- A new per-interface knob IFF_ND6_NO_RADR and sysctl IPV6CTL_NO_RADR.
This controls if accepting a route in an RA message as the default route.
The default value for each interface can be set by net.inet6.ip6.no_radr.
The system wide default value is 0.
- A new sysctl: net.inet6.ip6.norbit_raif. This controls if setting R-bit in
NA on RA accepting interfaces. The default is 0 (R-bit is set based on
net.inet6.ip6.forwarding).
Background:
IPv6 host/router model suggests a router sends an RA and a host accepts it for
router discovery. Because of that, KAME implementation does not allow
accepting RAs when net.inet6.ip6.forwarding=1. Accepting RAs on a router can
make the routing table confused since it can change the default router
unintentionally.
However, in practice there are cases where we cannot distinguish a host from
a router clearly. For example, a customer edge router often works as a host
against the ISP, and as a router against the LAN at the same time. Another
example is a complex network configurations like an L2TP tunnel for IPv6
connection to Internet over an Ethernet link with another native IPv6 subnet.
In this case, the physical interface for the native IPv6 subnet works as a
host, and the pseudo-interface for L2TP works as the default IP forwarding
route.
Problem:
Disabling processing RA messages when net.inet6.ip6.forwarding=1 and
accepting them when net.inet6.ip6.forward=0 cause the following practical
issues:
- A router cannot perform SLAAC. It becomes a problem if a box has
multiple interfaces and you want to use SLAAC on some of them, for
example. A customer edge router for IPv6 Internet access service
using an IPv6-over-IPv6 tunnel sometimes needs SLAAC on the
physical interface for administration purpose; updating firmware
and so on (link-local addresses can be used there, but GUAs by
SLAAC are often used for scalability).
- When a host has multiple IPv6 interfaces and it receives multiple RAs on
them, controlling the default route is difficult. Router preferences
defined in RFC 4191 works only when the routers on the links are
under your control.
Details of Implementation Changes:
Router Advertisement messages will be accepted even when
net.inet6.ip6.forwarding=1. More precisely, the conditions are as
follow:
(ACCEPT_RTADV && !NO_RADR && !ip6.forwarding)
=> Normal RA processing on that interface. (as IPv6 host)
(ACCEPT_RTADV && (NO_RADR || ip6.forwarding))
=> Accept RA but add the router to the defroute list with
rtlifetime=0 unconditionally. This effectively prevents
from setting the received router address as the box's
default route.
(!ACCEPT_RTADV)
=> No RA processing on that interface.
ACCEPT_RTADV and NO_RADR are per-interface knob. In short, all interface
are classified as "RA-accepting" or not. An RA-accepting interface always
processes RA messages regardless of ip6.forwarding. The difference caused by
NO_RADR or ip6.forwarding is whether the RA source address is considered as
the default router or not.
R-bit in NA on the RA accepting interfaces is set based on
net.inet6.ip6.forwarding. While RFC 6204 W-1 rule (for CPE case) suggests
a router should disable the R-bit completely even when the box has
net.inet6.ip6.forwarding=1, I believe there is no technical reason with
doing so. This behavior can be set by a new sysctl net.inet6.ip6.norbit_raif
(the default is 0).
Usage:
# ifconfig fxp0 inet6 accept_rtadv
=> accept RA on fxp0
# ifconfig fxp0 inet6 accept_rtadv no_radr
=> accept RA on fxp0 but ignore default route information in it.
# sysctl net.inet6.ip6.norbit_no_radr=1
=> R-bit in NAs on RA accepting interfaces will always be set to 0.
In protosw we define pr_protocol as short, while on the wire
it is an uint8_t. That way we can have "internal" protocols
like DIVERT, SEND or gaps for modules (PROTO_SPACER).
Switch ipproto_{un,}register to accept a short protocol number(*)
and do an upfront check for valid boundries. With this we
also consistently report EPROTONOSUPPORT for out of bounds
protocols, as we did for proto == 0. This allows a caller
to not error for this case, which is especially important
if we want to automatically call these from domain handling.
(*) the functions have been without any in-tree consumer
since the initial introducation, so this is considered save.
Implement ip6proto_{un,}register() similarly to their legacy IP
counter parts to allow modules to hook up dynamically.
Reviewed by: philip, will
MFC after: 1 week
"Whitspace" churn after the VIMAGE/VNET whirls.
Remove the need for some "init" functions within the network
stack, like pim6_init(), icmp_init() or significantly shorten
others like ip6_init() and nd6_init(), using static initialization
again where possible and formerly missed.
Move (most) variables back to the place they used to be before the
container structs and VIMAGE_GLOABLS (before r185088) and try to
reduce the diff to stable/7 and earlier as good as possible,
to help out-of-tree consumers to update from 6.x or 7.x to 8 or 9.
This also removes some header file pollution for putatively
static global variables.
Revert VIMAGE specific changes in ipfilter::ip_auth.c, that are
no longer needed.
Reviewed by: jhb
Discussed with: rwatson
Sponsored by: The FreeBSD Foundation
Sponsored by: CK Software GmbH
MFC after: 6 days
packet filters. ALso allows ipfw to be enabled on on ejail and disabled
on another. In 8.0 it's a global setting.
Sitting aroung in tree waiting to commit for: 2 months
MFC after: 2 months
(DPCPU), as suggested by Peter Wemm, and implement a new per-virtual
network stack memory allocator. Modify vnet to use the allocator
instead of monolithic global container structures (vinet, ...). This
change solves many binary compatibility problems associated with
VIMAGE, and restores ELF symbols for virtualized global variables.
Each virtualized global variable exists as a "reference copy", and also
once per virtual network stack. Virtualized global variables are
tagged at compile-time, placing the in a special linker set, which is
loaded into a contiguous region of kernel memory. Virtualized global
variables in the base kernel are linked as normal, but those in modules
are copied and relocated to a reserved portion of the kernel's vnet
region with the help of a the kernel linker.
Virtualized global variables exist in per-vnet memory set up when the
network stack instance is created, and are initialized statically from
the reference copy. Run-time access occurs via an accessor macro, which
converts from the current vnet and requested symbol to a per-vnet
address. When "options VIMAGE" is not compiled into the kernel, normal
global ELF symbols will be used instead and indirection is avoided.
This change restores static initialization for network stack global
variables, restores support for non-global symbols and types, eliminates
the need for many subsystem constructors, eliminates large per-subsystem
structures that caused many binary compatibility issues both for
monitoring applications (netstat) and kernel modules, removes the
per-function INIT_VNET_*() macros throughout the stack, eliminates the
need for vnet_symmap ksym(2) munging, and eliminates duplicate
definitions of virtualized globals under VIMAGE_GLOBALS.
Bump __FreeBSD_version and update UPDATING.
Portions submitted by: bz
Reviewed by: bz, zec
Discussed with: gnn, jamie, jeff, jhb, julian, sam
Suggested by: peter
Approved by: re (kensmith)
to save the selected source address rather than returning an
unreferenced copy to a pointer that might long be gone by the
time we use the pointer for anything meaningful.
Asked for by: rwatson
Reviewed by: rwatson
Vnet modules and protocol domains may now register destructor
functions to clean up and release per-module state. The destructor
mechanisms can be triggered by invoking "vimage -d", or a future
equivalent command which will be provided via the new jail framework.
While this patch introduces numerous placeholder destructor functions,
many of those are currently incomplete, thus leaking memory or (even
worse) failing to stop all running timers. Many of such issues are
already known and will be incrementaly fixed over the next weeks in
smaller incremental commits.
Apart from introducing new fields in structs ifnet, domain, protosw
and vnet_net, which requires the kernel and modules to be rebuilt, this
change should have no impact on nooptions VIMAGE builds, since vnet
destructors can only be called in VIMAGE kernels. Moreover,
destructor functions should be in general compiled in only in
options VIMAGE builds, except for kernel modules which can be safely
kldunloaded at run time.
Bump __FreeBSD_version to 800097.
Reviewed by: bz, julian
Approved by: rwatson, kib (re), julian (mentor)
import from p4 bms_netdev. Summary of changes:
* Connect netinet6/in6_mcast.c to build.
The legacy KAME KPIs are mostly preserved.
* Eliminate now dead code from ip6_output.c.
Don't do mbuf bingo, we are not going to do RFC 2292 style
CMSG tricks for multicast options as they are not required
by any current IPv6 normative reference.
* Refactor transports (UDP, raw_ip6) to do own mcast filtering.
SCTP, TCP unaffected by this change.
* Add ip6_msource, in6_msource structs to in6_var.h.
* Hookup mld_ifinfo state to in6_ifextra, allocate from
domifattach path.
* Eliminate IN6_LOOKUP_MULTI(), it is no longer referenced.
Kernel consumers which need this should use in6m_lookup().
* Refactor IPv6 socket group memberships to use a vector (like IPv4).
* Update ifmcstat(8) for IPv6 SSM.
* Add witness lock order for IN6_MULTI_LOCK.
* Move IN6_MULTI_LOCK out of lower ip6_output()/ip6_input() paths.
* Introduce IP6STAT_ADD/SUB/INC/DEC as per rwatson's IPv4 cleanup.
* Update carp(4) for new IPv6 SSM KPIs.
* Virtualize ip6_mrouter socket.
Changes mostly localized to IPv6 MROUTING.
* Don't do a local group lookup in MROUTING.
* Kill unused KAME prototypes in6_purgemkludge(), in6_restoremkludge().
* Preserve KAME DAD timer jitter behaviour in MLDv1 compatibility mode.
* Bump __FreeBSD_version to 800084.
* Update UPDATING.
NOTE WELL:
* This code hasn't been tested against real MLDv2 queriers
(yet), although the on-wire protocol has been verified in Wireshark.
* There are a few unresolved issues in the socket layer APIs to
do with scope ID propagation.
* There is a LOR present in ip6_output()'s use of
in6_setscope() which needs to be resolved. See comments in mld6.c.
This is believed to be benign and can't be avoided for the moment
without re-introducing an indirect netisr.
This work was mostly derived from the IGMPv3 implementation, and
has been sponsored by a third party.
from the inet6 stack along with statistics and make sure we
properly free the rt in all cases.
While the current situation is not better performance wise it
prevents panics seen more often these days.
After more inet6 and ipsec cleanup we should be able to improve
the situation again passing the rt to ip6_forward directly.
Leave the ip6_forward_rt entry in struct vinet6 but mark it
for removal.
PR: kern/128247, kern/131038
MFC after: 25 days
Committed from: Bugathon #6
Tested by: Denis Ahrens <denis@h3q.com> (different initial version)
Leave then in struct vinet6 to not break the ABI with kernel modules
but mark them for removal so we can do it in one batch when the time
is right.
MFC after: 1 month
1. separating L2 tables (ARP, NDP) from the L3 routing tables
2. removing as much locking dependencies among these layers as
possible to allow for some parallelism in the search operations
3. simplify the logic in the routing code,
The most notable end result is the obsolescent of the route
cloning (RTF_CLONING) concept, which translated into code reduction
in both IPv4 ARP and IPv6 NDP related modules, and size reduction in
struct rtentry{}. The change in design obsoletes the semantics of
RTF_CLONING, RTF_WASCLONE and RTF_LLINFO routing flags. The userland
applications such as "arp" and "ndp" have been modified to reflect
those changes. The output from "netstat -r" shows only the routing
entries.
Quite a few developers have contributed to this project in the
past: Glebius Smirnoff, Luigi Rizzo, Alessandro Cerri, and
Andre Oppermann. And most recently:
- Kip Macy revised the locking code completely, thus completing
the last piece of the puzzle, Kip has also been conducting
active functional testing
- Sam Leffler has helped me improving/refactoring the code, and
provided valuable reviews
- Julian Elischer setup the perforce tree for me and has helped
me maintaining that branch before the svn conversion
but formerly missed under VIMAGE_GLOBAL.
Put the extern declarations of the virtualized globals
under VIMAGE_GLOBAL as the globals themsevles are already.
This will help by the time when we are going to remove the globals
entirely.
Sponsored by: The FreeBSD Foundation
missed under VIMAGE_GLOBAL.
Start putting the extern declarations of the virtualized globals
under VIMAGE_GLOBAL as the globals themsevles are already.
This will help by the time when we are going to remove the globals
entirely.
While there garbage collect a few dead externs from ip6_var.h.
Sponsored by: The FreeBSD Foundation
fragment reassembly queues.
This allows policies to label reassembly queues, perform access
control checks when matching fragments to a queue, update a queue
label when fragments are matched, and label the resulting
reassembled datagram.
Obtained from: TrustedBSD Project
into v4-only vs. v6-only inp_flags processing.
When ip6_savecontrol_v4() is called from ip6_savecontrol() we
were not passing back the **mp thus the information will be missing
in userland.
Istead of going with a *** as suggested in the PR we are returning
**mp now and passing in the v4only flag as a pointer argument.
PR: kern/126349
Reviewed by: rwatson, dwmalone
ip6_savecontrol in preparation for udp_append() to no longer
need an WLOCK as we will no longer be modifying socket options.
Requested by: rwatson
Reviewed by: gnn
MFC after: 10 days
Introduce a new privilege allowing to set certain IP header options
(hop-by-hop, routing headers).
Leave a few comments to be addressed later.
Reviewed by: rwatson (older version, before addressing his comments)
- removed unused structure members
- fixed a minor bug that the ECN code point may not be restored correctly
Approved by: ume (mentor)
MFC after: 1 week
It is built in the same module as IPv4 multicast forwarding, i.e. ip_mroute.ko,
if and only if IPv6 support is enabled for loadable modules.
Export IPv6 forwarding structs to userland netstat(1) via sysctl(9).
- most of the kernel code will not care about the actual encoding of
scope zone IDs and won't touch "s6_addr16[1]" directly.
- similarly, most of the kernel code will not care about link-local
scoped addresses as a special case.
- scope boundary check will be stricter. For example, the current
*BSD code allows a packet with src=::1 and dst=(some global IPv6
address) to be sent outside of the node, if the application do:
s = socket(AF_INET6);
bind(s, "::1");
sendto(s, some_global_IPv6_addr);
This is clearly wrong, since ::1 is only meaningful within a single
node, but the current implementation of the *BSD kernel cannot
reject this attempt.
Submitted by: JINMEI Tatuya <jinmei__at__isl.rdc.toshiba.co.jp>
Obtained from: KAME
packet filter. This would cause a panic on architectures that require strict
alignment such as sparc64 (tier1) and ia64/ppc (tier2).
This adds two new macros that check the alignment, these are compile time
dependent on __NO_STRICT_ALIGNMENT which is set for i386 and amd64 where
alignment isn't need so the cost is avoided.
IP_HDR_ALIGNED_P()
IP6_HDR_ALIGNED_P()
Move bridge_ip_checkbasic()/bridge_ip6_checkbasic() up so that the alignment
is checked for ipfw and dummynet too.
PR: ia64/81284
Obtained from: NetBSD
Approved by: re (dwhite), mlaier (mentor)
compile option. All FreeBSD packet filters now use the PFIL_HOOKS API and
thus it becomes a standard part of the network stack.
If no hooks are connected the entire packet filter hooks section and related
activities are jumped over. This removes any performance impact if no hooks
are active.
Both OpenBSD and DragonFlyBSD have integrated PFIL_HOOKS permanently as well.
have already done this, so I have styled the patch on their work:
1) introduce a ip_newid() static inline function that checks
the sysctl and then decides if it should return a sequential
or random IP ID.
2) named the sysctl net.inet.ip.random_id
3) IPv6 flow IDs and fragment IDs are now always random.
Flow IDs and frag IDs are significantly less common in the
IPv6 world (ie. rarely generated per-packet), so there should
be smaller performance concerns.
The sysctl defaults to 0 (sequential IP IDs).
Reviewed by: andre, silby, mlaier, ume
Based on: NetBSD
MFC after: 2 months
(aka RFC2292bis). Though I believe this commit doesn't break
backward compatibility againt existing binaries, it breaks
backward compatibility of API.
Now, the applications which use Advanced Sockets API such as
telnet, ping6, mld6query and traceroute6 use RFC3542 API.
Obtained from: KAME
o revamp IPv4+IPv6+bridge usage to match API changes
o remove pfil_head instances from protosw entries (no longer used)
o add locking
o bump FreeBSD version for 3rd party modules
Heavy lifting by: "Max Laier" <max@love2party.net>
Supported by: FreeBSD Foundation
Obtained from: NetBSD (bits of pfil.h and pfil.c)
drain routines are done by swi_net, which allows for better queue control
at some future point. Packets may also be directly dispatched to a netisr
instead of queued, this may be of interest at some installations, but
currently defaults to off.
Reviewed by: hsu, silby, jayanth, sam
Sponsored by: DARPA, NAI Labs