if (GET_CODE (entry_parm) == PARALLEL + && data->nominal_mode != BLKmode + && data->passed_mode != BLKmode) + { + size_t i, len = XVECLEN (entry_parm, 0); + + for (i = 0; i < len; i++) + if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX + && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0)) + && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) + == data->passed_mode) + && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) + { + entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); + break; + } + } + + data->entry_parm = entry_parm; +} + +/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's + always valid and properly aligned. */ + +static void +assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data) +{ + rtx stack_parm = data->stack_parm; + + /* If we can't trust the parm stack slot to be aligned enough for its + ultimate type, don't use that slot after entry. We'll make another + stack slot, if we need one. */ + if (stack_parm + && ((STRICT_ALIGNMENT + && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)) + || (data->nominal_type + && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm) + && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY))) + stack_parm = NULL; + + /* If parm was passed in memory, and we need to convert it on entry, + don't store it back in that same slot. */ + else if (data->entry_parm == stack_parm + && data->nominal_mode != BLKmode + && data->nominal_mode != data->passed_mode) + stack_parm = NULL; + + /* If stack protection is in effect for this function, don't leave any + pointers in their passed stack slots. */ + else if (cfun->stack_protect_guard + && (flag_stack_protect == 2 + || data->passed_pointer + || POINTER_TYPE_P (data->nominal_type))) + stack_parm = NULL; + + data->stack_parm = stack_parm; +} + +/* A subroutine of assign_parms. Return true if the current parameter + should be stored as a BLKmode in the current frame. */ + +static bool +assign_parm_setup_block_p (struct assign_parm_data_one *data) +{ + if (data->nominal_mode == BLKmode) + return true; + if (GET_CODE (data->entry_parm) == PARALLEL) + return true; + +#ifdef BLOCK_REG_PADDING + /* Only assign_parm_setup_block knows how to deal with register arguments + that are padded at the least significant end. */ + if (REG_P (data->entry_parm) + && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD + && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1) + == (BYTES_BIG_ENDIAN ? upward : downward))) + return true; +#endif + + return false; +} + +/* A subroutine of assign_parms. Arrange for the parameter to be + present and valid in DATA->STACK_RTL. */ + +static void +assign_parm_setup_block (struct assign_parm_data_all *all, + tree parm, struct assign_parm_data_one *data) +{ + rtx entry_parm = data->entry_parm; + rtx stack_parm = data->stack_parm; + HOST_WIDE_INT size; + HOST_WIDE_INT size_stored; + rtx orig_entry_parm = entry_parm; + + if (GET_CODE (entry_parm) == PARALLEL) + entry_parm = emit_group_move_into_temps (entry_parm); + + /* If we've a non-block object that's nevertheless passed in parts, + reconstitute it in register operations rather than on the stack. */ + if (GET_CODE (entry_parm) == PARALLEL + && data->nominal_mode != BLKmode) + { + rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0); + + if ((XVECLEN (entry_parm, 0) > 1 + || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1) + && use_register_for_decl (parm)) + { + rtx parmreg = gen_reg_rtx (data->nominal_mode); + + push_to_sequence (all->conversion_insns); + + /* For values returned in multiple registers, handle possible + incompatible calls to emit_group_store. + + For example, the following would be invalid, and would have to + be fixed by the conditional below: + + emit_group_store ((reg:SF), (parallel:DF)) + emit_group_store ((reg:SI), (parallel:DI)) + + An example of this are doubles in e500 v2: + (parallel:DF (expr_list (reg:SI) (const_int 0)) + (expr_list (reg:SI) (const_int 4))). */ + if (data->nominal_mode != data->passed_mode) + { + rtx t = gen_reg_rtx (GET_MODE (entry_parm)); + emit_group_store (t, entry_parm, NULL_TREE, + GET_MODE_SIZE (GET_MODE (entry_parm))); + convert_move (parmreg, t, 0); + } + else + emit_group_store (parmreg, entry_parm, data->nominal_type, + int_size_in_bytes (data->nominal_type)); + + all->conversion_insns = get_insns (); + end_sequence (); + + SET_DECL_RTL (parm, parmreg); + return; + } + } + + size = int_size_in_bytes (data->passed_type); + size_stored = CEIL_ROUND (size, UNITS_PER_WORD); + if (stack_parm == 0) + { + DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD); + stack_parm = assign_stack_local (BLKmode, size_stored, + DECL_ALIGN (parm)); + if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size) + PUT_MODE (stack_parm, GET_MODE (entry_parm)); + set_mem_attributes (stack_parm, parm, 1); + } + + /* If a BLKmode arrives in registers, copy it to a stack slot. Handle + calls that pass values in multiple non-contiguous locations. */ + if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL) + { + rtx mem; + + /* Note that we will be storing an integral number of words. + So we have to be careful to ensure that we allocate an + integral number of words. We do this above when we call + assign_stack_local if space was not allocated in the argument + list. If it was, this will not work if PARM_BOUNDARY is not + a multiple of BITS_PER_WORD. It isn't clear how to fix this + if it becomes a problem. Exception is when BLKmode arrives + with arguments not conforming to word_mode. */ + + if (data->stack_parm == 0) + ; + else if (GET_CODE (entry_parm) == PARALLEL) + ; + else + gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD)); + + mem = validize_mem (stack_parm); + + /* Handle values in multiple non-contiguous locations. */ + if (GET_CODE (entry_parm) == PARALLEL) + { + push_to_sequence (all->conversion_insns); + emit_group_store (mem, entry_parm, data->passed_type, size); + all->conversion_insns = get_insns (); + end_sequence (); + } + + else if (size == 0) + ; + + /* If SIZE is that of a mode no bigger than a word, just use + that mode's store operation. */ + else if (size <= UNITS_PER_WORD) + { + enum machine_mode mode + = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); + + if (mode != BLKmode +#ifdef BLOCK_REG_PADDING + && (size == UNITS_PER_WORD + || (BLOCK_REG_PADDING (mode, data->passed_type, 1) + != (BYTES_BIG_ENDIAN ? upward : downward))) +#endif + ) + { + rtx reg = gen_rtx_REG (mode, REGNO (entry_parm)); + emit_move_insn (change_address (mem, mode, 0), reg); + } + + /* Blocks smaller than a word on a BYTES_BIG_ENDIAN + machine must be aligned to the left before storing + to memory. Note that the previous test doesn't + handle all cases (e.g. SIZE == 3). */ + else if (size != UNITS_PER_WORD +#ifdef BLOCK_REG_PADDING + && (BLOCK_REG_PADDING (mode, data->passed_type, 1) + == downward) +#else + && BYTES_BIG_ENDIAN +#endif + ) + { + rtx tem, x; + int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; + rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); + + x = expand_shift (LSHIFT_EXPR, word_mode, reg, + build_int_cst (NULL_TREE, by), + NULL_RTX, 1); + tem = change_address (mem, word_mode, 0); + emit_move_insn (tem, x); + } + else + move_block_from_reg (REGNO (entry_parm), mem, + size_stored / UNITS_PER_WORD); + } + else + move_block_from_reg (REGNO (entry_parm), mem, + size_stored / UNITS_PER_WORD); + } + else if (data->stack_parm == 0) + { + push_to_sequence (all->conversion_insns); + emit_block_move (stack_parm, data->entry_parm, GEN_INT (size), + BLOCK_OP_NORMAL); + all->conversion_insns = get_insns (); + end_sequence (); + } + + data->stack_parm = stack_parm; + SET_DECL_RTL (parm, stack_parm); +} + +/* A subroutine of assign_parms. Allocate a pseudo to hold the current + parameter. Get it there. Perform all ABI specified conversions. */ + +static void +assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm, + struct assign_parm_data_one *data) +{ + rtx parmreg; + enum machine_mode promoted_nominal_mode; + int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm)); + bool did_conversion = false; + + /* Store the parm in a pseudoregister during the function, but we may + need to do it in a wider mode. */ + + /* This is not really promoting for a call. However we need to be + consistent with assign_parm_find_data_types and expand_expr_real_1. */ + promoted_nominal_mode + = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1); + + parmreg = gen_reg_rtx (promoted_nominal_mode); + + if (!DECL_ARTIFICIAL (parm)) + mark_user_reg (parmreg); + + /* If this was an item that we received a pointer to, + set DECL_RTL appropriately. */ + if (data->passed_pointer) + { + rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg); + set_mem_attributes (x, parm, 1); + SET_DECL_RTL (parm, x); + } + else + SET_DECL_RTL (parm, parmreg); + + /* Copy the value into the register. */ + if (data->nominal_mode != data->passed_mode + || promoted_nominal_mode != data->promoted_mode) + { + int save_tree_used; + + /* ENTRY_PARM has been converted to PROMOTED_MODE, its + mode, by the caller. We now have to convert it to + NOMINAL_MODE, if different. However, PARMREG may be in + a different mode than NOMINAL_MODE if it is being stored + promoted. + + If ENTRY_PARM is a hard register, it might be in a register + not valid for operating in its mode (e.g., an odd-numbered + register for a DFmode). In that case, moves are the only + thing valid, so we can't do a convert from there. This + occurs when the calling sequence allow such misaligned + usages. + + In addition, the conversion may involve a call, which could + clobber parameters which haven't been copied to pseudo + registers yet. Therefore, we must first copy the parm to + a pseudo reg here, and save the conversion until after all + parameters have been moved. */ + + rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); + + emit_move_insn (tempreg, validize_mem (data->entry_parm)); + + push_to_sequence (all->conversion_insns); + tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp); + + if (GET_CODE (tempreg) == SUBREG + && GET_MODE (tempreg) == data->nominal_mode + && REG_P (SUBREG_REG (tempreg)) + && data->nominal_mode == data->passed_mode + && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm) + && GET_MODE_SIZE (GET_MODE (tempreg)) + < GET_MODE_SIZE (GET_MODE (data->entry_parm))) + { + /* The argument is already sign/zero extended, so note it + into the subreg. */ + SUBREG_PROMOTED_VAR_P (tempreg) = 1; + SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp); + } + + /* TREE_USED gets set erroneously during expand_assignment. */ + save_tree_used = TREE_USED (parm); + expand_assignment (parm, make_tree (data->nominal_type, tempreg)); + TREE_USED (parm) = save_tree_used; + all->conversion_insns = get_insns (); + end_sequence (); + + did_conversion = true; + } + else + emit_move_insn (parmreg, validize_mem (data->entry_parm)); + + /* If we were passed a pointer but the actual value can safely live + in a register, put it in one. */ + if (data->passed_pointer + && TYPE_MODE (TREE_TYPE (parm)) != BLKmode + /* If by-reference argument was promoted, demote it. */ + && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm)) + || use_register_for_decl (parm))) + { + /* We can't use nominal_mode, because it will have been set to + Pmode above. We must use the actual mode of the parm. */ + parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); + mark_user_reg (parmreg); + + if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm))) + { + rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm))); + int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm)); + + push_to_sequence (all->conversion_insns); + emit_move_insn (tempreg, DECL_RTL (parm)); + tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p); + emit_move_insn (parmreg, tempreg); + all->conversion_insns = get_insns (); + end_sequence (); + + did_conversion = true; + } + else + emit_move_insn (parmreg, DECL_RTL (parm)); + + SET_DECL_RTL (parm, parmreg); + + /* STACK_PARM is the pointer, not the parm, and PARMREG is + now the parm. */ + data->stack_parm = NULL; + } + + /* Mark the register as eliminable if we did no conversion and it was + copied from memory at a fixed offset, and the arg pointer was not + copied to a pseudo-reg. If the arg pointer is a pseudo reg or the + offset formed an invalid address, such memory-equivalences as we + make here would screw up life analysis for it. */ + if (data->nominal_mode == data->passed_mode + && !did_conversion + && data->stack_parm != 0 + && MEM_P (data->stack_parm) + && data->locate.offset.var == 0 + && reg_mentioned_p (virtual_incoming_args_rtx, + XEXP (data->stack_parm, 0))) + { + rtx linsn = get_last_insn (); + rtx sinsn, set; + + /* Mark complex types separately. */ + if (GET_CODE (parmreg) == CONCAT) + { + enum machine_mode submode + = GET_MODE_INNER (GET_MODE (parmreg)); + int regnor = REGNO (XEXP (parmreg, 0)); + int regnoi = REGNO (XEXP (parmreg, 1)); + rtx stackr = adjust_address_nv (data->stack_parm, submode, 0); + rtx stacki = adjust_address_nv (data->stack_parm, submode, + GET_MODE_SIZE (submode)); + + /* Scan backwards for the set of the real and + imaginary parts. */ + for (sinsn = linsn; sinsn != 0; + sinsn = prev_nonnote_insn (sinsn)) + { + set = single_set (sinsn); + if (set == 0) + continue; + + if (SET_DEST (set) == regno_reg_rtx [regnoi]) + REG_NOTES (sinsn) + = gen_rtx_EXPR_LIST (REG_EQUIV, stacki, + REG_NOTES (sinsn)); + else if (SET_DEST (set) == regno_reg_rtx [regnor]) + REG_NOTES (sinsn) + = gen_rtx_EXPR_LIST (REG_EQUIV, stackr, + REG_NOTES (sinsn)); + } + } + else if ((set = single_set (linsn)) != 0 + && SET_DEST (set) == parmreg) + REG_NOTES (linsn) + = gen_rtx_EXPR_LIST (REG_EQUIV, + data->stack_parm, REG_NOTES (linsn)); + } + + /* For pointer data type, suggest pointer register. */ + if (POINTER_TYPE_P (TREE_TYPE (parm))) + mark_reg_pointer (parmreg, + TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); +} + +/* A subroutine of assign_parms. Allocate stack space to hold the current + parameter. Get it there. Perform all ABI specified conversions. */ + +static void +assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm, + struct assign_parm_data_one *data) +{ + /* Value must be stored in the stack slot STACK_PARM during function + execution. */ + bool to_conversion = false; + + if (data->promoted_mode != data->nominal_mode) + { + /* Conversion is required. */ + rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); + + emit_move_insn (tempreg, validize_mem (data->entry_parm)); + + push_to_sequence (all->conversion_insns); + to_conversion = true; + + data->entry_parm = convert_to_mode (data->nominal_mode, tempreg, + TYPE_UNSIGNED (TREE_TYPE (parm))); + + if (data->stack_parm) + /* ??? This may need a big-endian conversion on sparc64. */ + data->stack_parm + = adjust_address (data->stack_parm, data->nominal_mode, 0); + } + + if (data->entry_parm != data->stack_parm) + { + rtx src, dest; + + if (data->stack_parm == 0) + { + data->stack_parm + = assign_stack_local (GET_MODE (data->entry_parm), + GET_MODE_SIZE (GET_MODE (data->entry_parm)), + TYPE_ALIGN (data->passed_type)); + set_mem_attributes (data->stack_parm, parm, 1); + } + + dest = validize_mem (data->stack_parm); + src = validize_mem (data->entry_parm); + + if (MEM_P (src)) + { + /* Use a block move to handle potentially misaligned entry_parm. */ + if (!to_conversion) + push_to_sequence (all->conversion_insns); + to_conversion = true; + + emit_block_move (dest, src, + GEN_INT (int_size_in_bytes (data->passed_type)), + BLOCK_OP_NORMAL); + } + else + emit_move_insn (dest, src); + } + + if (to_conversion) + { + all->conversion_insns = get_insns (); + end_sequence (); + } + + SET_DECL_RTL (parm, data->stack_parm); +} + +/* A subroutine of assign_parms. If the ABI splits complex arguments, then + undo the frobbing that we did in assign_parms_augmented_arg_list. */ + +static void +assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs) +{ + tree parm; + tree orig_fnargs = all->orig_fnargs; + + for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm)) + { + if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE + && targetm.calls.split_complex_arg (TREE_TYPE (parm))) + { + rtx tmp, real, imag; + enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm)); + + real = DECL_RTL (fnargs); + imag = DECL_RTL (TREE_CHAIN (fnargs)); + if (inner != GET_MODE (real)) + { + real = gen_lowpart_SUBREG (inner, real); + imag = gen_lowpart_SUBREG (inner, imag); + } + + if (TREE_ADDRESSABLE (parm)) + { + rtx rmem, imem; + HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm)); + + /* split_complex_arg put the real and imag parts in + pseudos. Move them to memory. */ + tmp = assign_stack_local (DECL_MODE (parm), size, + TYPE_ALIGN (TREE_TYPE (parm))); + set_mem_attributes (tmp, parm, 1); + rmem = adjust_address_nv (tmp, inner, 0); + imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner)); + push_to_sequence (all->conversion_insns); + emit_move_insn (rmem, real); + emit_move_insn (imem, imag); + all->conversion_insns = get_insns (); + end_sequence (); + } + else + tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); + SET_DECL_RTL (parm, tmp); + + real = DECL_INCOMING_RTL (fnargs); + imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs)); + if (inner != GET_MODE (real)) + { + real = gen_lowpart_SUBREG (inner, real); + imag = gen_lowpart_SUBREG (inner, imag); + } + tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); + set_decl_incoming_rtl (parm, tmp); + fnargs = TREE_CHAIN (fnargs); + } + else + { + SET_DECL_RTL (parm, DECL_RTL (fnargs)); + set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs)); + + /* Set MEM_EXPR to the original decl, i.e. to PARM, + instead of the copy of decl, i.e. FNARGS. */ + if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm))) + set_mem_expr (DECL_INCOMING_RTL (parm), parm); + } + + fnargs = TREE_CHAIN (fnargs); + } +} + +/* Assign RTL expressions to the function's parameters. This may involve + copying them into registers and using those registers as the DECL_RTL. */ + +static void +assign_parms (tree fndecl) +{ + struct assign_parm_data_all all; + tree fnargs, parm; + + current_function_internal_arg_pointer + = targetm.calls.internal_arg_pointer (); + + assign_parms_initialize_all (&all); + fnargs = assign_parms_augmented_arg_list (&all); + + for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) + { + struct assign_parm_data_one data; + + /* Extract the type of PARM; adjust it according to ABI. */ + assign_parm_find_data_types (&all, parm, &data); + + /* Early out for errors and void parameters. */ + if (data.passed_mode == VOIDmode) + { + SET_DECL_RTL (parm, const0_rtx); + DECL_INCOMING_RTL (parm) = DECL_RTL (parm); + continue; + } + + if (current_function_stdarg && !TREE_CHAIN (parm)) + assign_parms_setup_varargs (&all, &data, false); + + /* Find out where the parameter arrives in this function. */ + assign_parm_find_entry_rtl (&all, &data); + + /* Find out where stack space for this parameter might be. */ + if (assign_parm_is_stack_parm (&all, &data)) + { + assign_parm_find_stack_rtl (parm, &data); + assign_parm_adjust_entry_rtl (&data); + } + + /* Record permanently how this parm was passed. */ + set_decl_incoming_rtl (parm, data.entry_parm); + + /* Update info on where next arg arrives in registers. */ + FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode, + data.passed_type, data.named_arg); + + assign_parm_adjust_stack_rtl (&data); + + if (assign_parm_setup_block_p (&data)) + assign_parm_setup_block (&all, parm, &data); + else if (data.passed_pointer || use_register_for_decl (parm)) + assign_parm_setup_reg (&all, parm, &data); + else + assign_parm_setup_stack (&all, parm, &data); + } + + if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs) + assign_parms_unsplit_complex (&all, fnargs); + + /* Output all parameter conversion instructions (possibly including calls) + now that all parameters have been copied out of hard registers. */ + emit_insn (all.conversion_insns); + + /* If we are receiving a struct value address as the first argument, set up + the RTL for the function result. As this might require code to convert + the transmitted address to Pmode, we do this here to ensure that possible + preliminary conversions of the address have been emitted already. */ + if (all.function_result_decl) + { + tree result = DECL_RESULT (current_function_decl); + rtx addr = DECL_RTL (all.function_result_decl); + rtx x; + + if (DECL_BY_REFERENCE (result)) + x = addr; + else + { + addr = convert_memory_address (Pmode, addr); + x = gen_rtx_MEM (DECL_MODE (result), addr); + set_mem_attributes (x, result, 1); + } + SET_DECL_RTL (result, x); + } + + /* We have aligned all the args, so add space for the pretend args. */ + current_function_pretend_args_size = all.pretend_args_size; + all.stack_args_size.constant += all.extra_pretend_bytes; + current_function_args_size = all.stack_args_size.constant; + + /* Adjust function incoming argument size for alignment and + minimum length. */ + +#ifdef REG_PARM_STACK_SPACE + current_function_args_size = MAX (current_function_args_size, + REG_PARM_STACK_SPACE (fndecl)); +#endif + + current_function_args_size = CEIL_ROUND (current_function_args_size, + PARM_BOUNDARY / BITS_PER_UNIT); + +#ifdef ARGS_GROW_DOWNWARD + current_function_arg_offset_rtx + = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant) + : expand_expr (size_diffop (all.stack_args_size.var, + size_int (-all.stack_args_size.constant)), + NULL_RTX, VOIDmode, 0)); +#else + current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size); +#endif + + /* See how many bytes, if any, of its args a function should try to pop + on return. */ + + current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl), + current_function_args_size); + + /* For stdarg.h function, save info about + regs and stack space used by the named args. */ + + current_function_args_info = all.args_so_far; + + /* Set the rtx used for the function return value. Put this in its + own variable so any optimizers that need this information don't have + to include tree.h. Do this here so it gets done when an inlined + function gets output. */ + + current_function_return_rtx + = (DECL_RTL_SET_P (DECL_RESULT (fndecl)) + ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX); + + /* If scalar return value was computed in a pseudo-reg, or was a named + return value that got dumped to the stack, copy that to the hard + return register. */ + if (DECL_RTL_SET_P (DECL_RESULT (fndecl))) + { + tree decl_result = DECL_RESULT (fndecl); + rtx decl_rtl = DECL_RTL (decl_result); + + if (REG_P (decl_rtl) + ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER + : DECL_REGISTER (decl_result)) + { + rtx real_decl_rtl; + + real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result), + fndecl, true); + REG_FUNCTION_VALUE_P (real_decl_rtl) = 1; + /* The delay slot scheduler assumes that current_function_return_rtx + holds the hard register containing the return value, not a + temporary pseudo. */ + current_function_return_rtx = real_decl_rtl; + } + } +} + +/* A subroutine of gimplify_parameters, invoked via walk_tree. + For all seen types, gimplify their sizes. */ + +static tree +gimplify_parm_type (tree *tp, int *walk_subtrees, void *data) +{ + tree t = *tp; + + *walk_subtrees = 0; + if (TYPE_P (t)) + { + if (POINTER_TYPE_P (t)) + *walk_subtrees = 1; + else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t)) + && !TYPE_SIZES_GIMPLIFIED (t)) + { + gimplify_type_sizes (t, (tree *) data); + *walk_subtrees = 1; + } + } + + return NULL; +} + +/* Gimplify the parameter list for current_function_decl. This involves + evaluating SAVE_EXPRs of variable sized parameters and generating code + to implement callee-copies reference parameters. Returns a list of + statements to add to the beginning of the function, or NULL if nothing + to do. */ + +tree +gimplify_parameters (void) +{ + struct assign_parm_data_all all; + tree fnargs, parm, stmts = NULL; + + assign_parms_initialize_all (&all); + fnargs = assign_parms_augmented_arg_list (&all); + + for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) + { + struct assign_parm_data_one data; + + /* Extract the type of PARM; adjust it according to ABI. */ + assign_parm_find_data_types (&all, parm, &data); + + /* Early out for errors and void parameters. */ + if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL) + continue; + + /* Update info on where next arg arrives in registers. */ + FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode, + data.passed_type, data.named_arg); + + /* ??? Once upon a time variable_size stuffed parameter list + SAVE_EXPRs (amongst others) onto a pending sizes list. This + turned out to be less than manageable in the gimple world. + Now we have to hunt them down ourselves. */ + walk_tree_without_duplicates (&data.passed_type, + gimplify_parm_type, &stmts); + + if (!TREE_CONSTANT (DECL_SIZE (parm))) + { + gimplify_one_sizepos (&DECL_SIZE (parm), &stmts); + gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts); + } + + if (data.passed_pointer) + { + tree type = TREE_TYPE (data.passed_type); + if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type), + type, data.named_arg)) + { + tree local, t; + + /* For constant sized objects, this is trivial; for + variable-sized objects, we have to play games. */ + if (TREE_CONSTANT (DECL_SIZE (parm))) + { + local = create_tmp_var (type, get_name (parm)); + DECL_IGNORED_P (local) = 0; + } + else + { + tree ptr_type, addr, args; + + ptr_type = build_pointer_type (type); + addr = create_tmp_var (ptr_type, get_name (parm)); + DECL_IGNORED_P (addr) = 0; + local = build_fold_indirect_ref (addr); + + args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL); + t = built_in_decls[BUILT_IN_ALLOCA]; + t = build_function_call_expr (t, args); + t = fold_convert (ptr_type, t); + t = build2 (MODIFY_EXPR, void_type_node, addr, t); + gimplify_and_add (t, &stmts); + } + + t = build2 (MODIFY_EXPR, void_type_node, local, parm); + gimplify_and_add (t, &stmts); + + SET_DECL_VALUE_EXPR (parm, local); + DECL_HAS_VALUE_EXPR_P (parm) = 1; + } + } + } + + return stmts; +} /* Indicate whether REGNO is an incoming argument to the current function that was promoted to a wider mode. If so, return the RTX for the @@ -5457,12 +3258,12 @@ promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsigned for (arg = DECL_ARGUMENTS (current_function_decl); arg; arg = TREE_CHAIN (arg)) - if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG + if (REG_P (DECL_INCOMING_RTL (arg)) && REGNO (DECL_INCOMING_RTL (arg)) == regno && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg))) { enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg)); - int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg)); + int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg)); mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1); if (mode == GET_MODE (DECL_INCOMING_RTL (arg)) @@ -5518,16 +3319,12 @@ locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs, { tree sizetree; enum direction where_pad; - int boundary; + unsigned int boundary; int reg_parm_stack_space = 0; int part_size_in_regs; #ifdef REG_PARM_STACK_SPACE -#ifdef MAYBE_REG_PARM_STACK_SPACE - reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; -#else reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); -#endif /* If we have found a stack parm before we reach the end of the area reserved for registers, skip that area. */ @@ -5548,17 +3345,21 @@ locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs, } #endif /* REG_PARM_STACK_SPACE */ - part_size_in_regs = 0; - if (reg_parm_stack_space == 0) - part_size_in_regs = ((partial * UNITS_PER_WORD) - / (PARM_BOUNDARY / BITS_PER_UNIT) - * (PARM_BOUNDARY / BITS_PER_UNIT)); + part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0); sizetree = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode)); where_pad = FUNCTION_ARG_PADDING (passed_mode, type); boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type); locate->where_pad = where_pad; + locate->boundary = boundary; + + /* Remember if the outgoing parameter requires extra alignment on the + calling function side. */ + if (boundary > PREFERRED_STACK_BOUNDARY) + boundary = PREFERRED_STACK_BOUNDARY; + if (cfun->stack_alignment_needed < boundary) + cfun->stack_alignment_needed = boundary; #ifdef ARGS_GROW_DOWNWARD locate->slot_offset.constant = -initial_offset_ptr->constant; @@ -5645,10 +3446,9 @@ pad_to_arg_alignment (struct args_size *offset_ptr, int boundary, HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET; #ifdef SPARC_STACK_BOUNDARY_HACK - /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY - higher than the real alignment of %sp. However, when it does this, - the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY. - This is a temporary hack while the sparc port is fixed. */ + /* ??? The SPARC port may claim a STACK_BOUNDARY higher than + the real alignment of %sp. However, when it does this, the + alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ if (SPARC_STACK_BOUNDARY_HACK) sp_offset = 0; #endif @@ -5723,49 +3523,31 @@ pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree siz } /* Walk the tree of blocks describing the binding levels within a function - and warn about uninitialized variables. + and warn about variables the might be killed by setjmp or vfork. This is done after calling flow_analysis and before global_alloc clobbers the pseudo-regs to hard regs. */ void -uninitialized_vars_warning (tree block) +setjmp_vars_warning (tree block) { tree decl, sub; + for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl)) { - if (warn_uninitialized - && TREE_CODE (decl) == VAR_DECL - /* These warnings are unreliable for and aggregates - because assigning the fields one by one can fail to convince - flow.c that the entire aggregate was initialized. - Unions are troublesome because members may be shorter. */ - && ! AGGREGATE_TYPE_P (TREE_TYPE (decl)) + if (TREE_CODE (decl) == VAR_DECL && DECL_RTL_SET_P (decl) - && GET_CODE (DECL_RTL (decl)) == REG - /* Global optimizations can make it difficult to determine if a - particular variable has been initialized. However, a VAR_DECL - with a nonzero DECL_INITIAL had an initializer, so do not - claim it is potentially uninitialized. - - When the DECL_INITIAL is NULL call the language hook to tell us - if we want to warn. */ - && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl)) - && regno_uninitialized (REGNO (DECL_RTL (decl)))) - warning ("%J'%D' might be used uninitialized in this function", - decl, decl); - if (extra_warnings - && TREE_CODE (decl) == VAR_DECL - && DECL_RTL_SET_P (decl) - && GET_CODE (DECL_RTL (decl)) == REG + && REG_P (DECL_RTL (decl)) && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) - warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'", - decl, decl); + warning (0, "variable %q+D might be clobbered by %" + " or %", + decl); } + for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub)) - uninitialized_vars_warning (sub); + setjmp_vars_warning (sub); } -/* Do the appropriate part of uninitialized_vars_warning +/* Do the appropriate part of setjmp_vars_warning but for arguments instead of local variables. */ void @@ -5775,379 +3557,13 @@ setjmp_args_warning (void) for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if (DECL_RTL (decl) != 0 - && GET_CODE (DECL_RTL (decl)) == REG + && REG_P (DECL_RTL (decl)) && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) - warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'", - decl, decl); + warning (0, "argument %q+D might be clobbered by % or %", + decl); } -/* If this function call setjmp, put all vars into the stack - unless they were declared `register'. */ - -void -setjmp_protect (tree block) -{ - tree decl, sub; - for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl)) - if ((TREE_CODE (decl) == VAR_DECL - || TREE_CODE (decl) == PARM_DECL) - && DECL_RTL (decl) != 0 - && (GET_CODE (DECL_RTL (decl)) == REG - || (GET_CODE (DECL_RTL (decl)) == MEM - && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF)) - /* If this variable came from an inline function, it must be - that its life doesn't overlap the setjmp. If there was a - setjmp in the function, it would already be in memory. We - must exclude such variable because their DECL_RTL might be - set to strange things such as virtual_stack_vars_rtx. */ - && ! DECL_FROM_INLINE (decl) - && ( -#ifdef NON_SAVING_SETJMP - /* If longjmp doesn't restore the registers, - don't put anything in them. */ - NON_SAVING_SETJMP - || -#endif - ! DECL_REGISTER (decl))) - put_var_into_stack (decl, /*rescan=*/true); - for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub)) - setjmp_protect (sub); -} -/* Like the previous function, but for args instead of local variables. */ - -void -setjmp_protect_args (void) -{ - tree decl; - for (decl = DECL_ARGUMENTS (current_function_decl); - decl; decl = TREE_CHAIN (decl)) - if ((TREE_CODE (decl) == VAR_DECL - || TREE_CODE (decl) == PARM_DECL) - && DECL_RTL (decl) != 0 - && (GET_CODE (DECL_RTL (decl)) == REG - || (GET_CODE (DECL_RTL (decl)) == MEM - && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF)) - && ( - /* If longjmp doesn't restore the registers, - don't put anything in them. */ -#ifdef NON_SAVING_SETJMP - NON_SAVING_SETJMP - || -#endif - ! DECL_REGISTER (decl))) - put_var_into_stack (decl, /*rescan=*/true); -} - -/* Return the context-pointer register corresponding to DECL, - or 0 if it does not need one. */ - -rtx -lookup_static_chain (tree decl) -{ - tree context = decl_function_context (decl); - tree link; - - if (context == 0 - || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl))) - return 0; - - /* We treat inline_function_decl as an alias for the current function - because that is the inline function whose vars, types, etc. - are being merged into the current function. - See expand_inline_function. */ - if (context == current_function_decl || context == inline_function_decl) - return virtual_stack_vars_rtx; - - for (link = context_display; link; link = TREE_CHAIN (link)) - if (TREE_PURPOSE (link) == context) - return RTL_EXPR_RTL (TREE_VALUE (link)); - - abort (); -} - -/* Convert a stack slot address ADDR for variable VAR - (from a containing function) - into an address valid in this function (using a static chain). */ - -rtx -fix_lexical_addr (rtx addr, tree var) -{ - rtx basereg; - HOST_WIDE_INT displacement; - tree context = decl_function_context (var); - struct function *fp; - rtx base = 0; - - /* If this is the present function, we need not do anything. */ - if (context == current_function_decl || context == inline_function_decl) - return addr; - - fp = find_function_data (context); - - if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM) - addr = XEXP (XEXP (addr, 0), 0); - - /* Decode given address as base reg plus displacement. */ - if (GET_CODE (addr) == REG) - basereg = addr, displacement = 0; - else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT) - basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1)); - else - abort (); - - /* We accept vars reached via the containing function's - incoming arg pointer and via its stack variables pointer. */ - if (basereg == fp->internal_arg_pointer) - { - /* If reached via arg pointer, get the arg pointer value - out of that function's stack frame. - - There are two cases: If a separate ap is needed, allocate a - slot in the outer function for it and dereference it that way. - This is correct even if the real ap is actually a pseudo. - Otherwise, just adjust the offset from the frame pointer to - compensate. */ - -#ifdef NEED_SEPARATE_AP - rtx addr; - - addr = get_arg_pointer_save_area (fp); - addr = fix_lexical_addr (XEXP (addr, 0), var); - addr = memory_address (Pmode, addr); - - base = gen_rtx_MEM (Pmode, addr); - set_mem_alias_set (base, get_frame_alias_set ()); - base = copy_to_reg (base); -#else - displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET); - base = lookup_static_chain (var); -#endif - } - - else if (basereg == virtual_stack_vars_rtx) - { - /* This is the same code as lookup_static_chain, duplicated here to - avoid an extra call to decl_function_context. */ - tree link; - - for (link = context_display; link; link = TREE_CHAIN (link)) - if (TREE_PURPOSE (link) == context) - { - base = RTL_EXPR_RTL (TREE_VALUE (link)); - break; - } - } - - if (base == 0) - abort (); - - /* Use same offset, relative to appropriate static chain or argument - pointer. */ - return plus_constant (base, displacement); -} - -/* Return the address of the trampoline for entering nested fn FUNCTION. - If necessary, allocate a trampoline (in the stack frame) - and emit rtl to initialize its contents (at entry to this function). */ - -rtx -trampoline_address (tree function) -{ - tree link; - tree rtlexp; - rtx tramp; - struct function *fp; - tree fn_context; - - /* Find an existing trampoline and return it. */ - for (link = trampoline_list; link; link = TREE_CHAIN (link)) - if (TREE_PURPOSE (link) == function) - return - adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0)); - - for (fp = outer_function_chain; fp; fp = fp->outer) - for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link)) - if (TREE_PURPOSE (link) == function) - { - tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0), - function); - return adjust_trampoline_addr (tramp); - } - - /* None exists; we must make one. */ - - /* Find the `struct function' for the function containing FUNCTION. */ - fp = 0; - fn_context = decl_function_context (function); - if (fn_context != current_function_decl - && fn_context != inline_function_decl) - fp = find_function_data (fn_context); - - /* Allocate run-time space for this trampoline. */ - /* If rounding needed, allocate extra space - to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */ -#define TRAMPOLINE_REAL_SIZE \ - (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1) - tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0, - fp ? fp : cfun); - /* Record the trampoline for reuse and note it for later initialization - by expand_function_end. */ - if (fp != 0) - { - rtlexp = make_node (RTL_EXPR); - RTL_EXPR_RTL (rtlexp) = tramp; - fp->x_trampoline_list = tree_cons (function, rtlexp, - fp->x_trampoline_list); - } - else - { - /* Make the RTL_EXPR node temporary, not momentary, so that the - trampoline_list doesn't become garbage. */ - rtlexp = make_node (RTL_EXPR); - - RTL_EXPR_RTL (rtlexp) = tramp; - trampoline_list = tree_cons (function, rtlexp, trampoline_list); - } - - tramp = fix_lexical_addr (XEXP (tramp, 0), function); - return adjust_trampoline_addr (tramp); -} - -/* Given a trampoline address, - round it to multiple of TRAMPOLINE_ALIGNMENT. */ - -static rtx -round_trampoline_addr (rtx tramp) -{ - /* Round address up to desired boundary. */ - rtx temp = gen_reg_rtx (Pmode); - rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1); - rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT); - - temp = expand_simple_binop (Pmode, PLUS, tramp, addend, - temp, 0, OPTAB_LIB_WIDEN); - tramp = expand_simple_binop (Pmode, AND, temp, mask, - temp, 0, OPTAB_LIB_WIDEN); - - return tramp; -} - -/* Given a trampoline address, round it then apply any - platform-specific adjustments so that the result can be used for a - function call . */ - -static rtx -adjust_trampoline_addr (rtx tramp) -{ - tramp = round_trampoline_addr (tramp); -#ifdef TRAMPOLINE_ADJUST_ADDRESS - TRAMPOLINE_ADJUST_ADDRESS (tramp); -#endif - return tramp; -} - -/* Put all this function's BLOCK nodes including those that are chained - onto the first block into a vector, and return it. - Also store in each NOTE for the beginning or end of a block - the index of that block in the vector. - The arguments are BLOCK, the chain of top-level blocks of the function, - and INSNS, the insn chain of the function. */ - -void -identify_blocks (void) -{ - int n_blocks; - tree *block_vector, *last_block_vector; - tree *block_stack; - tree block = DECL_INITIAL (current_function_decl); - - if (block == 0) - return; - - /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in - depth-first order. */ - block_vector = get_block_vector (block, &n_blocks); - block_stack = xmalloc (n_blocks * sizeof (tree)); - - last_block_vector = identify_blocks_1 (get_insns (), - block_vector + 1, - block_vector + n_blocks, - block_stack); - - /* If we didn't use all of the subblocks, we've misplaced block notes. */ - /* ??? This appears to happen all the time. Latent bugs elsewhere? */ - if (0 && last_block_vector != block_vector + n_blocks) - abort (); - - free (block_vector); - free (block_stack); -} - -/* Subroutine of identify_blocks. Do the block substitution on the - insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains. - - BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair. - BLOCK_VECTOR is incremented for each block seen. */ - -static tree * -identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector, - tree *orig_block_stack) -{ - rtx insn; - tree *block_stack = orig_block_stack; - - for (insn = insns; insn; insn = NEXT_INSN (insn)) - { - if (GET_CODE (insn) == NOTE) - { - if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG) - { - tree b; - - /* If there are more block notes than BLOCKs, something - is badly wrong. */ - if (block_vector == end_block_vector) - abort (); - - b = *block_vector++; - NOTE_BLOCK (insn) = b; - *block_stack++ = b; - } - else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END) - { - /* If there are more NOTE_INSN_BLOCK_ENDs than - NOTE_INSN_BLOCK_BEGs, something is badly wrong. */ - if (block_stack == orig_block_stack) - abort (); - - NOTE_BLOCK (insn) = *--block_stack; - } - } - else if (GET_CODE (insn) == CALL_INSN - && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) - { - rtx cp = PATTERN (insn); - - block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector, - end_block_vector, block_stack); - if (XEXP (cp, 1)) - block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector, - end_block_vector, block_stack); - if (XEXP (cp, 2)) - block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector, - end_block_vector, block_stack); - } - } - - /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs, - something is badly wrong. */ - if (block_stack != orig_block_stack) - abort (); - - return block_vector; -} - /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */ /* ??? Need an option to either create block fragments or to create @@ -6158,15 +3574,15 @@ void reorder_blocks (void) { tree block = DECL_INITIAL (current_function_decl); - varray_type block_stack; + VEC(tree,heap) *block_stack; if (block == NULL_TREE) return; - VARRAY_TREE_INIT (block_stack, 10, "block_stack"); + block_stack = VEC_alloc (tree, heap, 10); /* Reset the TREE_ASM_WRITTEN bit for all blocks. */ - reorder_blocks_0 (block); + clear_block_marks (block); /* Prune the old trees away, so that they don't get in the way. */ BLOCK_SUBBLOCKS (block) = NULL_TREE; @@ -6176,46 +3592,46 @@ reorder_blocks (void) reorder_blocks_1 (get_insns (), block, &block_stack); BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block)); - /* Remove deleted blocks from the block fragment chains. */ - reorder_fix_fragments (block); + VEC_free (tree, heap, block_stack); } /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */ -static void -reorder_blocks_0 (tree block) +void +clear_block_marks (tree block) { while (block) { TREE_ASM_WRITTEN (block) = 0; - reorder_blocks_0 (BLOCK_SUBBLOCKS (block)); + clear_block_marks (BLOCK_SUBBLOCKS (block)); block = BLOCK_CHAIN (block); } } static void -reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack) +reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack) { rtx insn; for (insn = insns; insn; insn = NEXT_INSN (insn)) { - if (GET_CODE (insn) == NOTE) + if (NOTE_P (insn)) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG) { tree block = NOTE_BLOCK (insn); + tree origin; + + origin = (BLOCK_FRAGMENT_ORIGIN (block) + ? BLOCK_FRAGMENT_ORIGIN (block) + : block); /* If we have seen this block before, that means it now spans multiple address regions. Create a new fragment. */ if (TREE_ASM_WRITTEN (block)) { tree new_block = copy_node (block); - tree origin; - origin = (BLOCK_FRAGMENT_ORIGIN (block) - ? BLOCK_FRAGMENT_ORIGIN (block) - : block); BLOCK_FRAGMENT_ORIGIN (new_block) = origin; BLOCK_FRAGMENT_CHAIN (new_block) = BLOCK_FRAGMENT_CHAIN (origin); @@ -6232,94 +3648,31 @@ reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack) will cause infinite recursion. */ if (block != current_block) { + if (block != origin) + gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block); + BLOCK_SUPERCONTEXT (block) = current_block; BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); BLOCK_SUBBLOCKS (current_block) = block; - current_block = block; + current_block = origin; } - VARRAY_PUSH_TREE (*p_block_stack, block); + VEC_safe_push (tree, heap, *p_block_stack, block); } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END) { - NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack); - VARRAY_POP (*p_block_stack); + NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack); BLOCK_SUBBLOCKS (current_block) = blocks_nreverse (BLOCK_SUBBLOCKS (current_block)); current_block = BLOCK_SUPERCONTEXT (current_block); } } - else if (GET_CODE (insn) == CALL_INSN - && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) - { - rtx cp = PATTERN (insn); - reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack); - if (XEXP (cp, 1)) - reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack); - if (XEXP (cp, 2)) - reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack); - } - } -} - -/* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer - appears in the block tree, select one of the fragments to become - the new origin block. */ - -static void -reorder_fix_fragments (tree block) -{ - while (block) - { - tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block); - tree new_origin = NULL_TREE; - - if (dup_origin) - { - if (! TREE_ASM_WRITTEN (dup_origin)) - { - new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin); - - /* Find the first of the remaining fragments. There must - be at least one -- the current block. */ - while (! TREE_ASM_WRITTEN (new_origin)) - new_origin = BLOCK_FRAGMENT_CHAIN (new_origin); - BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE; - } - } - else if (! dup_origin) - new_origin = block; - - /* Re-root the rest of the fragments to the new origin. In the - case that DUP_ORIGIN was null, that means BLOCK was the origin - of a chain of fragments and we want to remove those fragments - that didn't make it to the output. */ - if (new_origin) - { - tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin); - tree chain = *pp; - - while (chain) - { - if (TREE_ASM_WRITTEN (chain)) - { - BLOCK_FRAGMENT_ORIGIN (chain) = new_origin; - *pp = chain; - pp = &BLOCK_FRAGMENT_CHAIN (chain); - } - chain = BLOCK_FRAGMENT_CHAIN (chain); - } - *pp = NULL_TREE; - } - - reorder_fix_fragments (BLOCK_SUBBLOCKS (block)); - block = BLOCK_CHAIN (block); } } /* Reverse the order of elements in the chain T of blocks, and return the new head of the chain (old last element). */ -static tree +tree blocks_nreverse (tree t) { tree prev = 0, decl, next; @@ -6372,7 +3725,7 @@ get_block_vector (tree block, int *n_blocks_p) tree *block_vector; *n_blocks_p = all_blocks (block, NULL); - block_vector = xmalloc (*n_blocks_p * sizeof (tree)); + block_vector = XNEWVEC (tree, *n_blocks_p); all_blocks (block, block_vector); return block_vector; @@ -6437,11 +3790,10 @@ void allocate_struct_function (tree fndecl) { tree result; + tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE; cfun = ggc_alloc_cleared (sizeof (struct function)); - max_parm_reg = LAST_VIRTUAL_REGISTER + 1; - cfun->stack_alignment_needed = STACK_BOUNDARY; cfun->preferred_stack_boundary = STACK_BOUNDARY; @@ -6449,17 +3801,16 @@ allocate_struct_function (tree fndecl) cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL; - init_stmt_for_function (); init_eh_for_function (); - (*lang_hooks.function.init) (cfun); + lang_hooks.function.init (cfun); if (init_machine_status) cfun->machine = (*init_machine_status) (); if (fndecl == NULL) return; - DECL_SAVED_INSNS (fndecl) = cfun; + DECL_STRUCT_FUNCTION (fndecl) = cfun; cfun->decl = fndecl; result = DECL_RESULT (fndecl); @@ -6473,9 +3824,15 @@ allocate_struct_function (tree fndecl) current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result)); - current_function_needs_context - = (decl_function_context (current_function_decl) != 0 - && ! DECL_NO_STATIC_CHAIN (current_function_decl)); + current_function_stdarg + = (fntype + && TYPE_ARG_TYPES (fntype) != 0 + && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) + != void_type_node)); + + /* Assume all registers in stdarg functions need to be saved. */ + cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE; + cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE; } /* Reset cfun, and other non-struct-function variables to defaults as @@ -6484,8 +3841,8 @@ allocate_struct_function (tree fndecl) static void prepare_function_start (tree fndecl) { - if (fndecl && DECL_SAVED_INSNS (fndecl)) - cfun = DECL_SAVED_INSNS (fndecl); + if (fndecl && DECL_STRUCT_FUNCTION (fndecl)) + cfun = DECL_STRUCT_FUNCTION (fndecl); else allocate_struct_function (fndecl); init_emit (); @@ -6500,10 +3857,6 @@ prepare_function_start (tree fndecl) /* We haven't done register allocation yet. */ reg_renumber = 0; - /* Indicate that we need to distinguish between the return value of the - present function and the return value of a function being called. */ - rtx_equal_function_value_matters = 1; - /* Indicate that we have not instantiated virtual registers yet. */ virtuals_instantiated = 0; @@ -6532,14 +3885,11 @@ init_function_start (tree subr) { prepare_function_start (subr); - /* Within function body, compute a type's size as soon it is laid out. */ - immediate_size_expand++; - /* Prevent ever trying to delete the first instruction of a function. Also tell final how to output a linenum before the function prologue. Note linenums could be missing, e.g. when compiling a Java .class file. */ - if (DECL_SOURCE_LINE (subr)) + if (! DECL_IS_BUILTIN (subr)) emit_line_note (DECL_SOURCE_LOCATION (subr)); /* Make sure first insn is a note even if we don't want linenums. @@ -6549,96 +3899,144 @@ init_function_start (tree subr) /* Warn if this value is an aggregate type, regardless of which calling convention we are using for it. */ - if (warn_aggregate_return - && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) - warning ("function returns an aggregate"); + if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) + warning (OPT_Waggregate_return, "function returns an aggregate"); } /* Make sure all values used by the optimization passes have sane defaults. */ -void +unsigned int init_function_for_compilation (void) { reg_renumber = 0; - /* No prologue/epilogue insns yet. */ - VARRAY_GROW (prologue, 0); - VARRAY_GROW (epilogue, 0); - VARRAY_GROW (sibcall_epilogue, 0); + /* No prologue/epilogue insns yet. Make sure that these vectors are + empty. */ + gcc_assert (VEC_length (int, prologue) == 0); + gcc_assert (VEC_length (int, epilogue) == 0); + gcc_assert (VEC_length (int, sibcall_epilogue) == 0); + return 0; } -/* Expand a call to __main at the beginning of a possible main function. */ +struct tree_opt_pass pass_init_function = +{ + NULL, /* name */ + NULL, /* gate */ + init_function_for_compilation, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ + 0 /* letter */ +}; -#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main) -#undef HAS_INIT_SECTION -#define HAS_INIT_SECTION -#endif void expand_main_function (void) { -#ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN - if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN) - { - int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; - rtx tmp, seq; - - start_sequence (); - /* Forcibly align the stack. */ -#ifdef STACK_GROWS_DOWNWARD - tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align), - stack_pointer_rtx, 1, OPTAB_WIDEN); -#else - tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx, - GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN); - tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align), - stack_pointer_rtx, 1, OPTAB_WIDEN); -#endif - if (tmp != stack_pointer_rtx) - emit_move_insn (stack_pointer_rtx, tmp); - - /* Enlist allocate_dynamic_stack_space to pick up the pieces. */ - tmp = force_reg (Pmode, const0_rtx); - allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT); - seq = get_insns (); - end_sequence (); - - for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp)) - if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG) - break; - if (tmp) - emit_insn_before (seq, tmp); - else - emit_insn (seq); - } -#endif - -#ifndef HAS_INIT_SECTION +#if (defined(INVOKE__main) \ + || (!defined(HAS_INIT_SECTION) \ + && !defined(INIT_SECTION_ASM_OP) \ + && !defined(INIT_ARRAY_SECTION_ASM_OP))) emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0); #endif } -/* The PENDING_SIZES represent the sizes of variable-sized types. - Create RTL for the various sizes now (using temporary variables), - so that we can refer to the sizes from the RTL we are generating - for the current function. The PENDING_SIZES are a TREE_LIST. The - TREE_VALUE of each node is a SAVE_EXPR. */ +/* Expand code to initialize the stack_protect_guard. This is invoked at + the beginning of a function to be protected. */ + +#ifndef HAVE_stack_protect_set +# define HAVE_stack_protect_set 0 +# define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX) +#endif void -expand_pending_sizes (tree pending_sizes) +stack_protect_prologue (void) { - tree tem; + tree guard_decl = targetm.stack_protect_guard (); + rtx x, y; - /* Evaluate now the sizes of any types declared among the arguments. */ - for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem)) + /* Avoid expand_expr here, because we don't want guard_decl pulled + into registers unless absolutely necessary. And we know that + cfun->stack_protect_guard is a local stack slot, so this skips + all the fluff. */ + x = validize_mem (DECL_RTL (cfun->stack_protect_guard)); + y = validize_mem (DECL_RTL (guard_decl)); + + /* Allow the target to copy from Y to X without leaking Y into a + register. */ + if (HAVE_stack_protect_set) { - expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0); - /* Flush the queue in case this parameter declaration has - side-effects. */ - emit_queue (); + rtx insn = gen_stack_protect_set (x, y); + if (insn) + { + emit_insn (insn); + return; + } } + + /* Otherwise do a straight move. */ + emit_move_insn (x, y); } +/* Expand code to verify the stack_protect_guard. This is invoked at + the end of a function to be protected. */ + +#ifndef HAVE_stack_protect_test +# define HAVE_stack_protect_test 0 +# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX) +#endif + +void +stack_protect_epilogue (void) +{ + tree guard_decl = targetm.stack_protect_guard (); + rtx label = gen_label_rtx (); + rtx x, y, tmp; + + /* Avoid expand_expr here, because we don't want guard_decl pulled + into registers unless absolutely necessary. And we know that + cfun->stack_protect_guard is a local stack slot, so this skips + all the fluff. */ + x = validize_mem (DECL_RTL (cfun->stack_protect_guard)); + y = validize_mem (DECL_RTL (guard_decl)); + + /* Allow the target to compare Y with X without leaking either into + a register. */ + switch (HAVE_stack_protect_test != 0) + { + case 1: + tmp = gen_stack_protect_test (x, y, label); + if (tmp) + { + emit_insn (tmp); + break; + } + /* FALLTHRU */ + + default: + emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label); + break; + } + + /* The noreturn predictor has been moved to the tree level. The rtl-level + predictors estimate this branch about 20%, which isn't enough to get + things moved out of line. Since this is the only extant case of adding + a noreturn function at the rtl level, it doesn't seem worth doing ought + except adding the prediction by hand. */ + tmp = get_last_insn (); + if (JUMP_P (tmp)) + predict_insn_def (tmp, PRED_NORETURN, TAKEN); + + expand_expr_stmt (targetm.stack_protect_fail ()); + emit_label (label); +} + /* Start the RTL for a new function, and set variables used for emitting RTL. SUBR is the FUNCTION_DECL node. @@ -6646,19 +4044,12 @@ expand_pending_sizes (tree pending_sizes) the function's parameters, which must be run at any return statement. */ void -expand_function_start (tree subr, int parms_have_cleanups) +expand_function_start (tree subr) { - tree tem; - rtx last_ptr = NULL_RTX; - /* Make sure volatile mem refs aren't considered valid operands of arithmetic insns. */ init_recog_no_volatile (); - current_function_instrument_entry_exit - = (flag_instrument_function_entry_exit - && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); - current_function_profile = (profile_flag && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); @@ -6666,27 +4057,6 @@ expand_function_start (tree subr, int parms_have_cleanups) current_function_limit_stack = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr)); - /* If function gets a static chain arg, store it in the stack frame. - Do this first, so it gets the first stack slot offset. */ - if (current_function_needs_context) - { - last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); - - /* Delay copying static chain if it is not a register to avoid - conflicts with regs used for parameters. */ - if (! SMALL_REGISTER_CLASSES - || GET_CODE (static_chain_incoming_rtx) == REG) - emit_move_insn (last_ptr, static_chain_incoming_rtx); - } - - /* If the parameters of this function need cleaning up, get a label - for the beginning of the code which executes those cleanups. This must - be done before doing anything with return_label. */ - if (parms_have_cleanups) - cleanup_label = gen_label_rtx (); - else - cleanup_label = 0; - /* Make the label for return statements to jump to. Do not special case machines with special return instructions -- they will be handled later during jump, ifcvt, or epilogue creation. */ @@ -6711,7 +4081,7 @@ expand_function_start (tree subr, int parms_have_cleanups) else #endif { - rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1); + rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2); /* Expect to be passed the address of a place to store the value. If it is passed as an argument, assign_parms will take care of it. */ @@ -6723,8 +4093,12 @@ expand_function_start (tree subr, int parms_have_cleanups) } if (value_address) { - rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address); - set_mem_attributes (x, DECL_RESULT (subr), 1); + rtx x = value_address; + if (!DECL_BY_REFERENCE (DECL_RESULT (subr))) + { + x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x); + set_mem_attributes (x, DECL_RESULT (subr), 1); + } SET_DECL_RTL (DECL_RESULT (subr), x); } } @@ -6735,22 +4109,32 @@ expand_function_start (tree subr, int parms_have_cleanups) { /* Compute the return values into a pseudo reg, which we will copy into the true return register after the cleanups are done. */ - - /* In order to figure out what mode to use for the pseudo, we - figure out what the mode of the eventual return register will - actually be, and use that. */ - rtx hard_reg - = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), - subr, 1); - - /* Structures that are returned in registers are not aggregate_value_p, - so we may see a PARALLEL or a REG. */ - if (REG_P (hard_reg)) - SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg))); - else if (GET_CODE (hard_reg) == PARALLEL) - SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg)); + tree return_type = TREE_TYPE (DECL_RESULT (subr)); + if (TYPE_MODE (return_type) != BLKmode + && targetm.calls.return_in_msb (return_type)) + /* expand_function_end will insert the appropriate padding in + this case. Use the return value's natural (unpadded) mode + within the function proper. */ + SET_DECL_RTL (DECL_RESULT (subr), + gen_reg_rtx (TYPE_MODE (return_type))); else - abort (); + { + /* In order to figure out what mode to use for the pseudo, we + figure out what the mode of the eventual return register will + actually be, and use that. */ + rtx hard_reg = hard_function_value (return_type, subr, 0, 1); + + /* Structures that are returned in registers are not + aggregate_value_p, so we may see a PARALLEL or a REG. */ + if (REG_P (hard_reg)) + SET_DECL_RTL (DECL_RESULT (subr), + gen_reg_rtx (GET_MODE (hard_reg))); + else + { + gcc_assert (GET_CODE (hard_reg) == PARALLEL); + SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg)); + } + } /* Set DECL_REGISTER flag so that expand_function_end will copy the result to the real return register(s). */ @@ -6759,15 +4143,41 @@ expand_function_start (tree subr, int parms_have_cleanups) /* Initialize rtx for parameters and local variables. In some cases this requires emitting insns. */ - assign_parms (subr); - /* Copy the static chain now if it wasn't a register. The delay is to - avoid conflicts with the parameter passing registers. */ + /* If function gets a static chain arg, store it. */ + if (cfun->static_chain_decl) + { + tree parm = cfun->static_chain_decl; + rtx local = gen_reg_rtx (Pmode); - if (SMALL_REGISTER_CLASSES && current_function_needs_context) - if (GET_CODE (static_chain_incoming_rtx) != REG) - emit_move_insn (last_ptr, static_chain_incoming_rtx); + set_decl_incoming_rtl (parm, static_chain_incoming_rtx); + SET_DECL_RTL (parm, local); + mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); + + emit_move_insn (local, static_chain_incoming_rtx); + } + + /* If the function receives a non-local goto, then store the + bits we need to restore the frame pointer. */ + if (cfun->nonlocal_goto_save_area) + { + tree t_save; + rtx r_save; + + /* ??? We need to do this save early. Unfortunately here is + before the frame variable gets declared. Help out... */ + expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0)); + + t_save = build4 (ARRAY_REF, ptr_type_node, + cfun->nonlocal_goto_save_area, + integer_zero_node, NULL_TREE, NULL_TREE); + r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); + r_save = convert_memory_address (Pmode, r_save); + + emit_move_insn (r_save, virtual_stack_vars_rtx); + update_nonlocal_goto_save_area (); + } /* The following was moved from init_function_start. The move is supposed to make sdb output more accurate. */ @@ -6775,71 +4185,10 @@ expand_function_start (tree subr, int parms_have_cleanups) as opposed to parm setup. */ emit_note (NOTE_INSN_FUNCTION_BEG); - if (GET_CODE (get_last_insn ()) != NOTE) - emit_note (NOTE_INSN_DELETED); + gcc_assert (NOTE_P (get_last_insn ())); + parm_birth_insn = get_last_insn (); - context_display = 0; - if (current_function_needs_context) - { - /* Fetch static chain values for containing functions. */ - tem = decl_function_context (current_function_decl); - /* Copy the static chain pointer into a pseudo. If we have - small register classes, copy the value from memory if - static_chain_incoming_rtx is a REG. */ - if (tem) - { - /* If the static chain originally came in a register, put it back - there, then move it out in the next insn. The reason for - this peculiar code is to satisfy function integration. */ - if (SMALL_REGISTER_CLASSES - && GET_CODE (static_chain_incoming_rtx) == REG) - emit_move_insn (static_chain_incoming_rtx, last_ptr); - last_ptr = copy_to_reg (static_chain_incoming_rtx); - } - - while (tem) - { - tree rtlexp = make_node (RTL_EXPR); - - RTL_EXPR_RTL (rtlexp) = last_ptr; - context_display = tree_cons (tem, rtlexp, context_display); - tem = decl_function_context (tem); - if (tem == 0) - break; - /* Chain through stack frames, assuming pointer to next lexical frame - is found at the place we always store it. */ -#ifdef FRAME_GROWS_DOWNWARD - last_ptr = plus_constant (last_ptr, - -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode)); -#endif - last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr)); - set_mem_alias_set (last_ptr, get_frame_alias_set ()); - last_ptr = copy_to_reg (last_ptr); - - /* If we are not optimizing, ensure that we know that this - piece of context is live over the entire function. */ - if (! optimize) - save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr, - save_expr_regs); - } - } - - if (current_function_instrument_entry_exit) - { - rtx fun = DECL_RTL (current_function_decl); - if (GET_CODE (fun) == MEM) - fun = XEXP (fun, 0); - else - abort (); - emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode, - 2, fun, Pmode, - expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS, - 0, - hard_frame_pointer_rtx), - Pmode); - } - if (current_function_profile) { #ifdef PROFILE_HOOK @@ -6847,13 +4196,10 @@ expand_function_start (tree subr, int parms_have_cleanups) #endif } - /* After the display initializations is where the tail-recursion label - should go, if we end up needing one. Ensure we have a NOTE here - since some things (like trampolines) get placed before this. */ - tail_recursion_reentry = emit_note (NOTE_INSN_DELETED); - - /* Evaluate now the sizes of any types declared among the arguments. */ - expand_pending_sizes (nreverse (get_pending_sizes ())); + /* After the display initializations is where the stack checking + probe should go. */ + if(flag_stack_check) + stack_check_probe_note = emit_note (NOTE_INSN_DELETED); /* Make sure there is a line number after the function entry setup code. */ force_next_line_note (); @@ -6886,7 +4232,7 @@ diddle_return_value (void (*doit) (rtx, void *), void *arg) if (! outgoing) return; - if (GET_CODE (outgoing) == REG) + if (REG_P (outgoing)) (*doit) (outgoing, arg); else if (GET_CODE (outgoing) == PARALLEL) { @@ -6896,7 +4242,7 @@ diddle_return_value (void (*doit) (rtx, void *), void *arg) { rtx x = XEXP (XVECEXP (outgoing, 0, i), 0); - if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER) + if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) (*doit) (x, arg); } } @@ -6931,7 +4277,7 @@ do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) emit_insn (gen_rtx_USE (VOIDmode, reg)); } -void +static void use_return_register (void) { diddle_return_value (do_use_return_reg, NULL); @@ -6947,7 +4293,7 @@ do_warn_unused_parameter (tree fn) decl; decl = TREE_CHAIN (decl)) if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)) - warning ("%Junused parameter '%D'", decl, decl); + warning (OPT_Wunused_parameter, "unused parameter %q+D", decl); } static GTY(()) rtx initial_trampoline; @@ -6957,67 +4303,13 @@ static GTY(()) rtx initial_trampoline; void expand_function_end (void) { - tree link; rtx clobber_after; - finish_expr_for_function (); - /* If arg_pointer_save_area was referenced only from a nested function, we will not have initialized it yet. Do that now. */ if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init) get_arg_pointer_save_area (cfun); -#ifdef NON_SAVING_SETJMP - /* Don't put any variables in registers if we call setjmp - on a machine that fails to restore the registers. */ - if (NON_SAVING_SETJMP && current_function_calls_setjmp) - { - if (DECL_INITIAL (current_function_decl) != error_mark_node) - setjmp_protect (DECL_INITIAL (current_function_decl)); - - setjmp_protect_args (); - } -#endif - - /* Initialize any trampolines required by this function. */ - for (link = trampoline_list; link; link = TREE_CHAIN (link)) - { - tree function = TREE_PURPOSE (link); - rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function); - rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link)); -#ifdef TRAMPOLINE_TEMPLATE - rtx blktramp; -#endif - rtx seq; - -#ifdef TRAMPOLINE_TEMPLATE - /* First make sure this compilation has a template for - initializing trampolines. */ - if (initial_trampoline == 0) - { - initial_trampoline - = gen_rtx_MEM (BLKmode, assemble_trampoline_template ()); - set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT); - } -#endif - - /* Generate insns to initialize the trampoline. */ - start_sequence (); - tramp = round_trampoline_addr (XEXP (tramp, 0)); -#ifdef TRAMPOLINE_TEMPLATE - blktramp = replace_equiv_address (initial_trampoline, tramp); - emit_block_move (blktramp, initial_trampoline, - GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL); -#endif - trampolines_created = 1; - INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context); - seq = get_insns (); - end_sequence (); - - /* Put those insns at entry to the containing function (this one). */ - emit_insn_before (seq, tail_recursion_reentry); - } - /* If we are doing stack checking and this function makes calls, do a stack probe at the start of the function to ensure we have enough space for another stack frame. */ @@ -7026,14 +4318,14 @@ expand_function_end (void) rtx insn, seq; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) - if (GET_CODE (insn) == CALL_INSN) + if (CALL_P (insn)) { start_sequence (); probe_stack_range (STACK_CHECK_PROTECT, GEN_INT (STACK_CHECK_MAX_FRAME_SIZE)); seq = get_insns (); end_sequence (); - emit_insn_before (seq, tail_recursion_reentry); + emit_insn_before (seq, stack_check_probe_note); break; } } @@ -7045,30 +4337,13 @@ expand_function_end (void) && !lang_hooks.callgraph.expand_function) do_warn_unused_parameter (current_function_decl); - /* Delete handlers for nonlocal gotos if nothing uses them. */ - if (nonlocal_goto_handler_slots != 0 - && ! current_function_has_nonlocal_label) - delete_handlers (); - /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); - /* Outside function body, can't compute type's actual size - until next function's body starts. */ - immediate_size_expand--; - clear_pending_stack_adjust (); do_pending_stack_adjust (); - /* ??? This is a kludge. We want to ensure that instructions that - may trap are not moved into the epilogue by scheduling, because - we don't always emit unwind information for the epilogue. - However, not all machine descriptions define a blockage insn, so - emit an ASM_INPUT to act as one. */ - if (flag_non_call_exceptions) - emit_insn (gen_rtx_ASM_INPUT (VOIDmode, "")); - /* Mark the end of the function body. If control reaches this insn, the function can drop through without returning a value. */ @@ -7097,28 +4372,8 @@ expand_function_end (void) is computed. */ clobber_after = get_last_insn (); - /* Output the label for the actual return from the function, - if one is expected. This happens either because a function epilogue - is used instead of a return instruction, or because a return was done - with a goto in order to run local cleanups, or because of pcc-style - structure returning. */ - if (return_label) - emit_label (return_label); - - if (current_function_instrument_entry_exit) - { - rtx fun = DECL_RTL (current_function_decl); - if (GET_CODE (fun) == MEM) - fun = XEXP (fun, 0); - else - abort (); - emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode, - 2, fun, Pmode, - expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS, - 0, - hard_frame_pointer_rtx), - Pmode); - } + /* Output the label for the actual return from the function. */ + emit_label (return_label); #ifdef TARGET_PROFILER_EPILOGUE if (current_function_profile && TARGET_PROFILER_EPILOGUE) @@ -7129,30 +4384,33 @@ expand_function_end (void) if (!initialized) { mexitcount_libfunc = init_one_libfunc (".mexitcount"); -#if 0 /* Turn this off to prevent erroneous garbage collection. */ - initialized = 1; -#endif + initialized = 0; } emit_library_call (mexitcount_libfunc, LCT_NORMAL, VOIDmode, 0); } #endif - /* Let except.c know where it should emit the call to unregister - the function context for sjlj exceptions. */ - if (flag_exceptions && USING_SJLJ_EXCEPTIONS) - sjlj_emit_function_exit_after (get_last_insn ()); - - /* If we had calls to alloca, and this machine needs - an accurate stack pointer to exit the function, - insert some code to save and restore the stack pointer. */ - if (! EXIT_IGNORE_STACK - && current_function_calls_alloca) + if (USING_SJLJ_EXCEPTIONS) { - rtx tem = 0; - - emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn); - emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX); + /* Let except.c know where it should emit the call to unregister + the function context for sjlj exceptions. */ + if (flag_exceptions) + sjlj_emit_function_exit_after (get_last_insn ()); } + else + { + /* @@@ This is a kludge. We want to ensure that instructions that + may trap are not moved into the epilogue by scheduling, because + we don't always emit unwind information for the epilogue. + However, not all machine descriptions define a blockage insn, so + emit an ASM_INPUT to act as one. */ + if (flag_non_call_exceptions) + emit_insn (gen_rtx_ASM_INPUT (VOIDmode, "")); + } + + /* If this is an implementation of throw, do what's necessary to + communicate between __builtin_eh_return and the epilogue. */ + expand_eh_return (); /* If scalar return value was computed in a pseudo-reg, or was a named return value that got dumped to the stack, copy that to the hard @@ -7169,8 +4427,7 @@ expand_function_end (void) rtx real_decl_rtl = current_function_return_rtx; /* This should be set in assign_parms. */ - if (! REG_FUNCTION_VALUE_P (real_decl_rtl)) - abort (); + gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl)); /* If this is a BLKmode structure being returned in registers, then use the mode computed in expand_return. Note that if @@ -7179,12 +4436,24 @@ expand_function_end (void) if (GET_MODE (real_decl_rtl) == BLKmode) PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl)); + /* If a non-BLKmode return value should be padded at the least + significant end of the register, shift it left by the appropriate + amount. BLKmode results are handled using the group load/store + machinery. */ + if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode + && targetm.calls.return_in_msb (TREE_TYPE (decl_result))) + { + emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl), + REGNO (real_decl_rtl)), + decl_rtl); + shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl); + } /* If a named return value dumped decl_return to memory, then we may need to re-do the PROMOTE_MODE signed/unsigned extension. */ - if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl)) + else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl)) { - int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result)); + int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result)); if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl))) promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl), @@ -7204,6 +4473,24 @@ expand_function_end (void) TREE_TYPE (decl_result), int_size_in_bytes (TREE_TYPE (decl_result))); } + /* In the case of complex integer modes smaller than a word, we'll + need to generate some non-trivial bitfield insertions. Do that + on a pseudo and not the hard register. */ + else if (GET_CODE (decl_rtl) == CONCAT + && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT + && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD) + { + int old_generating_concat_p; + rtx tmp; + + old_generating_concat_p = generating_concat_p; + generating_concat_p = 0; + tmp = gen_reg_rtx (GET_MODE (decl_rtl)); + generating_concat_p = old_generating_concat_p; + + emit_move_insn (tmp, decl_rtl); + emit_move_insn (real_decl_rtl, tmp); + } else emit_move_insn (real_decl_rtl, decl_rtl); } @@ -7218,17 +4505,17 @@ expand_function_end (void) if (current_function_returns_struct || current_function_returns_pcc_struct) { - rtx value_address - = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0); + rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl)); tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); -#ifdef FUNCTION_OUTGOING_VALUE - rtx outgoing - = FUNCTION_OUTGOING_VALUE (build_pointer_type (type), - current_function_decl); -#else - rtx outgoing - = FUNCTION_VALUE (build_pointer_type (type), current_function_decl); -#endif + rtx outgoing; + + if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))) + type = TREE_TYPE (type); + else + value_address = XEXP (value_address, 0); + + outgoing = targetm.calls.function_value (build_pointer_type (type), + current_function_decl, true); /* Mark this as a function return value so integrate will delete the assignment and USE below when inlining this function. */ @@ -7245,44 +4532,43 @@ expand_function_end (void) current_function_return_rtx = outgoing; } - /* If this is an implementation of throw, do what's necessary to - communicate between __builtin_eh_return and the epilogue. */ - expand_eh_return (); - /* Emit the actual code to clobber return register. */ { - rtx seq, after; + rtx seq; start_sequence (); clobber_return_register (); + expand_naked_return (); seq = get_insns (); end_sequence (); - after = emit_insn_after (seq, clobber_after); - - if (clobber_after != after) - cfun->x_clobber_return_insn = after; + emit_insn_after (seq, clobber_after); } - /* Output the label for the naked return from the function, if one is - expected. This is currently used only by __builtin_return. */ - if (naked_return_label) - emit_label (naked_return_label); + /* Output the label for the naked return from the function. */ + emit_label (naked_return_label); + + /* If stack protection is enabled for this function, check the guard. */ + if (cfun->stack_protect_guard) + stack_protect_epilogue (); + + /* If we had calls to alloca, and this machine needs + an accurate stack pointer to exit the function, + insert some code to save and restore the stack pointer. */ + if (! EXIT_IGNORE_STACK + && current_function_calls_alloca) + { + rtx tem = 0; + + emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn); + emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX); + } /* ??? This should no longer be necessary since stupid is no longer with us, but there are some parts of the compiler (eg reload_combine, and sh mach_dep_reorg) that still try and compute their own lifetime info instead of using the general framework. */ use_return_register (); - - /* Fix up any gotos that jumped out to the outermost - binding level of the function. - Must follow emitting RETURN_LABEL. */ - - /* If you have any cleanups to do at this point, - and they need to create temporary variables, - then you will lose. */ - expand_fixups (get_insns ()); } rtx @@ -7309,7 +4595,7 @@ get_arg_pointer_save_area (struct function *f) end_sequence (); push_topmost_sequence (); - emit_insn_after (seq, get_insns ()); + emit_insn_after (seq, entry_of_function ()); pop_topmost_sequence (); } @@ -7320,28 +4606,12 @@ get_arg_pointer_save_area (struct function *f) (a list of one or more insns). */ static void -record_insns (rtx insns, varray_type *vecp) +record_insns (rtx insns, VEC(int,heap) **vecp) { - int i, len; rtx tmp; - tmp = insns; - len = 0; - while (tmp != NULL_RTX) - { - len++; - tmp = NEXT_INSN (tmp); - } - - i = VARRAY_SIZE (*vecp); - VARRAY_GROW (*vecp, i + len); - tmp = insns; - while (tmp != NULL_RTX) - { - VARRAY_INT (*vecp, i) = INSN_UID (tmp); - i++; - tmp = NEXT_INSN (tmp); - } + for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp)) + VEC_safe_push (int, heap, *vecp, INSN_UID (tmp)); } /* Set the locator of the insn chain starting at INSN to LOC. */ @@ -7360,24 +4630,25 @@ set_insn_locators (rtx insn, int loc) be running after reorg, SEQUENCE rtl is possible. */ static int -contains (rtx insn, varray_type vec) +contains (rtx insn, VEC(int,heap) **vec) { int i, j; - if (GET_CODE (insn) == INSN + if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) { int count = 0; for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) - for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j) - if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j)) + for (j = VEC_length (int, *vec) - 1; j >= 0; --j) + if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) + == VEC_index (int, *vec, j)) count++; return count; } else { - for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j) - if (INSN_UID (insn) == VARRAY_INT (vec, j)) + for (j = VEC_length (int, *vec) - 1; j >= 0; --j) + if (INSN_UID (insn) == VEC_index (int, *vec, j)) return 1; } return 0; @@ -7386,9 +4657,9 @@ contains (rtx insn, varray_type vec) int prologue_epilogue_contains (rtx insn) { - if (contains (insn, prologue)) + if (contains (insn, &prologue)) return 1; - if (contains (insn, epilogue)) + if (contains (insn, &epilogue)) return 1; return 0; } @@ -7397,7 +4668,7 @@ int sibcall_epilogue_contains (rtx insn) { if (sibcall_epilogue) - return contains (insn, sibcall_epilogue); + return contains (insn, &sibcall_epilogue); return 0; } @@ -7416,34 +4687,35 @@ emit_return_into_block (basic_block bb, rtx line_note) #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX) -/* These functions convert the epilogue into a variant that does not modify the - stack pointer. This is used in cases where a function returns an object - whose size is not known until it is computed. The called function leaves the - object on the stack, leaves the stack depressed, and returns a pointer to - the object. +/* These functions convert the epilogue into a variant that does not + modify the stack pointer. This is used in cases where a function + returns an object whose size is not known until it is computed. + The called function leaves the object on the stack, leaves the + stack depressed, and returns a pointer to the object. - What we need to do is track all modifications and references to the stack - pointer, deleting the modifications and changing the references to point to - the location the stack pointer would have pointed to had the modifications - taken place. + What we need to do is track all modifications and references to the + stack pointer, deleting the modifications and changing the + references to point to the location the stack pointer would have + pointed to had the modifications taken place. - These functions need to be portable so we need to make as few assumptions - about the epilogue as we can. However, the epilogue basically contains - three things: instructions to reset the stack pointer, instructions to - reload registers, possibly including the frame pointer, and an - instruction to return to the caller. + These functions need to be portable so we need to make as few + assumptions about the epilogue as we can. However, the epilogue + basically contains three things: instructions to reset the stack + pointer, instructions to reload registers, possibly including the + frame pointer, and an instruction to return to the caller. - If we can't be sure of what a relevant epilogue insn is doing, we abort. - We also make no attempt to validate the insns we make since if they are - invalid, we probably can't do anything valid. The intent is that these - routines get "smarter" as more and more machines start to use them and - they try operating on different epilogues. + We must be sure of what a relevant epilogue insn is doing. We also + make no attempt to validate the insns we make since if they are + invalid, we probably can't do anything valid. The intent is that + these routines get "smarter" as more and more machines start to use + them and they try operating on different epilogues. - We use the following structure to track what the part of the epilogue that - we've already processed has done. We keep two copies of the SP equivalence, - one for use during the insn we are processing and one for use in the next - insn. The difference is because one part of a PARALLEL may adjust SP - and the other may use it. */ + We use the following structure to track what the part of the + epilogue that we've already processed has done. We keep two copies + of the SP equivalence, one for use during the insn we are + processing and one for use in the next insn. The difference is + because one part of a PARALLEL may adjust SP and the other may use + it. */ struct epi_info { @@ -7528,26 +4800,34 @@ keep_stack_depressed (rtx insns) unchanged. Otherwise, it must be a MEM and we see what the base register and offset are. In any case, we have to emit any pending load to the equivalent reg of SP, if any. */ - if (GET_CODE (retaddr) == REG) + if (REG_P (retaddr)) { emit_equiv_load (&info); add_insn (insn); insn = next; continue; } - else if (GET_CODE (retaddr) == MEM - && GET_CODE (XEXP (retaddr, 0)) == REG) - base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0; - else if (GET_CODE (retaddr) == MEM - && GET_CODE (XEXP (retaddr, 0)) == PLUS - && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG - && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT) - { - base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0))); - offset = INTVAL (XEXP (XEXP (retaddr, 0), 1)); - } else - abort (); + { + rtx ret_ptr; + gcc_assert (MEM_P (retaddr)); + + ret_ptr = XEXP (retaddr, 0); + + if (REG_P (ret_ptr)) + { + base = gen_rtx_REG (Pmode, REGNO (ret_ptr)); + offset = 0; + } + else + { + gcc_assert (GET_CODE (ret_ptr) == PLUS + && REG_P (XEXP (ret_ptr, 0)) + && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT); + base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0))); + offset = INTVAL (XEXP (ret_ptr, 1)); + } + } /* If the base of the location containing the return pointer is SP, we must update it with the replacement address. Otherwise, @@ -7559,6 +4839,7 @@ keep_stack_depressed (rtx insns) info.sp_offset)); retaddr = gen_rtx_MEM (Pmode, retaddr); + MEM_NOTRAP_P (retaddr) = 1; /* If there is a pending load to the equivalent register for SP and we reference that register, we must load our address into @@ -7573,17 +4854,16 @@ keep_stack_depressed (rtx insns) if (HARD_REGNO_MODE_OK (regno, Pmode) && !fixed_regs[regno] && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno) - && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start, - regno) + && !REGNO_REG_SET_P + (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno) && !refers_to_regno_p (regno, - regno + HARD_REGNO_NREGS (regno, - Pmode), + regno + hard_regno_nregs[regno] + [Pmode], info.equiv_reg_src, NULL) && info.const_equiv[regno] == 0) break; - if (regno == FIRST_PSEUDO_REGISTER) - abort (); + gcc_assert (regno < FIRST_PSEUDO_REGISTER); reg = gen_rtx_REG (Pmode, regno); emit_move_insn (reg, retaddr); @@ -7595,10 +4875,8 @@ keep_stack_depressed (rtx insns) /* Show the SET in the above insn is a RETURN. */ jump_set = single_set (jump_insn); - if (jump_set == 0) - abort (); - else - SET_IS_RETURN_P (jump_set) = 1; + gcc_assert (jump_set); + SET_IS_RETURN_P (jump_set) = 1; } /* If SP is not mentioned in the pattern and its equivalent register, if @@ -7613,11 +4891,13 @@ keep_stack_depressed (rtx insns) && (info.sp_equiv_reg == stack_pointer_rtx || !reg_set_p (info.sp_equiv_reg, insn))) { - if (! validate_replace_rtx (stack_pointer_rtx, - plus_constant (info.sp_equiv_reg, - info.sp_offset), - insn)) - abort (); + int changed; + + changed = validate_replace_rtx (stack_pointer_rtx, + plus_constant (info.sp_equiv_reg, + info.sp_offset), + insn); + gcc_assert (changed); add_insn (insn); } @@ -7654,24 +4934,25 @@ static void handle_epilogue_set (rtx set, struct epi_info *p) { /* First handle the case where we are setting SP. Record what it is being - set from. If unknown, abort. */ + set from, which we must be able to determine */ if (reg_set_p (stack_pointer_rtx, set)) { - if (SET_DEST (set) != stack_pointer_rtx) - abort (); + gcc_assert (SET_DEST (set) == stack_pointer_rtx); if (GET_CODE (SET_SRC (set)) == PLUS) { p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0); if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT) p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1)); - else if (GET_CODE (XEXP (SET_SRC (set), 1)) == REG - && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER - && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0) - p->new_sp_offset - = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]); else - abort (); + { + gcc_assert (REG_P (XEXP (SET_SRC (set), 1)) + && (REGNO (XEXP (SET_SRC (set), 1)) + < FIRST_PSEUDO_REGISTER) + && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]); + p->new_sp_offset + = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]); + } } else p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0; @@ -7683,33 +4964,31 @@ handle_epilogue_set (rtx set, struct epi_info *p) p->new_sp_offset += p->sp_offset; } - if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG) - abort (); + gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg)); return; } - /* Next handle the case where we are setting SP's equivalent register. - If we already have a value to set it to, abort. We could update, but - there seems little point in handling that case. Note that we have - to allow for the case where we are setting the register set in - the previous part of a PARALLEL inside a single insn. But use the - old offset for any updates within this insn. We must allow for the case - where the register is being set in a different (usually wider) mode than - Pmode). */ + /* Next handle the case where we are setting SP's equivalent + register. We must not already have a value to set it to. We + could update, but there seems little point in handling that case. + Note that we have to allow for the case where we are setting the + register set in the previous part of a PARALLEL inside a single + insn. But use the old offset for any updates within this insn. + We must allow for the case where the register is being set in a + different (usually wider) mode than Pmode). */ else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set)) { - if (p->equiv_reg_src != 0 - || GET_CODE (p->new_sp_equiv_reg) != REG - || GET_CODE (SET_DEST (set)) != REG - || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD - || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set))) - abort (); - else - p->equiv_reg_src - = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx, - plus_constant (p->sp_equiv_reg, - p->sp_offset)); + gcc_assert (!p->equiv_reg_src + && REG_P (p->new_sp_equiv_reg) + && REG_P (SET_DEST (set)) + && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) + <= BITS_PER_WORD) + && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set))); + p->equiv_reg_src + = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx, + plus_constant (p->sp_equiv_reg, + p->sp_offset)); } /* Otherwise, replace any references to SP in the insn to its new value @@ -7732,14 +5011,37 @@ static void update_epilogue_consts (rtx dest, rtx x, void *data) { struct epi_info *p = (struct epi_info *) data; + rtx new; - if (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER) + if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER) return; - else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)) - || GET_CODE (SET_SRC (x)) != CONST_INT) + + /* If we are either clobbering a register or doing a partial set, + show we don't know the value. */ + else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x))) p->const_equiv[REGNO (dest)] = 0; - else + + /* If we are setting it to a constant, record that constant. */ + else if (GET_CODE (SET_SRC (x)) == CONST_INT) p->const_equiv[REGNO (dest)] = SET_SRC (x); + + /* If this is a binary operation between a register we have been tracking + and a constant, see if we can compute a new constant value. */ + else if (ARITHMETIC_P (SET_SRC (x)) + && REG_P (XEXP (SET_SRC (x), 0)) + && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER + && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0 + && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT + && 0 != (new = simplify_binary_operation + (GET_CODE (SET_SRC (x)), GET_MODE (dest), + p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))], + XEXP (SET_SRC (x), 1))) + && GET_CODE (new) == CONST_INT) + p->const_equiv[REGNO (dest)] = new; + + /* Otherwise, we can't do anything with this value. */ + else + p->const_equiv[REGNO (dest)] = 0; } /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */ @@ -7779,6 +5081,7 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) #if defined (HAVE_epilogue) || defined(HAVE_return) rtx epilogue_end = NULL_RTX; #endif + edge_iterator ei; #ifdef HAVE_prologue if (HAVE_prologue) @@ -7798,17 +5101,16 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) /* Can't deal with multiple successors of the entry block at the moment. Function should always have at least one entry point. */ - if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next) - abort (); + gcc_assert (single_succ_p (ENTRY_BLOCK_PTR)); - insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ); + insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR)); inserted = 1; } #endif /* If the exit block has no non-fake predecessors, we don't need an epilogue. */ - for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) if ((e->flags & EDGE_FAKE) == 0) break; if (e == NULL) @@ -7824,10 +5126,9 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) emit (conditional) return instructions. */ basic_block last; - edge e_next; rtx label; - for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) if (e->flags & EDGE_FALLTHRU) break; if (e == NULL) @@ -7836,15 +5137,16 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) /* Verify that there are no active instructions in the last block. */ label = BB_END (last); - while (label && GET_CODE (label) != CODE_LABEL) + while (label && !LABEL_P (label)) { if (active_insn_p (label)) break; label = PREV_INSN (label); } - if (BB_HEAD (last) == label && GET_CODE (label) == CODE_LABEL) + if (BB_HEAD (last) == label && LABEL_P (label)) { + edge_iterator ei2; rtx epilogue_line_note = NULL_RTX; /* Locate the line number associated with the closing brace, @@ -7852,24 +5154,29 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) for (seq = get_last_insn (); seq && ! active_insn_p (seq); seq = PREV_INSN (seq)) - if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0) + if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0) { epilogue_line_note = seq; break; } - for (e = last->pred; e; e = e_next) + for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); ) { basic_block bb = e->src; rtx jump; - e_next = e->pred_next; if (bb == ENTRY_BLOCK_PTR) - continue; + { + ei_next (&ei2); + continue; + } jump = BB_END (bb); - if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label) - continue; + if (!JUMP_P (jump) || JUMP_LABEL (jump) != label) + { + ei_next (&ei2); + continue; + } /* If we have an unconditional jump, we can replace that with a simple return instruction. */ @@ -7884,16 +5191,25 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) else if (condjump_p (jump)) { if (! redirect_jump (jump, 0, 0)) - continue; + { + ei_next (&ei2); + continue; + } /* If this block has only one successor, it both jumps and falls through to the fallthru block, so we can't delete the edge. */ - if (bb->succ->succ_next == NULL) - continue; + if (single_succ_p (bb)) + { + ei_next (&ei2); + continue; + } } else - continue; + { + ei_next (&ei2); + continue; + } /* Fix up the CFG for the successful change we just made. */ redirect_edge_succ (e, EXIT_BLOCK_PTR); @@ -7905,25 +5221,25 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) emit_barrier_after (BB_END (last)); emit_return_into_block (last, epilogue_line_note); epilogue_end = BB_END (last); - last->succ->flags &= ~EDGE_FALLTHRU; + single_succ_edge (last)->flags &= ~EDGE_FALLTHRU; goto epilogue_done; } } #endif + /* Find the edge that falls through to EXIT. Other edges may exist + due to RETURN instructions, but those don't need epilogues. + There really shouldn't be a mixture -- either all should have + been converted or none, however... */ + + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) + if (e->flags & EDGE_FALLTHRU) + break; + if (e == NULL) + goto epilogue_done; + #ifdef HAVE_epilogue if (HAVE_epilogue) { - /* Find the edge that falls through to EXIT. Other edges may exist - due to RETURN instructions, but those don't need epilogues. - There really shouldn't be a mixture -- either all should have - been converted or none, however... */ - - for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) - if (e->flags & EDGE_FALLTHRU) - break; - if (e == NULL) - goto epilogue_done; - start_sequence (); epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG); @@ -7949,7 +5265,27 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) insert_insn_on_edge (seq, e); inserted = 1; } + else #endif + { + basic_block cur_bb; + + if (! next_active_insn (BB_END (e->src))) + goto epilogue_done; + /* We have a fall-through edge to the exit block, the source is not + at the end of the function, and there will be an assembler epilogue + at the end of the function. + We can't use force_nonfallthru here, because that would try to + use return. Inserting a jump 'by hand' is extremely messy, so + we take advantage of cfg_layout_finalize using + fixup_fallthru_exit_predecessor. */ + cfg_layout_initialize (0); + FOR_EACH_BB (cur_bb) + if (cur_bb->index >= NUM_FIXED_BLOCKS + && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS) + cur_bb->aux = cur_bb->next_bb; + cfg_layout_finalize (); + } epilogue_done: if (inserted) @@ -7957,16 +5293,17 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) #ifdef HAVE_sibcall_epilogue /* Emit sibling epilogues before any sibling call sites. */ - for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) + for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); ) { basic_block bb = e->src; rtx insn = BB_END (bb); - rtx i; - rtx newinsn; - if (GET_CODE (insn) != CALL_INSN + if (!CALL_P (insn) || ! SIBLING_CALL_P (insn)) - continue; + { + ei_next (&ei); + continue; + } start_sequence (); emit_insn (gen_sibcall_epilogue ()); @@ -7979,8 +5316,8 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) record_insns (seq, &sibcall_epilogue); set_insn_locators (seq, epilogue_locator); - i = PREV_INSN (insn); - newinsn = emit_insn_before (seq, insn); + emit_insn_before (seq, insn); + ei_next (&ei); } #endif @@ -8006,7 +5343,7 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) for (insn = prologue_end; insn; insn = prev) { prev = PREV_INSN (insn); - if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) + if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) { /* Note that we cannot reorder the first insn in the chain, since rest_of_compilation relies on that @@ -8021,7 +5358,7 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb); insn != prologue_end && insn; insn = PREV_INSN (insn)) - if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) + if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) break; /* If we didn't find one, make a copy of the first line number @@ -8031,7 +5368,7 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) for (insn = next_active_insn (prologue_end); insn; insn = PREV_INSN (insn)) - if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) + if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) { emit_note_copy_after (insn, prologue_end); break; @@ -8052,7 +5389,7 @@ thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) for (insn = epilogue_end; insn; insn = next) { next = NEXT_INSN (insn); - if (GET_CODE (insn) == NOTE + if (NOTE_P (insn) && (NOTE_LINE_NUMBER (insn) > 0 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)) @@ -8072,7 +5409,7 @@ reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED) rtx insn, last, note; int len; - if ((len = VARRAY_SIZE (prologue)) > 0) + if ((len = VEC_length (int, prologue)) > 0) { last = 0, note = 0; @@ -8081,12 +5418,12 @@ reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED) reorg has run. */ for (insn = f; insn; insn = NEXT_INSN (insn)) { - if (GET_CODE (insn) == NOTE) + if (NOTE_P (insn)) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END) note = insn; } - else if (contains (insn, prologue)) + else if (contains (insn, &prologue)) { last = insn; if (--len == 0) @@ -8101,19 +5438,19 @@ reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED) if (note == 0) { for (note = last; (note = NEXT_INSN (note));) - if (GET_CODE (note) == NOTE + if (NOTE_P (note) && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END) break; } /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */ - if (GET_CODE (last) == CODE_LABEL) + if (LABEL_P (last)) last = NEXT_INSN (last); reorder_insns (note, note, last); } } - if ((len = VARRAY_SIZE (epilogue)) > 0) + if ((len = VEC_length (int, epilogue)) > 0) { last = 0, note = 0; @@ -8122,12 +5459,12 @@ reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED) reorg has run. */ for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) { - if (GET_CODE (insn) == NOTE) + if (NOTE_P (insn)) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG) note = insn; } - else if (contains (insn, epilogue)) + else if (contains (insn, &epilogue)) { last = insn; if (--len == 0) @@ -8142,7 +5479,7 @@ reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED) if (note == 0) { for (note = insn; (note = PREV_INSN (note));) - if (GET_CODE (note) == NOTE + if (NOTE_P (note) && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG) break; } @@ -8154,21 +5491,124 @@ reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED) #endif /* HAVE_prologue or HAVE_epilogue */ } -/* Called once, at initialization, to initialize function.c. */ +/* Resets insn_block_boundaries array. */ void -init_function_once (void) +reset_block_changes (void) { - VARRAY_INT_INIT (prologue, 0, "prologue"); - VARRAY_INT_INIT (epilogue, 0, "epilogue"); - VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue"); + cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100); + VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE); +} + +/* Record the boundary for BLOCK. */ +void +record_block_change (tree block) +{ + int i, n; + tree last_block; + + if (!block) + return; + + if(!cfun->ib_boundaries_block) + return; + + last_block = VEC_pop (tree, cfun->ib_boundaries_block); + n = get_max_uid (); + for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++) + VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block); + + VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block); +} + +/* Finishes record of boundaries. */ +void +finalize_block_changes (void) +{ + record_block_change (DECL_INITIAL (current_function_decl)); +} + +/* For INSN return the BLOCK it belongs to. */ +void +check_block_change (rtx insn, tree *block) +{ + unsigned uid = INSN_UID (insn); + + if (uid >= VEC_length (tree, cfun->ib_boundaries_block)) + return; + + *block = VEC_index (tree, cfun->ib_boundaries_block, uid); +} + +/* Releases the ib_boundaries_block records. */ +void +free_block_changes (void) +{ + VEC_free (tree, gc, cfun->ib_boundaries_block); } /* Returns the name of the current function. */ const char * current_function_name (void) { - return (*lang_hooks.decl_printable_name) (cfun->decl, 2); + return lang_hooks.decl_printable_name (cfun->decl, 2); +} + + +static unsigned int +rest_of_handle_check_leaf_regs (void) +{ +#ifdef LEAF_REGISTERS + current_function_uses_only_leaf_regs + = optimize > 0 && only_leaf_regs_used () && leaf_function_p (); +#endif + return 0; } +/* Insert a TYPE into the used types hash table of CFUN. */ +static void +used_types_insert_helper (tree type, struct function *func) +{ + if (type != NULL && func != NULL) + { + void **slot; + + if (func->used_types_hash == NULL) + func->used_types_hash = htab_create_ggc (37, htab_hash_pointer, + htab_eq_pointer, NULL); + slot = htab_find_slot (func->used_types_hash, type, INSERT); + if (*slot == NULL) + *slot = type; + } +} + +/* Given a type, insert it into the used hash table in cfun. */ +void +used_types_insert (tree t) +{ + while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE) + t = TREE_TYPE (t); + t = TYPE_MAIN_VARIANT (t); + if (debug_info_level > DINFO_LEVEL_NONE) + used_types_insert_helper (t, cfun); +} + +struct tree_opt_pass pass_leaf_regs = +{ + NULL, /* name */ + NULL, /* gate */ + rest_of_handle_check_leaf_regs, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ + 0 /* letter */ +}; + + #include "gt-function.h"