ioctl frontend ports.
This revision introduces two changes to CTL:
- Changes the way options are passed to CTL_LUN_REQ and CTL_PORT_REQ ioctls.
Removes ctl_be_arg structure and associated logic and replaces it with
nv(3)-based logic for passing in and out arguments.
- Allows creating multiple ioctl frontend ports using either ctladm(8) or
ctld(8).
New frontend ports are represented by /dev/cam/ctl<pp>.<vp> nodes, eg /dev/cam/ctl5.3.
Those device nodes respond only to CTL_IO ioctl.
New command-line options for ctladm:
# creates new ioctl frontend port with using free pp and vp=0
ctladm port -c
# creates new ioctl frontend port with pp=10 and vp=0
ctladm port -c -O pp=10
# creates new ioctl frontend port with pp=11 and vp=12
ctladm port -c -O pp=11 -O vp=12
# removes port with number 4 (it's a "targ_port" number, not pp number)
ctladm port -r -p 4
New syntax for ctl.conf:
target ... {
port ioctl/<pp>
...
}
target ... {
port ioctl/<pp>/<vp>
...
Note: Most of this work was made by jceel@, thank you.
Submitted by: jceel
Reworked by: myself
Reviewed by: mav (earlier versions and recently during the rework)
Obtained from: FreeNAS and TrueOS
Relnotes: Yes
Sponsored by: iXsystems Inc.
Differential Revision: https://reviews.freebsd.org/D9299
The goal of this work is to remove the explicit dependency for ctl(4)
on iscsi(4), so end-users without iscsi(4) support in the kernel can
use ctl(4) for its other functions.
This allows those without iscsi(4) support built into the kernel to use
ctl(4) as a test mechanism. As a sidenote, this was possible around the
10.0-RELEASE period, but made impossible for end-users without iscsi(4)
between 10.0-RELEASE and 11.0-RELEASE.
Automatically load cfiscsi(4) from ctladm(8) and ctld(8) for backwards
compatibility with previously releases. The automatic loading feature is
compiled into the beforementioned tools if MK_ISCSI == yes when building
world.
Add a manpage for cfiscsi(4) and refer to it in ctl(4).
Differential Revision: D10099
MFC after: 2 months
Relnotes: yes
Reviewed by: mav, trasz
Sponsored by: Dell EMC Isilon
Decouple the send and receive limits on the amount of data in a single
iSCSI PDU. MaxRecvDataSegmentLength is declarative, not negotiated, and
is direction-specific so there is no reason for both ends to limit
themselves to the same min(initiator, target) value in both directions.
Allow iSCSI drivers to report their send, receive, first burst, and max
burst limits explicitly instead of using hardcoded values or trying to
derive all of them from the receive limit (which was the only limit
reported by the drivers prior to this change).
Display the send and receive limits separately in the userspace iSCSI
utilities.
Reviewed by: jpaetzel@ (earlier version), trasz@
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7279
Its idea was to be a simple initiator and execute several commands from
kernel level, but FreeBSD never had consumer for that functionality,
while its implementation polluted many unrelated places..
retval is used to test the return of XML_Parse function which is ok if 1 is
returned and retval it directly returned to the main function and used as an
exit value.
if all the parsing part is done reset retval to 0 so that the command return 0
if everything ok
Differential Revision: https://reviews.freebsd.org/D3102
Reviewed by: trasz
MFC after: 3 days
Sponsored by: gandi.net
target iSCSI offload. Add mechanism to query maximum receive data segment
size supported by chosen hardware offload module, and use it in ctld(8)
to determine the value to advertise to the other side.
MFC after: 1 month
Sponsored by: The FreeBSD Foundation
continues to work with newer kernel.
Other ctladm(8) "*list" subcommands seem to already handle it in
a reasonable way.
MFC after: 1 month
Sponsored by: The FreeBSD Foundation
While ctld(8) still does not allow multiple portal groups per target
to be configured, kernel should now be able to handle it.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Replace iSCSI-specific LUN mapping mechanism with new one, working for any
ports. By default all ports are created without LUN mapping, exposing all
CTL LUNs as before. But, if needed, LUN mapping can be manually set on
per-port basis via ctladm. For its iSCSI ports ctld does it via ioctl(2).
The next step will be to teach ctld to work with FibreChannel ports also.
Respecting additional flexibility of the new mechanism, ctl.conf now allows
alternative syntax for LUN definition. LUNs can now be defined in global
context, and then referenced from targets by unique name, as needed. It
allows same LUN to be exposed several times via multiple targets.
While there, increase limit for LUNs per target in ctld from 256 to 1024.
Some initiators do not support LUNs above 255, but that is not our problem.
Discussed with: trasz
MFC after: 2 weeks
Relnotes: yes
Sponsored by: iXsystems, Inc.
Make this subcommand less FC-specific, reporting target and port addresses
in more generic way. Also make it report list of connected initiators in
unified way, working for both FC and iSCSI, and potentially others.
MFC after: 1 week
Such LUNs will be visible to initiators, but return "not ready" status
on media access commands. If backing storage become available later,
`ctladm modify ...` or `service ctld reload` can trigger its reopen.
in order to be consistent with iSCSI terminology. Besides, calling the
option '-h' was just wrong.
This changes usage for newly added iscsictl(8), and two newly added
subcommands to ctladm(8). This breaks POLA between CURRENT and 10,
but since 10.0 has not been released yet, it's still ok to do.
MFC after: 3 days
Discussed with: re (glebius)
Sponsored by: FreeBSD Foundation
In addition to adding `static' where possible:
- bin/date: Move `retval' into extern.h to make it visible to date.c.
- bin/ed: Move globally used variables into ed.h.
- sbin/camcontrol: Move `verbose' into camcontrol.h and fix shadow warnings.
- usr.bin/calendar: Remove unneeded variables.
- usr.bin/chat: Make `line' local instead of global.
- usr.bin/elfdump: Comment out unneeded function.
- usr.bin/rlogin: Use _Noreturn instead of __dead2.
- usr.bin/tset: Pull `Ospeed' into extern.h.
- usr.sbin/mfiutil: Put global variables in mfiutil.h.
- usr.sbin/pkg: Remove unused `os_corres'.
- usr.sbin/quotaon, usr.sbin/repquota: Remove unused `qfname'.
the 'retval' variable to zero, to avoid returning garbage in several
cases.
This fixes the following clang 3.2 warnings:
usr.sbin/ctladm/ctladm.c🔢6: error: variable 'retval' is used uninitialized whenever 'if' condition is false [-Werror,-Wsometimes-uninitialized]
if (ioctl(fd, CTL_ERROR_INJECT, &err_desc) == -1) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
usr.sbin/ctladm/ctladm.c:1243:10: note: uninitialized use occurs here
return (retval);
^~~~~~
usr.sbin/ctladm/ctladm.c🔢2: note: remove the 'if' if its condition is always true
if (ioctl(fd, CTL_ERROR_INJECT, &err_desc) == -1) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
usr.sbin/ctladm/ctladm.c:1161:7: error: variable 'retval' is used uninitialized whenever 'if' condition is false [-Werror,-Wsometimes-uninitialized]
if (ioctl(fd, CTL_ERROR_INJECT_DELETE, &err_desc) == -1) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
usr.sbin/ctladm/ctladm.c:1243:10: note: uninitialized use occurs here
return (retval);
^~~~~~
usr.sbin/ctladm/ctladm.c:1161:3: note: remove the 'if' if its condition is always true
if (ioctl(fd, CTL_ERROR_INJECT_DELETE, &err_desc) == -1) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
usr.sbin/ctladm/ctladm.c:1029:12: note: initialize the variable 'retval' to silence this warning
int retval;
^
= 0
MFC after: 1 week
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month