non-standard BIOSen. We used to implement this in local patches but
now that ACPI-CA has merged/re-implemented most of our fixes, they were
no longer needed and we just needed to turn this knob on. Also, remove
an unnecessary cast.
Tested by: phk
we really want vs. the size changing 'long' (i386 vs. AMD64).
This fixes the problem with DRM with Radeon's on AMD64.
Submitted by: Jung-uk Kim <jkim@niksun.com>
back on again in resume. Override the default of D3 with the value the
BIOS specifies in _SxD, if present. Skip serial devices (PNP05xx) since
they seem to hang when set to D3 and may require special driver support.
Also, skip non-type 0 PCI devices (i.e., bridges) since our we don't yet
save/restore their config space and that seems to be necessary.
If this gives you trouble with suspend/resume, you can disable the new
ACPI and PCI power behavior separately with these tunables & sysctls:
debug.acpi.do_powerstate
hw.pci.do_powerstate
Approved by: imp (pci)
Tested by: acpi@ (numerous)
in the _PRS or _CRS of link devices. If faced with multiple DPFs in a
_PRS, we just use the first one. We assume that if _CRS has DPF tags they
only contain a single set since multiple DPFs wouldn't make any sense. In
practice, the only DPFs I've seen so far for link devices are that the one
IRQ resource is surrounded by a DPF tag pair for no apparent reason, and
this should handle that case fine now.
- Only allocate link structures for IRQ resources for link devices rather
than allocating a link structure for every resource.
Reviewed by: njl
Tested by: phk
@sys/dev/acpica/acpi_pci_link.c:153" panic by backing out rev 1.37 in the SMP
case. It appears that on a dual-proc machine the assertions in the rev 1.37
commit log hold true.
resource lists. It used to be sized based only on _CRS, hence _PRS could
perform an out-of-bounds access if it was larger (i.e., when there are
dependent functions). Add asserts to detect this case. Note, this is
only a temporary fix and I believe _PRS and _CRS should have separate
arrays.
Also, fix a typo where the wrong irq was being check for the APIC case.
Submitted by: tegge
the address of a channel on a SCC, it returns 0 on failure. [1]
- Hardcode channel 1 for the keyboard on Z8530, the information present
in the Open Firmware device tree doesn't allow to determine this via
uart_cpu_channel(). This makes the keyboard (if one backs out rev. 1.5
of sys/dev/puc/puc_sbus.c and has both keyboard and mouse plugged in to
avoid the hang that revision works around) and consequently syscons(4)
on Ultra 2 work. There's a problem with the keyboard LEDs similar to
the one on Ultra 60 (LEDs don't get lit under X) though, instead of
lighting just a specific single one all get lit and can't be turned off
again. [1]
- Add comments about what uart_cpu_channel() and uart_cpu_getdev_keyboard()
do and their constraints.
- Improve the comments about what uart_cpu_getdev_[console,dbgport]() do,
they don't return an address (as in bus) but an Open Firmware package
handle.
Reviewed by: marcel (modulo the comments) [1]
NetBSD got activated. NetBSD has an additional change in
their mii.c rev 1.26 which got missed with that merger:
: When probing for a PHY, look at the EXTSTAT bit in the BMSR, as well,
: not just the media mask. This prevents PHYs/TBIs that only support
: Gigabit media from slipping through the cracks.
With this GE only ones like from the SK-9844 are detected again.
PR: i386/63313, i386/71733, kern/73725
Tested by: matt baker <matt at sevenone dot com>, Jin Guojun <jin at george dot lbl dot gov>
Approved by: rwatson (mentor)
Obtained from: NetBSD mii.c rev 1.26
MFC after: 1 week
- Use a new-bus device driver for the ACPI PCI link devices. The devices
are called pci_linkX. The driver includes suspend/resume support so that
the ACPI bridge drivers no longer have to poke the links to get them
to handle suspend/resume. Also, the code to handle which IRQs a link is
routed to and choosing an IRQ when a link is not already routed is all
contained in the link driver. The PCI bridge drivers now ask the link
driver which IRQ to use once they determine that a _PRT entry does not
use a hardwired interrupt number.
- The new link driver includes support for multiple IRQ resources per
link device as well as preserving any non-IRQ resources when adjusting
the IRQ that a link is routed to.
- The entire approach to routing when using a link device is now
link-centric rather than pci bus/device/pin specific. Thus, when
using a tunable to override the default IRQ settings, one now uses
a single tunable to route an entire link rather than routing a single
device that uses the link (which has great foot-shooting potential if
the user tries to route the same link to two different IRQs using two
different pci bus/device/pin hints). For example, to adjust the IRQ
that \_SB_.LNKA uses, one would set 'hw.pci.link.LNKA.irq=10' from the
loader.
- As a side effect of having the link driver, unused link devices will now
be disabled when they are probed.
- The algorithm for choosing an IRQ for a link that doesn't already have an
IRQ assigned is now much closer to the one used in $PIR routing. When a
link is routed via an ISA IRQ, only known-good IRQs that the BIOS has
already used are used for routing instead of using probabilities to
guess at which IRQs are probably not used by an ISA device. One change
from $PIR is that the SCI is always considered a viable ISA IRQ, so that
if the BIOS does not setup any IRQs the kernel will degenerate to routing
all interrupts over the SCI. For non ISA IRQs, interrupts are picked
from the possible pool using a simplistic weighting algorithm.
Tested by: ru, scottl, others on acpi@
Reviewed by: njl
- Let hme_start()/hme_init() acquire lock and then call
hme_start_locked()/hme_init_locked() respectivly.
- Teardown interrupt handler before hme_detach().
- Remove IFF_NEEDSGIANT flag and mark interrupt handler INTR_MPSAFE.
- Set callout handler to CALLOUT_MPSAFE.
- Add locks in hme MII interface.
Reviewed by: jake
Tested by: Julian C. Dunn <jdunn at opentrend dot net>
MFC after: 2 weeks
not used and aliases for other defines.
o Add REG_DATA as an alias for com_data. Likewise for other register
defines.
o Add LCR_SBREAK and make CFCR_SBREAK an alias for it. Likewise for
the other LCR register bits that are known with the CFCR prefix.
o Add MCR_IE and make MCR_IENABLE an alias for it.
o Add LSR_TEMT and make LSR_TSRE an alias for it.
o Add LSR_THRE and make LSR_TXRDY as alias for it.
o Add FCR_ENABLE and make FIFO_ENABLE as alias for it. Likewise for
the other FCR register bits that are known with the FIFO prefix.
o Add EFR_CTS and make EFR_AUTOCTS an alias for it.
o Add EFR_RTS and make EFR_AUTORTS an alias for it.
This is a first step in cleaning up the definitions in this file.
to us was to help out the Linux port, but really just invited overflow.
In fact, the request sense timer was overflowing prior to this change making
it much shorter than intended.
aic_osm_lib.h:
Be more careful about overflow in all timer/timeout primitives.
queue a packet to the hardware... instead of when the hardware queue is
empty..
don't initalize cur_tx now that it doesn't need to be...
Pointed out by: bde
respective NetBSD driver for use with the genclock interface.
It's first use will be on sparc64 but it was also tested on alpha with
a preliminary patch to switch alpha to use the genclock code together
with this driver instead of the respective code in alpha/alpha/clock.c
and the rather MD mcclock(4). Using it on i386 and amd64 won't be that
hard but some changes/extensions to improve the genclock code in general
should be done first, e.g. add locking and make it easier to access the
NVRAM usually coupled with RTCs.
- The claim in the commit log of rev. 1.11 of dev/uart/uart_cpu_sparc64.c
etc. that UARTs are the only relevant ISA devices on sparc64 turned out
to be false. While there are sparc64 models where UARTs are the only
devices on the ISA bus there are in fact also low-cost models where all
devices traditionally found on the EBus are hooked up to the ISA bus.
There are also models that use a mix between EBus and ISA devices with
things like an AT keyboard controller and other rather interesting
devices that we might want to support in the futute hook up to the ISA
bus.
In order to not need to add sparc64 specific device_identify methods to
all of the respective ISA drivers and also not add OFW specific code to
the common ISA code make the sparc64 ISA bus code fake up PnP devices so
most ISA drivers probe their devices without further changes.
Unfortunately Sun doesn't adhere to the ISA bindings defined in IEEE
1275-1994 for the properties of most of the ISA devices which would
allow to obtain the vendor and logical IDs from their properties. So we
we just use a simple table which maps the name properties to PnP IDs.
This could be done in a more sophisticated way but I courrently don't
see the need for this. [1]
- Add the children with fully mapped and specified resources (in the OFW
sense) similar to what is done in the EBus code for the IRQ resources
of the children as adjusting the resources and the resource list entries
respectively in isa_alloc_resource() as done perviously causes trouble
with drivers which use rman_get_start(), pass-through or allocate and
release resources multiple times, etc.
Adjusting the resources might be better off in a bus_activate_resource
method but the common ISA code currently doesn't allow for an
isa_activate_resource(). [2]
With this change:
- ppbus(4) and lpt(4) attach and work (modulo ECP mode, which requires
real ISADMA code but it currently only consists of stubs on sparc64).
- atkbdc(4) and atkbdc(4) attach, no further testing done.
- fdc(4) itself attaches but causes a hang while attaching fd0 also
when is DMA disabled, further work in fdc(4) is required here as e.g.
fd0 uses the address of fd1 on sparc64 (not sure if sparc64 supports
more than one floppy drive at all).
All of these drivers previously caused panics in the sparc64 ISA code.
- Minor changes, e.g. use __FBSDID, remove a dupe word in a comment and
declare one global variable which isn't used outside of isa.c static.
o dev/uart/uart_cpu_sparc64.c and modules/uart/Makefile:
- Remove the code for registering the UARTs on the ISA bus from the
sparc64 uart_cpu_identify() again and rely on probing them via PnP.
Original idea by: tmm [1]
No objections by: tmm [1], [2]
I have in mind for the genclock interface):
- Recognize the MK48T18 as well (differs from the MK48T08 only in
packaging options and voltages).
- Allow MD code to provide functions for reading/writing NVRAM/RTC
locations.
If passed NULL, the old behaviour using bus_space_{read,write}_1() is
used. Otherwise, all access to the chip goes via the MD functions.
This is necessary for mvmeppc boards where the mk48txx NVRAM/RTC is
not directly addressable.
- Cleanup MI mk48txx(4) todclock driver:
- Prepare mk48txxvar.h and leave only register definitions in
mk48txxreg.h.
- Define struct mk48txx_softc as usual devices and allocate necessary
members in it.
- Change mk48txx_attach() to only take a device_t.
o While converting the sparc64 eeprom driver to the above changes:
- Remove some dead code and stale comments.
- Use the NVRAM size provided by the mk48txx driver instead of hardcoding
it as suggested by a comment.
- Add a comment about why it doesn't make much sense to read the hostid
directly from the NVRAM except for displaying it when attaching.
- Don't print the hostid if it reads all zero because it's stored
elsewhere.
after boot so that PCI is initialized and we can probe for the problem
chipsets. Note that while probed but unusable states are disabled, they
aren't freed yet. In the future, it may make sense to detach them.
Tested by: Adam K Kirchoff <adamk at voicenet com>
MFC after: 2 days