The fix is similar to the one applied in GCC-4.3 in
GCCSVN-r117929 under the GPLv2.
Submitted by: Andrey Simonenko
Reviewed by: mm
Approved by: jhb (mentor)
MFC after: 3 days
On FreeBSD the direct ioctl argument is automatically copied in/out
as necesary by the kernel ioctl entry point.
PR: kern/164445
Submitted by: Luis Garces-Erice <lge@ieee.org>
Tested by: Attila Nagy <bra@fsn.hu>
MFC after: 5 days
application destroys semaphore after sem_wait returns. Just enter
kernel to wake up sleeping threads, only update _has_waiters if
it is safe. While here, check if the value exceed SEM_VALUE_MAX and
return EOVERFLOW if this is true.
a mutex after a thread has unlocked it, it event writes data to the mutex
memory to clear contention bit, there is a race that other threads
can lock it and unlock it, then destroy it, so it should not write
data to the mutex memory if there isn't any waiter.
The new operation UMTX_OP_MUTEX_WAKE2 try to fix the problem. It
requires thread library to clear the lock word entirely, then
call the WAKE2 operation to check if there is any waiter in kernel,
and try to wake up a thread, if necessary, the contention bit is set again
by the operation. This also mitgates the chance that other threads find
the contention bit and try to enter kernel to compete with each other
to wake up sleeping thread, this is unnecessary. With this change, the
mutex owner is no longer holding the mutex until it reaches a point
where kernel umtx queue is locked, it releases the mutex as soon as
possible.
Performance is improved when the mutex is contensted heavily. On Intel
i3-2310M, the runtime of a benchmark program is reduced from 26.87 seconds
to 2.39 seconds, it even is better than UMTX_OP_MUTEX_WAKE which is
deprecated now. http://people.freebsd.org/~davidxu/bench/mutex_perf.c
A BAR frame must be transmitted when an frame in an A-MPDU session fails
to transmit - it's retried too often, or it can't be cloned for
re-transmission. The BAR frame tells the remote side to advance the
left edge of the block-ack window (BAW) to a new value.
In order to do this:
* TX for that particular node/TID must be paused;
* The existing frames in the hardware queue needs to be completed, whether
they're TXed successfully or otherwise;
* The new left edge of the BAW is then communicated to the remote side
via a BAR frame;
* Once the BAR frame has been sucessfully TXed, aggregation can resume;
* If the BAR frame can't be successfully TXed, the aggregation session
is torn down.
This is a first pass that implements the above. What needs to be done/
tested:
* What happens during say, a channel reset / stuck beacon _and_ BAR
TX. It _should_ be correctly buffered and retried once the
reset has completed. But if a bgscan occurs (and they shouldn't,
grr) the BAR frame will be forcibly failed and the aggregation session
will be torn down.
Yes, another reason to disable bgscan until I've figured this out.
* There's way too much locking going on here. I'm going to do a couple
of further passes of sanitising and refactoring so the (re) locking
isn't so heavy. Right now I'm going for correctness, not speed.
* The BAR TX can fail if the hardware TX queue is full. Since there's
no "free" space kept for management frames, a full TX queue (from eg
an iperf test) can race with your ability to allocate ath_buf/mbufs
and cause issues. I'll knock this on the head with a subsequent
commit.
* I need to do some _much_ more thorough testing in hostap mode to ensure
that many concurrent traffic streams to different end nodes are correctly
handled. I'll find and squish whichever bugs show up here.
But, this is an important step to being able to flip on 802.11n by default.
The last issue (besides bug fixes, of course) is HT frame protection and
I'll address that in a subsequent commit.
Linux ath9k doesn't have this issue as it doesn't try queuing multi-
descriptor frames to the hardware.
Before, I was only setting the first and last descriptor in the final
frame correctly - and that was done by accident. The first descriptor in
the last sub-frame was being correctly updated by ath_tx_setds_11n();
the last descriptor in the last sub-frame was being correctly updated
by ath_buf_set_rate(). But both of those are "incorrect".
The correct behaviour is:
* AR_IsAggr is set for all descriptors for all subframes in an aggregate.
* AR_MoreAggr is set for all descriptors for all non-final sub-frames
in an aggregate.
Ie, all descriptors in the last sub-frame of an aggregate must have this
field set to 0.
I still need to do a couple of extra passes to ensure the pad delimiter
field is being correctly handled in all descriptors in the last sub-frame.
can be upgraded to MegaRAID mode, in which case mfi(4) should attach to
these based on the sub-vendor and -device ID instead (not currently done).
Therefore, let mpt_pci_probe() return BUS_PROBE_LOW_PRIORITY.
While it, let mpt_pci_probe() return BUS_PROBE_DEFAULT instead of 0 in
the default case.
MFC after: 3 days
revision 1.173
date: 2011/11/09 12:36:03; author: camield; state: Exp; lines: +11 -12
State expire time is a baseline time ("last active") for expiry
calculations, and does _not_ denote the time when to expire. So
it should never be added to (set into the future).
Try to reconstruct it with an educated guess on state import and
just set it to the current time on state updates.
This fixes a problem on pfsync listeners where the expiry time
could be double the expected value and cause a lot more states
to linger.
forwarding a packet, that creates state, until
pfsync(4) peer acks state addition (or 10 msec
timeout passes).
This is needed for active-active CARP configurations,
which are poorly supported in FreeBSD and arguably
a good idea at all.
Unfortunately by the time of import this feature in
OpenBSD was turned on, and did not have a switch to
turn it off. This leaked to FreeBSD.
This change make it possible to turn this feature
off via ioctl() and turns it off by default.
Obtained from: OpenBSD
and it is no longer referenced by a user process. The inode for a
file whose name has been removed, but is still referenced at the
time of a crash will still be allocated in the filesystem, but will
have no references (e.g., they will have no names referencing them
from any directory).
With traditional soft updates these unreferenced inodes will be
found and reclaimed when the background fsck is run. When using
journaled soft updates, the kernel must keep track of these inodes
so that it can find and reclaim them during the cleanup process.
Their existence cannot be stored in the journal as the journal only
handles short-term events, and they may persist for days. So, they
are tracked by keeping them in a linked list whose head pointer is
stored in the superblock. The journal tracks them only until their
linked list pointers have been commited to disk. Part of the cleanup
process involves traversing the list of unreferenced inodes and
reclaiming them.
This bug was triggered when confusion arose in the commit steps
of keeping the unreferenced-inode linked list coherent on disk.
Notably, a race between the link() system call adding a link-count
to a file and the unlink() system call removing a link-count to
the file. Here if the unlink() ran after link() had looked up
the file but before link() had incremented the link-count of the
file, the file's link-count would drop to zero before the link()
incremented it back up to one. If the file was referenced by a
user process, the first transition through zero made it appear
that it should be added to the unreferenced-inode list when in
fact it should not have been added. If the new name created by
link() was deleted within a few seconds (with the file still
referenced by a user process) it would legitimately be a candidate
for addition to the unreferenced-inode list. The result was that
there were two attempts to add the same inode to the unreferenced-inode
list which scrambled the unreferenced-inode list's pointers leading
to a panic. The fix is to detect and avoid the false attempt at
adding it to the unreferenced-inode list by having the link()
system call check to see if the link count is zero before it
increments it. If it is, the link() fails with ENOENT (showing that
it has failed the link()/unlink() race).
While tracking down this bug, we have added additional assertions
to detect the problem sooner and also simplified some of the code.
Reported by: Kirk Russell
Fix submitted by: Jeff Roberson
Tested by: Peter Holm
PR: kern/159971
MFC (to 9 only): 2 weeks
sleeping from a swi handler (even though in this case it would be ok), so
switch the refill and scanning SWI handlers to being tasks on a fast
taskqueue. Also, only schedule the refill task for a CMCI as an MC# can
fire at any time, so it should do the minimal amount of work needed and
avoid opportunities to deadlock before it panics (such as scheduling a
task it won't ever need in practice). To handle the case of an MC# only
finding recoverable errors (which should never happen), always try to
refill the event free list when the periodic scan executes.
MFC after: 2 weeks
flags check.
- Add a comment for the immutable/append check done after handling of
the flags.
- Style improvements.
No functional change intended.
Submitted by: bde
MFC after: 2 weeks
- Fill the needed pmPartStatus flags. At least the OpenBIOS
implementation relies on these flags.
This commit fixes the panic seen on OS-X when inserting a FreeBSD/ppc disc.
Additionally OpenBIOS recognizes the partition where the boot code is located.
This lets us load a FreeBSD/ppc PowerMac kernel inside qemu.
PR: powerpc/162091
MFC after: 1 week
an uncorrected ECC error tends to fire on all CPUs in a package
simultaneously and the current printf hacks are not sufficient to make
the messages legible. Instead, use the existing mca_lock spinlock to
serialize calls to mca_log() and change the machine check code to panic
directly when an unrecoverable error is encoutered rather than falling
back to a trap_fatal() call in trap() (which adds nearly a screen-full of
logging messages that aren't useful for machine checks).
MFC after: 2 weeks
about to add, and failed if it exist and had invalid data
link type.
Later on, in r201282, this check morphed to other code, but
message "proxy entry exists for non 802 device" still left,
and now it is printed in a case if route prefix found is
equal to current address being added. In other words, when
we are trying to add ARP entry for a network address. The
message is absolutely unrelated and disappointing in this
case.
I don't see anything bad with setting ARP entries for
network addresses. While useless in usual network,
in a /31 RFC3021 it may be necessary. This, remove this code.