This change simplifies and unifies port adding/updating for loop and
fabric scanners. It also fixes problems with scanning restarts due to
concurrent port databases changes. It also fixes many cosmetic issues.
For the most of chips (except anscient ones) port handlers have no relation
to port IDs. In such situation old code scanning first 125 handlers was
quite naive. Instead of doing that, send to chip single request to get full
list of port handlers available on specific virtual port and scan only them.
Old code had problems with case of several virtual ports enabled, when port
handlers allocated from global address space could easily go above 125.
This change was successfully tested on 23xx, 24xx and 25xx chips in loop
mode with 4 virtual initiator ports, each seing 50 virtual target ports.
Now on 24xx and above chips it is really possible to simulate several
virtual FC ports with single physical one. For example, it allows to
configure several targets in ctl.conf, assign each of them to separate
virtual port, and let user to control access to them with switch zoning.
I still doubt that all problems are solved there, but at now it passes
at least basic tests.
MISC CHANGES
Add a new async event- ISP_TARGET_NOTIFY_ACK, that will guarantee
eventual delivery of a NOTIFY ACK. This is tons better than just
ignoring the return from isp_notify_ack and hoping for the best.
Clean up the lower level lun enable code to be a bit more sensible.
Fix a botch in isp_endcmd which was messing up the sense data.
Fix notify ack for SRR to use a sensible error code in the case
of a reject.
Clean up and make clear what kind of firmware we've loaded and
what capabilities it has.
-----------
FULL (252 byte) SENSE DATA
In CTIOs for the ISP, there's only a limimted amount of space
to load SENSE DATA for associated CHECK CONDITIONS (24 or 26
bytes). This makes it difficult to send full SENSE DATA that can
be up to 252 bytes.
Implement MODE 2 responses which have us build the FCP Response
in system memory which the ISP will put onto the wire directly.
On the initiator side, the same problem occurs in that a command
status response only has a limited amount of space for SENSE DATA.
This data is supplemented by status continuation responses that
the ISP pushes onto the response queue after the status response.
We now pull them all together so that full sense data can be
returned to the periph driver.
This is supported on 23XX, 24XX and 25XX cards.
This is also preparation for doing >16 byte CDBs.
-----------
FC TAPE
Implement full FC-TAPE on both initiator and target mode side. This
capability is driven by firmware loaded, board type, board NVRAM
settings, or hint configuration options to enable or disable. This
is supported for 23XX, 24XX and 25XX cards.
On the initiator side, we pretty much just have to generate a command
reference number for each command we send out. This is FCP-4 compliant
in that we do this per ITL nexus to generate the allowed 1 thru 255
CRN.
In order to support the target side of FC-TAPE, we now pay attention
to more of the PRLI word 3 parameters which will tell us whether
an initiator wants confirmed responses. While we're at it, we'll
pay attention to the initiator view too and report it.
On sending back CTIOs, we will notice whether the initiator wants
confirmed responses and we'll set up flags to do so.
If a response or data frame is lost the initiator sends us an SRR
(Sequence Retransmit Request) ELS which shows up as an SRR notify
and all outstanding CTIOs are nuked with SRR Received status. The
SRR notify contains the offset that the initiator wants us to restart
the data transfer from or to retransmit the response frame.
If the ISP driver still has the CCB around for which the data segment
or response applies, it will retransmit.
However, we typically don't know about a lost data frame until we
send the FCP Response and the initiator totes up counters for data
moved and notices missing segments. In this case we've already
completed the data CCBs already and sent themn back up to the periph
driver. Because there's no really clean mechanism yet in CAM to
handle this, a hack has been put into place to complete the CTIO
CCB with the CAM_MESSAGE_RECV status which will have a MODIFY DATA
POINTER extended message in it. The internal ISP target groks this
and ctl(8) will be modified to deal with this as well.
At any rate, the data is retransmitted and an an FCP response is
sent. The whole point here is to successfully complete a command
so that you don't have to depend on ULP (SCSI) to have to recover,
which in the case of tape is not really possible (hence the name
FC-TAPE).
Sponsored by: Spectralogic
MFC after: 1 month
not by some hint setting. Do more preparations for FC-Tape.
Clean up resource counting for 24XX or later chipsets so
we find out after EXEC_FIRMWARE what is actually supported.
Set target mode exchange count based upon whether or not
we are supporting simultaneous target/initiator mode. Clean
up some old (pre-24XX) xfwoption and zfwoption issues.
Sponsored by: Spectralogic
MFC after: 3 days
and crosschecks against firmware documentation. We now check and report
FC firmware attributes and at least are now prepared for the upper 48 bits
of f/w attributes (which are probably for the 8100 or later cards). This
involed changing how inbits and outbits are calculated for varios commands,
hopefully clearer and cleaner. This also caused me to clean up the actual
mailbox register usage. Finally, we are now unconditionally using a CRN
for initiator mode.
A longstanding issue with the 2400/2500 is that they do *not* support
a "Prefer PTP followed by loop", which explains why enabling that
caused the f/w to crash.
A slightly more invasive change is to let the firmware load entirely
drive whether multi_id support is enabled or not.
Sponsored by: Spectralogic
MFC after: 1 week
32 bit handles. The RIO (reduced interrupt operation) and fast posting
for the parallel SCSI cards were all 16 bit handles. Furthermore,
target mode parallel SCSI only can have 16 bit handles.
Use part of a supplied patch to switch over to using 32 bit handles.
Be a bit more conservative here and only do this for parallel SCSI
for the 12160 (Ultra3) cards. There were a lot of marginal Ultra2
cards, and, frankly, few are findable now for testing.
Fix the target handle routine to only do 16 bit handles for parallel
SCSI cards. This is okay because the upper sixteen bits of the new
32 bit handles is a sequence number to help protect against duplicate
completions. This would be very unlikely to happen with parallel
SCSI target mode, and wasn't present before, so we're no worse off
than we used to be.
While we're at it, finally split the async mailbox completion handlers
into FC and parallel SCSI functions. This makes it much cleaner and
easier to figure out what is or isn't a legal async mailbox completion
code for different card classes.
PR: kern/144250
Submitted partially by: Charles D
MFC after: 1 week
numbers and handle types in rational way. This will better protect from
(unwittingly) dealing with stale handles/commands.
Fix the watchdog timeout code to better protect itself from mistakes.
If we run an abort on a putatively timed out command, the command
may in fact get completed, so check to make sure the command we're
timing it out is still around. If the abort succeeds, btw, the command
should get returned via a different path.
Add a maximum response length for FCP RSPNS IUs.
Clarify some of the FC option words for setting parameters
and try and disable automatic PRLI when in target mode- this
should correct some cases of N-port topologies with 23XX cards
where we put out an illegal PRLI (in target mode only we're
not supposed to put out a PRLI).
firmware loading bugs.
Target mode support has received some serious attention to make it
more usable and stable.
Some backward compatible additions to CAM have been made that make
target mode async events easier to deal with have also been put
into place.
Further refinement and better support for NP-IV (N-port Virtualization)
is now in place.
Code for release prior to RELENG_7 has been stripped away for code clarity.
Sponsored by: Copan Systems
Reviewed by: scottl, ken, jung-uk kim
Approved by: re
an ICB. This shows up on card restarts, and usually for
2200-2300 cards. What happens is that we start up,
attempting to acquire a hard address. We end up instead
being an F-port topology, which reports out a loop id
of 0xff (or 0xffff for 2K Login f/w). Then, if we restart,
we end up telling the card to go off an acquire this loop
address, which the card then rejects. Bah.
Compilation fixes from Solaris port.
and provied an isp_control entry point so that the outer layers can
do PLOGI/LOGO explicitly. Add MS IOCB support. This completes the cycle
for base support for SMI-S.
Only complain about FC Reponse errors if they're nonzero.
Shorten some PortID printouts for local loop.
Add an internal isp_xcmd_t data structure which we'll use for some
CT-Passthru support as part of adding SMI-S.
(and by extension, the 2422).
One peculiar thing I've found with the 2322 is that if you
don't force it to do Hard LoopID acquisition, the firmware
crashes. This took a while to figure out.
While we're at it, fix various bugs having to do with NVRAM
reading and option setting with respect to pieces of NVRAM.
Pull in some target mode changes from a private branch.
Pull in some more RELENG_4 compilation changes.
A lot of lines changed, but not much content change yet.
to getting rid u_int for uint and so on).
b) Turn back on 64 bit DAC support. Cheeze it a bit in that we have two
DMA callback functions- one when we have bus_addr_t > 4 bits in width and
the other which should be normal. Even Cheezier in that we turn off setting
up DMA maps to be BUS_SPACE_MAXADDR if we're in ISP_TARGET_MODE. More work
on this in a week or so.
c) Tested under amd64 and 1MB DFLTPHYS, sparc64, i386 (PAE, but insufficient
memory to really test > 4GB). LINT check under amd64.
MFC after: 1 month
up to date. Principle changes for this reelase is to support 2K Port Login
firmware. This allows us to support the 2322 (and 2422 4Gb) cards which only
come with the 2K Port Login firmware. The 2322 should now work- but we don't
have firmware sets for it in ispfw (as the change to load 2K Port Login f/w
hasn't been made- that f/w is so big it has to be loaded in more than one
chunk).
Other changes are the beginnings of cleaning up some long standing target
mode issues. The next changes here will incorporate a lot of bug fixes
from others.
Finally, some copyright cleanup and attempts to make the parts of the
driver that are FreeBSD specific start conforming more to FreeBSD style.
MFC after: 1 month
lun address modifier of sorts. Only an HP XP-512 seems to have cared.
Fix a few misplaced pointers for the new fabric goop, which has been
demonstrated to work on newer Brocades and McData switches now.
Put in commented out code which would run GFF_ID if the QLogic f/w
allowed it.
Don't whine about not being able to find a handle for a command if it
was a command aborted (by us).
Grumble. I've seen better documented architectures out of Redmond.
Redo fabric evaluation to not use GET ALL NEXT (GA_NXT). Switches seem
to be trying to wriggle out of supporting this well. Instead, use
GID_FT to get a list of Port IDs and then use GPN_ID/GNN_ID to find the
port and node wwn. This should make working on fabrics a bit cleaner and
more stable.
This also caused some cleanup of SNS subcommand canonicalization so that
we can actually check for FS_ACC and FS_RJT, and if we get an FS_RJT,
print out the reason and explanation codes.
We'll keep the old GA_NXT method around if people want to uncomment a
controlling definition in ispvar.h.
This also had us clean up ISPASYNC_FABRICDEV to use a local lportdb argument
and to have the caller explicitly say that a device is at the end of the
fabric list.
MFC after: 1 week
If you want QLogic to look at a potential f/w problem for FC cards, you really
have to provide them info in the format they expect. This involves dumping
a lot of hardware registers (> 300 16 bit registers) and a lot of SRAM
(> 128KB minimum). Thus all of this code is #ifdef protected which will
become an option so that the memory allocation of where to dump the crash
image is pretty expensive. It's worth it if you have a reproducible problem
because they have some tools that can tell them, given the f/w version,
the precise state of everything.
MFC after: 1 week