allow the watermark to be passed in via the data field during the EV_ADD
operation.
Hook this up to the socket read/write filters; if specified, it overrides
the so_{rcv|snd}.sb_lowat values in the filter.
Inspired by: "Ronald F. Guilmette" <rfg@monkeys.com>
the current socket error in fflags. This may be useful for determining
why a connect() request fails.
Inspired by: "Jonathan Graehl" <jonathan@graehl.org>
depend on this. The linux ABI emulator tries to use it for some linux
binaries too. VM86 had a bigger cost than this and it was made default
a while ago.
Reviewed by: jhb, imp
interrupts.
Protect usage of the per processor switchtime variable against
interrupts in calcru().
This seem to eliminate the "microuptime() went backwards" warnings.
the the original trapframe of the syscall, trap, or interrupt that entered
the kernel. Before SMPng, ast's were handled via a psuedo trap at the
end of doerti. With the SMPng commit, ast's were broken out into a
separate ast() function that was called from doreti to match the behavior
of other architectures. Unfortunately, when this was done, the
p_md.md_regs member of curproc was not updateda in ast(), thus when
signals are handled by userret() after an interrupt that returns to
userland, we end up using a stale trapframe that will result in the
registers from the old trapframe overwriting the real trapframe and
smashing all the registers right before we return to usermode. The saved
%cs:%eip from where we were in usermode are saved in the trapframe for
example.
- Don't use an atomic operation to update cnt.v_soft in ast(). This is
the only place the variable is written to, and sched_lock is always
held when it is written, so it is already protected and the mutex release
of sched_lock asserts a memory barrier that ensures the value will be
updated in a timely fashion.
- Don't hold sched_lock around addupc_task() as this apparently breaks
profiling badly due to sched_lock being held across copyin().
Reported by: bde (2)
an interrupt thread while the interrupt thread is blocked on Giant waiting
to execute the interrupt handler being removed. The result was that the
intrhand structure would be free'd, and we would call 0xdeadc0de. The work
around is to check to see if the interrupt thread is idle when removing a
handler. If not, then we mark the interrupt handler as being dead using
the new IH_DEAD flag and don't remove it from the interrupt threads' list
of handlers. When the interrupt thread resumes, it will see a dead handler
while traversing the list of handlers and will remove the handler then.
work because opt_preemption.h wasn't #include'd. Instead, make use of the
do_switch parameter to ithread_schedule() and do the check in the alpha
interrupt code.
credential structure, ucred (cr->cr_prison).
o Allow jail inheritence to be a function of credential inheritence.
o Abstract prison structure reference counting behind pr_hold() and
pr_free(), invoked by the similarly named credential reference
management functions, removing this code from per-ABI fork/exit code.
o Modify various jail() functions to use struct ucred arguments instead
of struct proc arguments.
o Introduce jailed() function to determine if a credential is jailed,
rather than directly checking pointers all over the place.
o Convert PRISON_CHECK() macro to prison_check() function.
o Move jail() function prototypes to jail.h.
o Emulate the P_JAILED flag in fill_kinfo_proc() and no longer set the
flag in the process flags field itself.
o Eliminate that "const" qualifier from suser/p_can/etc to reflect
mutex use.
Notes:
o Some further cleanup of the linux/jail code is still required.
o It's now possible to consider resolving some of the process vs
credential based permission checking confusion in the socket code.
o Mutex protection of struct prison is still not present, and is
required to protect the reference count plus some fields in the
structure.
Reviewed by: freebsd-arch
Obtained from: TrustedBSD Project
filename insteada of copying the first 32 characters of it.
- Add in const modifiers for the passed in format strings and filenames
and their respective members in the ktr_entry struct.
scheduling an interrupt thread to run when needed. This has the side
effect of enabling support for entropy gathering from interrupts on
all architectures.
- Change the software interrupt and x86 and alpha hardware interrupt code
to use ithread_schedule() for most of their processing when scheduling
an interrupt to run.
- Remove the pesky Warning message about interrupt threads having entropy
enabled. I'm not sure why I put that in there in the first place.
- Add more error checking for parameters and change some cases that
returned EINVAL to panic on failure instead via KASSERT().
- Instead of doing a documented evil hack of setting the P_NOLOAD flag
on every interrupt thread whose pri was SWI_CLOCK, set the flag
explicity for clk_ithd's proc during start_softintr().
- Add pager capability to the 'show ktr' command. It functions much like
'ps': Enter at the prompt displays one more entry, Space displays
another page, and any other key quits.
This is useful when doing copies of packet where some leading
space has been preallocated to insert protocol headers.
Note that there are in fact almost no users of m_copypacket.
MFC candidate.
in mi_switch() just before calling cpu_switch() so that the first switch
after a resched request will satisfy the request.
- While I'm at it, move a few things into mi_switch() and out of
cpu_switch(), specifically set the p_oncpu and p_lastcpu members of
proc in mi_switch(), and handle the sched_lock state change across a
context switch in mi_switch().
- Since cpu_switch() no longer handles the sched_lock state change, we
have to setup an initial state for sched_lock in fork_exit() before we
release it.
is sent to a process, psignal() needs to schedule an AST for the
process if the process is runnable, not just if it is current, so that
pending signals get checked for on the next return of the process to
user mode. This wasn't practical until recently because the AST flag
was per-cpu so setting it for a non-current process would usually just
cause a bogus AST for the current process.
For non-current processes looping in user mode, it took accidental
(?) magic to deliver signals at all. Signals were usually delivered
late as a side effect of rescheduling (need_resched() sets astpending,
etc.). In pre-SMPng, delivery was delayed by at most 1 quantum (the
need_resched() call in roundrobin() is certain to occur within 1
quantum for looping processes). In -current, things are complicated
by normal interrupt handlers being threads. Missing handling of the
complications makes roundrobin() a bogus no-op, but preemptive
scheduling sort of works anyway due to even larger bogons elsewhere.
always on curproc. This is needed to implement signal delivery properly
(see a future log message for kern_sig.c).
Debogotified the definition of aston(). aston() was defined in terms
of signotify() (perhaps because only the latter already operated on
a specified process), but aston() is the primitive.
Similar changes are needed in the ia64 versions of cpu.h and trap.c.
I didn't make them because the ia64 is missing the prerequisite changes
to make astpending and need_resched per-process and those changes are
too large to make without testing.
actually in the kernel. This structure is a different size than
what is currently in -CURRENT, but should hopefully be the last time
any application breakage is caused there. As soon as any major
inconveniences are removed, the definition of the in-kernel struct
ucred should be conditionalized upon defined(_KERNEL).
This also changes struct export_args to remove dependency on the
constantly-changing struct ucred, as well as limiting the bounds
of the size fields to the correct size. This means: a) mountd and
friends won't break all the time, b) mountd and friends won't crash
the kernel all the time if they don't know what they're doing wrt
actual struct export_args layout.
Reviewed by: bde
lookup vop so that it defaulted to using vop_eopnotsupp for strange
lookups like the ones for open("/dev/null/", ...) and stat("/dev/null/",
...). This mainly caused the wrong errno to be returned by vfs syscalls
(EOPNOTSUPP is not in POSIX, and is not documented in connection with
specfs in open.2 and is not documented in stat.2 at all). Also, lookup
vops are apparently required to set *ap->a_vpp to NULL on error, but
vop_eopnotsupp is too broken to do this.
allocation, as required.
If m_getm() receives NULL as a first argument, then it allocates `len'
(second argument) bytes worth of mbufs + clusters and returns the chain
only if it was able to allocate everything.
If the first argument is non-NULL, then it should be an existing mbuf
chain (e.g. pre-allocated mbuf sitting on a ring, on some list, etc.) and
so it will allocate `len' bytes worth of clusters and mbufs, as needed,
and append them to the tail of the passed in chain, only if it was able
to allocate everything requested.
If allocation fails, only what was allocated by the routine will be freed,
and NULL will be returned.
Also, get rid of existing m_getm() in netncp code and replace calls to it
to calls to this new generic code.
Heavily Reviewed by: bp
one the number of variables needed for top and other setgid kmem
utilities that could only be accessed via /dev/kmem previously.
Submitted by: Thomas Moestl <tmoestl@gmx.net>
Reviewed by: freebsd-audit
- All processes go into the same array of queues, with different
scheduling classes using different portions of the array. This
allows user processes to have their priorities propogated up into
interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
32. We used to have 4 separate arrays of 32 queues each, so this
may not be optimal. The new run queue code was written with this
in mind; changing the number of run queues only requires changing
constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter. This
is intended to be used to create per-cpu run queues. Implement
wrappers for compatibility with the old interface which pass in
the global run queue structure.
- Group the priority level, user priority, native priority (before
propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
This was used to detect when a process' priority had lowered and
it should yield. We now effectively yield on every interrupt.
- Activate propogate_priority(). It should now have the desired
effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
idle loop. It interfered with propogate_priority() because
the idle process needed to do a non-blocking acquire of Giant
and then other processes would try to propogate their priority
onto it. The idle process should not do anything except idle.
vm_page_zero_idle() will return in the form of an idle priority
kernel thread which is woken up at apprioriate times by the vm
system.
- Update struct kinfo_proc to the new priority interface. Deliberately
change its size by adjusting the spare fields. It remained the same
size, but the layout has changed, so userland processes that use it
would parse the data incorrectly. The size constraint should really
be changed to an arbitrary version number. Also add a debug.sizeof
sysctl node for struct kinfo_proc.
Some things needed bits of <i386/include/lock.h> - cy.c now has its
own (only) copy of the COM_(UN)LOCK() macros, and IMASK_(UN)LOCK()
has been moved to <i386/include/apic.h> (AKA <machine/apic.h>).
Reviewed by: jhb
and function argument declarations. Make sure that functions that are
supposed to return a pointer return NULL in case of failure. Don't cast
NULL. Finally, get rid of annoying `register' uses.
tracing in order to avoid duplication.
- Insert some tracepoints back into the mutex acq/rel code, thus ensuring
that we can trace all lock acq/rel's again.
- All CURPROC != NULL checks are MPASS()es (under MUTEX_DEBUG) because they
signify a serious mutex corruption.
- Change up some KASSERT()s to MPASS()es, and vice-versa, depending on the
type of problem we're debugging (INVARIANTS is used here to check that
the API is being used properly whereas MUTEX_DEBUG is used to ensure that
something general isn't happening that will have bad impact on mutex
locks).
Reminded by: jhb, jake, asmodai
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
- I can't seem to reproduce the warning I got from WITNESS anymore.
- The fix was wrong. Since a uidinfo struct is a member of proc, it
makes sense for the locking order to be such that you are allowed to
hold proc and then grab the uidinfo lock.
- Use swi_* function names.
- Use void * to hold cookies to handlers instead of struct intrhand *.
- In sio.c, use 'driver_name' instead of "sio" as the name of the driver
lock to minimize diffs with cy(4).
- Add a set of MI helper functions for interrupt threads:
- ithread_create() creates a new interrupt thread
- ithread_destroy() destroys an interrupt thread
- ithread_add_handler() attaches a new handler to an interrupt thread
- ithread_remove_handler() detaches a handler from an interrupt thread
- Rename sinthand_add() and sched_swi() to swi_add() and swi_sched()
respectively so that they live in a consistent namespace.
- struct intrhand is no longer a public type. It would be private to
kern_intr.c but the current implementation of fast interrupts on the
alpha requires the type to be exported. However, all handlers should
be treated as void * cookies in the way that new-bus treats them. This
includes references to software interrupt handlers.
will only display sleep mutexes held by the current process.
- Clean up some nits in the witness_display() function and add a ddb
command 'show witness' that dumps the hierarchy and order lists to the
console.
- Use queue(3) macros where appropriate.
- Resort the spin lock order list so that "com" is before "sched_lock".
Also, add appropriate #ifdef's around SMP and i386-specific mutexes.
- Add two new mutexes used to protect the ithread lists and tables to the
order list.
Requested by: bde (1)
follows:
- show ktr_first display the first entry
- show ktr_next display the next entry
- show ktr display the entire buffer
The /v modifiers continue to work as described previously.
Requested by: bde
only the boot processor should be running in the comments.
- Initialize curproc to point to each CPU's respective idleproc if their
curproc is NULL.
- Keep track of the number of context switches performed by idleproc.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
kmem_free() for now. Kmem_malloc() and kmem_free() now have appropriate
assertions in place, and these checks aren't feasible until more of the
networking code is locked down. Also, the extra assertions here should
already be caught by the WITNESS code as lock order violations should
mutex operations on Giant be reintroduced here later.
the index of the pollfd array to the number of fd's currently open, not
the maximum number of fd's. ie: if you had 0,1,2 open, you could not
use pollfd slots higher than 20. The specs say we only have to support
OPEN_MAX [64] entries but we allow way more than that.
by myself. It solves a serious vm_map corruption problem that can occur
with the buffer cache when block sizes > 64K are used. This code has been
heavily tested in -stable but only tested somewhat on -current. An MFC
will occur in a few days. My additions include the vm_map_simplify_entry()
and minor buffer cache boundry case fix.
Make the buffer cache use a system map for buffer cache KVM rather then a
normal map.
Ensure that VM objects are not allocated for system maps. There were cases
where a buffer map could wind up with a backing VM object -- normally
harmless, but this could also result in the buffer cache blocking in places
where it assumes no blocking will occur, possibly resulting in corrupted
maps.
Fix a minor boundry case in the buffer cache size limit is reached that
could result in non-optimal code.
Add vm_map_simplify_entry() calls to prevent 'creeping proliferation'
of vm_map_entry's in the buffer cache's vm_map. Previously only a simple
linear optimization was made. (The buffer vm_map typically has only a
handful of vm_map_entry's. This stabilizes it at that level permanently).
PR: 20609
Submitted by: (Tor Egge) tegge
With this flag set malloc() will panic if memory allocation failed.
This usable only in critical places where failed allocation is fatal.
Reviewed by: peter
machines (duh!). This was one reason why this script broke on
i386. The other being that on i386 sections did not have the
proper alignment. This has been fixed in sys/sys/linker_set.h.
o Use objdump instead of gensetdefs(1) to build the linker sets.
o Allow overriding of nm and objdump in resp. genassym.sh and
gensetdefs.pl for non-native toolchains.
Reviewed by: arch
Perl improvements: Jos Backus <josb@cncdsl.com>, benno
problem is that a mutex lock, prior to this change, is acquired before
the curproc is set to idleproc, so we mess ourselves up by calling
the mutex lock routine with curproc == NULL.
Moving it up after the aps_ready spin-wait has us hopefully setting it
after idleproc is setup.
Solved by: jake (the allmighty) :-)
Move the helper macros from sbuf.h to sbuf.c
Use ints instead of size_ts.
Relax the requirements for sbuf_finish(): it is now possible to finish an
overflowed buffer.
Make sbuf_len() return -1 instead of 0 if the sbuf overflowed.
Requested by: gibbs
instead of a trapframe directly. (Requested by bde.)
- Convert the alpha switch_trampoline to call fork_exit() and use the MI
fork_return() instead of child_return().
- Axe child_return().
- Update stopevent() to assert that the proc lock is held when it is
held and is not recursed. Note that the STOPEVENT() macro obtains
the proc lock when calling this function.
mtx right now as it makes debugging harder. When we are in optimizing
mode, we can revisit this.
- Fix the KTR trace messages to use %p rather than 0x%p to avoid duplicate
0x's in KTR output.
- During witness_fixup, release Giant so that witness doesn't get confused.
Also, grab all_mtx while walking the list of mutexes.
- Remove w_sleep and w_recurse. Instead, perform checks on mutexes using
the mutex's mtx_flags field.
- Allow debug.witness_ddb and debug.witness_skipspin to be set from the
loader.
- Add Giant to the front of existing order_list entries to help ensure
Giant is always first.
- Add an order entry for the various proc locks. Note that this only
helps keep proc in order mostly as the allproc and proctree mutexes are
only obtained during a lockmgr operation on the specified mutex.
that name as a variable. Use mtx_owned(&Giant) where appropriate
instead.
- Proc locking.
- P_FOO -> PS_FOO.
- Update comments about enable interrupts during trap and why this may be
bad if we trap while holding a spin mutex.
- Don't bother resetting p to curproc in syscall() in case we are the child
returning from fork. The child hasn't returned from fork through syscall
in a while.
- Remove fork_return() as it has been superseded by the MI version.
the alpha mp_machdep.c.
- Proc locking.
- Catch up to the P_FOO -> PS_FOO proc flags changes.
- Stick ap_init()'s prototype with the other prototypes.
- Remove the Xforwardirq IPI.
- Remove unused simplelocks.
- Don't try to psignal() from forward_statclock(), but set the appropriate
signal pending flag in p_sflag instead.
- Add in KTR_SMP tracepoints for various SMP functions. (Brought over
from the alpha port)
calls returning EACCES instead of EPERM. This patch modifies vaccess()
to return EPERM instead of EACCES if VADMIN is among the requested
rights. This affects functions normally limited to the owners of
a file, such as chmod(), as EPERM is the error indicating that
privilege would allow the operation, rather than a chance in mandatory
or discretionary rights.
Reported by: bde
inline functions non-inlined. Hide parts of the mutex implementation that
should not be exposed.
Make sure that WITNESS code is not executed during boot until the mutexes
are fully initialized by SI_SUB_MUTEX (the original motivation for this
commit).
Submitted by: peter
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
initialization until after malloc() is safe to call, then iterate through
all mutexes and complete their initialization.
This change is necessary in order to avoid some circular bootstrapping
dependencies.
for SMP; just use the same ones as UP. These weren't used without
holding Giant anyway, and the routines that use them would have to
be protected from pre-emption to avoid migrating cpus.
calls it rather than obtaining and releasing it a lot in proc_compare.
- Collect all of the data gathering and stick it just after the
proc_compare loop. This way, we only have to grab sched_lock once now
when handling SIGINFO. All the printf's are done after the values are
calculated.
Submitted mostly by: bde
The counters are incremented when a thread goes to sleep and decremented
either when a thread is woken up by another thread or when the sleep
times out. There existed a race where the sleep count could be decremented
twice resulting in an eventual underflow.
Move the decrementing of the "counters" to the thread initiating the sleep
and thus remedy the problem.
SIGXCPU signal, and killing of processes that exceed their allowed run
time until they can play nice with sched_lock. Right now they are just
potentital panics waiting to happen. The printf() has bitten several
people.
not hold sched_lock while calling ttyprintf(). If we are on a serial
console, then ttyprintf() will end up getting the sio lock, resulting in
a lock order violation.
Noticed by: des
This is an odd one. This patch appears to fix a panic related to background
bitmap writes (for FFS), though neither Kirk, Ian, or I can figure out how
B_CLUSTEROK could possibly be set on a bitmap block to cause the clustering
code to improperly cluster with a buffer undergoing a background write.
In anycase, the clustering code is very fragile and this patch helps with
that, as well as possibly fixing a bug Andre was having.
Suggested by: Ian Dowse <iedowse@maths.tcd.ie>
Testing by: Andre Albsmeier <andre.albsmeier@mchp.siemens.de>
All calls to mtx_init() for mutexes that recurse must now include
the MTX_RECURSE bit in the flag argument variable. This change is in
preparation for an upcoming (further) mutex API cleanup.
The witness code will call panic() if a lock is found to recurse but
the MTX_RECURSE bit was not set during the lock's initialization.
The old MTX_RECURSE "state" bit (in mtx_lock) has been renamed to
MTX_RECURSED, which is more appropriate given its meaning.
The following locks have been made "recursive," thus far:
eventhandler, Giant, callout, sched_lock, possibly some others declared
in the architecture-specific code, all of the network card driver locks
in pci/, as well as some other locks in dev/ stuff that I've found to
be recursive.
Reviewed by: jhb
allocation routines are being called safely. Since we drop our relevant
mbuf mutex and acquire Giant before we call kmem_malloc(), we have
to make sure that this does not pave the way for a fatal lock order
reversal. Check that either Giant is already held (in which case it's safe
to grab it again and recurse on it) or, if Giant is not held, that no
other locks are held before we try to acquire Giant.
Similarily, add a KASSERT valid in the WITNESS case in m_reclaim() to
nail callers who end up in m_reclaim() and hold a lock.
Pointed out by: jhb
while we are copying it to the kinfo_proc structure.
- Test against p_stat to see if we are blocked on a mutex.
- Terminate ki_mtxname with a null char rather than ki_wmesg.
m_reclaim() and re-acquire it when m_reclaim() returns. This means that
we now call the drain routines without holding the mutex lock and
recursing into it. This was done for mainly two reasons:
(i) Avoid the long recursion; long recursions are typically bad and this
is the case here because we block all other code from freeing mbufs
if they need to. Doing that is kind of counter-productive, since we're
really hoping that someone will free.
(ii) More importantly, avoid a potential lock order reversal. Right now,
not all the locks have been added to our networking code; but
without this change, we're introducing the possibility for deadlock.
Consider for example ip_drain(). We will likely eventually introduce
a lock for ipq there, and so ip_freef() will be called with ipq lock
held. But, ip_freef() calls m_freem() which in turn acquires the
mmbfree lock. Since we were previously calling ip_drain() with mmbfree
held, our lock order would be: mmbfree->ipq->mmbfree. Some other code
may very well lock ipq first and then call ip_freef(). This would
result in the regular lock order, ipq->mmbfree. Clearly, we have
deadlock if one thread acquires the ipq lock and sits waiting for
mmbfree while another thread calling m_reclaim() acquires mmbfree
and sits waiting for the ipq lock.
Also, make sure to add a comment above m_reclaim()'s definition briefly
explaining this. Also document this above the call to m_reclaim() in
m_mballoc_wait().
Suggested and reviewed by: alfred
the pipe, then we were corrupting the pipe_zone free list by calling
pipeclose on rpipe twice. NULL out rpipe to avoid this.
Reviewed by: dillon
Reviewed by: iedowse
- Provide TUNABLE_INT() hooks for ktr_cpumask, ktr_mask, and ktr_verbose
so that they can be set from the loader by their respective sysctl names.
For example, to turn on KTR_INTR and KTR_PROC in ktr_mask, one could
stick 'debug.ktr.mask="0x1200"' in /boot/loader.conf.
o Use 8 space hard tabs
o Eliminate trailing white space (while I'm here, just in a couple of places)
o wrap mostly at 80 columns (printf literal strings being the notable
exception)
o use return (foo) consistantly
o use 0 vs NULL more consistantly
o use queue(3) xxx_FOREACH macros where appropriate (some places used it
before, others didn't).
o use BSD line continuation parameters
Pendants will likely notice minor style(9) violations, but for the
most part the file now looks much much closer to style(9) and is
mostly self-consistant.
Approved in principle by: dfr
Reviewed by: md5 (no changes to the .o)
to the SYSCTL_ADD_FOO() macros is a constant that should be turned into
a string via the pre-processor. Instead, require it to be an explicit
string so that names can be generated on the fly.
- Make some of the char * arguments to sysctl_add_oid() const to quiet
warnings.
file.
While there fix the layout of function headers (noticable in long headers)
Fix up some style nits. It's Perl and should be written in that style.
out: label in psignal() did not grab sched_lock before trying to release
it. Also, the previous version had several cases where it grabbed
sched_lock before jumping to out: unneccessarily, so rework this a bit.
The runfast: and out: labels must be called with sched_lock released, and
the run: label must be called with it held. Appropriate mtx_assert()'s
have been added that should catch any bugs that may still be in this
code.
Noticed by: bde
attaching to running processes, it completely breaks normal debugging.
A better fix is in the works, but cannot be properly tested until
the problem with gdb hanging the system in -current is solved.
process. This fixes a problem when attaching to a process in gdb
and the process staying in the STOP'd state after quiting gdb.
This whole process seems a bit suspect, but this seems to work.
Reviewed by: peter
in 4.2-REL which I ripped out in -stable and -current when implementing the
low-memory handling solution. However, maxlaunder turns out to be the saving
grace in certain very heavily loaded systems (e.g. newsreader box). The new
algorithm limits the number of pages laundered in the first pageout daemon
pass. If that is not sufficient then suceessive will be run without any
limit.
Write I/O is now pipelined using two sysctls, vfs.lorunningspace and
vfs.hirunningspace. This prevents excessive buffered writes in the
disk queues which cause long (multi-second) delays for reads. It leads
to more stable (less jerky) and generally faster I/O streaming to disk
by allowing required read ops (e.g. for indirect blocks and such) to occur
without interrupting the write stream, amoung other things.
NOTE: eventually, filesystem write I/O pipelining needs to be done on a
per-device basis. At the moment it is globalized.
This is because calls with M_WAIT (now M_TRYWAIT) may not wait
forever when nothing is available for allocation, and may end up
returning NULL. Hopefully we now communicate more of the right thing
to developers and make it very clear that it's necessary to check whether
calls with M_(TRY)WAIT also resulted in a failed allocation.
M_TRYWAIT basically means "try harder, block if necessary, but don't
necessarily wait forever." The time spent blocking is tunable with
the kern.ipc.mbuf_wait sysctl.
M_WAIT is now deprecated but still defined for the next little while.
* Fix a typo in a comment in mbuf.h
* Fix some code that was actually passing the mbuf subsystem's M_WAIT to
malloc(). Made it pass M_WAITOK instead. If we were ever to redefine the
value of the M_WAIT flag, this could have became a big problem.
point in calling a function just to set a flag.
Keep better track of the syslog FAC/PRI code and try to DTRT if
they mingle.
Log all writes to /dev/console to syslog with <console.info>
priority. The formatting is not preserved, there is no robust,
way of doing it. (Ideas with patches welcome).
the kernel console. Instead, change logwakeup() to set a flag in the
softc. A callout then wakes up every so often and wakes up any processes
selecting on /dev/log (such as syslogd) if the flag is set. By default
this callout fires 5 times a second, but that can be adjusted by the
sysctl kern.log_wakeups_per_second.
Reviewed by: phk