respectively. Most of the longs should probably have been
u_longs, but this changes is just to prevent warnings about
casts between pointers and integers of different sizes, not
to fix poorly chosen types.
bits. We used a private, wrong, version of `struct dirent' to help
break getdirentries(), and we use a silly check that the size of this
struct is a power of 2 to help break mount() if getdirentries() would
not work. This fix just changes the struct to match `struct dirent'
(except for the name length).
Each devfs node has (and has had fro a while) a pointer directly to
the correct cdefsw entry so just use it instead of doing the lookup.
There are several other places in the kernel that still use the tables
however, so they can't go away yet..
There is only cdevsw (which should be renamed in a later edit to deventry
or something). cdevsw contains the union of what were in both bdevsw an
cdevsw entries. The bdevsw[] table stiff exists and is a second pointer
to the cdevsw entry of the device. it's major is in d_bmaj rather than
d_maj. some cleanup still to happen (e.g. dsopen now gets two pointers
to the same cdevsw struct instead of one to a bdevsw and one to a cdevsw).
rawread()/rawwrite() went away as part of this though it's not strictly
the same patch, just that it involves all the same lines in the drivers.
cdroms no longer have write() entries (they did have rawwrite (?)).
tapes no longer have support for bdev operations.
Reviewed by: Eivind Eklund and Mike Smith
Changes suggested by eivind.
as the value in b_vp is often not really what you want.
(and needs to be frobbed). more cleanups will follow this.
Reviewed by: Bruce Evans <bde@freebsd.org>
emulators. The emulators assume that filesystem may just ignore cookies, and
handle this case correctly. So we just ignore cookies.
Also sync *_readdir "prototypes" with reality.
Check args using the same expression as in fdesc and kernfs. The check
was actually already correct, modulo overflow. It could be tightened
up to either allow huge (aligned) offsets, treating them as EOF, or
disallow all offsets beyond EOF.
Didn't fix invalid address calculation &foo[i] where i may be out of
bounds.
Didn't fix shooting of foot using a private unportable dirent struct.
and missing arg checking.
Panic instead of returning bogus error codes or forgetting to check
all cases if fdesc_readdir() gets called for a non-directory. This
can't happen.
FreeBSD/alpha. The most significant item is to change the command
argument to ioctl functions from int to u_long. This change brings us
inline with various other BSD versions. Driver writers may like to
use (__FreeBSD_version == 300003) to detect this change.
The prototype FreeBSD/alpha machdep will follow in a couple of days
time.
unexpectedly do not complete writes even with sync I/O requests.
This should help the behavior of mmaped files when using
softupdates (and perhaps in other circumstances also.)
---------
Make callers of namei() responsible for releasing references or locks
instead of having the underlying filesystems do it. This eliminates
redundancy in all terminal filesystems and makes it possible for stacked
transport layers such as umapfs or nullfs to operate correctly.
Quality testing was done with testvn, and lat_fs from the lmbench suite.
Some NFS client testing courtesy of Patrik Kudo.
vop_mknod and vop_symlink still release the returned vpp. vop_rename
still releases 4 vnode arguments before it returns. These remaining cases
will be corrected in the next set of patches.
---------
Submitted by: Michael Hancock <michaelh@cet.co.jp>
Reverse the VFS_VRELE patch. Reference counting of vnodes does not need
to be done per-fs. I noticed this while fixing vfs layering violations.
Doing reference counting in generic code is also the preference cited by
John Heidemann in recent discussions with him.
The implementation of alternative vnode management per-fs is still a valid
requirement for some filesystems but will be revisited sometime later,
most likely using a different framework.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
deallocation cycles. This should provide a measurable improvement
on swap and memory allocation on loaded systems. It is unlikely a
complete solution. Also, provide more map info with procfs.
Chuck Cranor spurred on this improvement.
This code will be turned on with the TWO options
DEVFS and SLICE. (see LINT)
Two labels PRE_DEVFS_SLICE and POST_DEVFS_SLICE will deliniate these changes.
/dev will be automatically mounted by init (thanks phk)
on bootup. See /sys/dev/slice/slice.4 for more info.
All code should act the same without these options enabled.
Mike Smith, Poul Henning Kamp, Soeren, and a few dozen others
This code does not support the following:
bad144 handling.
Persistance. (My head is still hurting from the last time we discussed this)
ATAPI flopies are not handled by the SLICE code yet.
When this code is running, all major numbers are arbitrary and COULD
be dynamically assigned. (this is not done, for POLA only)
Minor numbers for disk slices ARE arbitray and dynamically assigned.
They are atomic, but return in essence what is in the "time" variable.
gettime() is now a macro front for getmicrotime().
Various patches to use the two new functions instead of the various
hacks used in their absence.
Some puntuation and grammer patches from Bruce.
A couple of XXX comments.
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
a complement to all ops that return a vpp, VFS_VRELE. This is
initially only for file systems that implement the following ops
that do a WILLRELE:
vop_create, vop_whiteout, vop_mknod, vop_remove, vop_link,
vop_rename, vop_mkdir, vop_rmdir, vop_symlink
This is initial DNA that doesn't do anything yet. VFS_VRELE is
implemented but not called.
A default vfs_vrele was created for fs implementations that use the
standard vnode management routines.
VFS_VRELE implementations were made for the following file systems:
Standard (vfs_vrele)
ffs mfs nfs msdosfs devfs ext2fs
Custom
union umapfs
Just EOPNOTSUPP
fdesc procfs kernfs portal cd9660
These implementations may change as VOP changes are implemented.
In the next phase, in the vop implementations calls to vrele and the vrele
part of vput will be moved to the top layer vfs_vnops and made visible
to all layers. vput will be replaced by unlock in these cases. Unlocking
will still be done in the per fs layer but the refcount decrement will be
triggered at the top because it doesn't hurt to hold a vnode reference a
little longer. This will have minimal impact on the structure of the
existing code.
This will only be done for vnode arguments that are released by the various
fs vop implementations.
Wider use of VFS_VRELE will likely require restructuring of the code.
Reviewed by: phk, dyson, terry et. al.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
of the various ad-hoc schemes.
2) When bringing in UPAGES, the pmap code needs to do another vm_page_lookup.
3) When appropriate, set the PG_A or PG_M bits a-priori to both avoid some
processor errata, and to minimize redundant processor updating of page
tables.
4) Modify pmap_protect so that it can only remove permissions (as it
originally supported.) The additional capability is not needed.
5) Streamline read-only to read-write page mappings.
6) For pmap_copy_page, don't enable write mapping for source page.
7) Correct and clean-up pmap_incore.
8) Cluster initial kern_exec pagin.
9) Removal of some minor lint from kern_malloc.
10) Correct some ioopt code.
11) Remove some dead code from the MI swapout routine.
12) Correct vm_object_deallocate (to remove backing_object ref.)
13) Fix dead object handling, that had problems under heavy memory load.
14) Add minor vm_page_lookup improvements.
15) Some pages are not in objects, and make sure that the vm_page.c can
properly support such pages.
16) Add some more page deficit handling.
17) Some minor code readability improvements.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
- Set UN_ULOCK in union_lock() when UN_KLOCK is set. Caller expects
that vnode is locked correctly, and may call another function which
expects locked vnode and may unlock the vnode.
- Do not assume the behavior of inside functions in FreeBSD's
vfs_suber.c is same as 4.4BSD-Lite2. Vnode may be locked in
vget() even though flag is zero. (Locked vnode is, of course,
unlocked before returning from vget.)
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
of vnodes and objects. There are some metadata performance improvements
that come along with this. There are also a few prototypes added when
the need is noticed. Changes include:
1) Cleaning up vref, vget.
2) Removal of the object cache.
3) Nuke vnode_pager_uncache and friends, because they aren't needed anymore.
4) Correct some missing LK_RETRY's in vn_lock.
5) Correct the page range in the code for msync.
Be gentle, and please give me feedback asap.
flag is set in the p_pfsflags field. This, essentially, prevents an SUID
proram from hanging after being traced. (E.g., "truss /usr/bin/rlogin" would
fail, but leave rlogin in a stopevent state.) Yet another case where procctl
is (hopefully ;)) no longer needed in the general case.
Reviewed by: bde (thanks bruce :))
if one of the new poll types is requested; hopefully this will not break
any existing code. (This is done so that programs have a dependable
way of determining whether a filesystem supports the extended poll types
or not.)
The new poll types added are:
POLLWRITE - file contents may have been modified
POLLNLINK - file was linked, unlinked, or renamed
POLLATTRIB - file's attributes may have been changed
POLLEXTEND - file was extended
Note that the internal operation of poll() means that it is impossible
for two processes to reliably poll for the same event (this could
be fixed but may not be worth it), so it is not possible to rewrite
`tail -f' to use poll at this time.
1. SS_CANTRCVMORE was initially set on the wrong socket, so reads
when there has never been a writer on the socket did not return 0.
Note that such reads are only possible if the fifo was opened in
(O_RDONLY | O_NONBLOCK) mode.
2. SS_CANTSENDMORE was initially set on the wrong socket, but this
was harmless because the wrong socket is never sent from and there
is no need to set the flag initially on the right socket (since open
in (O_WRONLY | O_NONBLOCK) mode fails if there is no reader...).
3. SS_CANTRCVMORE was cleared when read() returns. This broke the
case where read() returns 0 - subsequent reads are supposed to
return 0 until a writer appears. There is no need to clear the
flag when read() returns, since it is cleared correctly when a
writer appears.
general to be of much use. Using it here weakened the _PC_MAX_CANON,
_PC_MAX_INPUT and _PC_VDISABLE cases.
fifo_pathconf() is not quite correct either. _PC_CHOWN_RESTRICTED
and _PC_LINK_MAX should be handled by the host file system. For
directories, the host file system should let us handle _PC_PIPE_BUF.
change from
ioctl(fd, PIOC<foo>, &i);
to
ioctl(fd, PIOC<foo>, i);
This is going from the _IOW to _IO ioctl macro. The kernel, procctl, and
truss must be in synch for it all to work (not doing so will get errors about
inappropriate ioctl's, fortunately). Hopefully I didn't forget anything :).
nodes; this also apparantly caused a panic in some circumstances.
Also, since procfs_exit() is getting rid of the nodes when a process
exits, don't bother checking for the process' existance in procfs_inactive().
what is teh root cause -- but, sometimes, a procfs vnode in pfshead is
apparantly corrupt (or a UFS vnode instead). Without this patch, I can
get it to panic by doing (in csh)
while (1)
ps auxwww
end
and it will panic when the PID's wrap. With it, it does not panic.
Yes -- I know that this is NOT the right way to fix it. But I haven't
been able to get it to panic yet (which confuses me). I am going to
be looking into the vgone() code now, as that may be a part of it.
me; unfortunately, also makes it hard ot check for errors); second, I had
managed to forget a change to PIOCSFL (it should be _IOW, not _IOR) I had
in my local copy, and Bruce called me on it.
Submitted by: bde
Note that an unload facility should be used to call rm_at_exit() (if
procfs is being loaded as an LKM and is subsequently removed), but it
was non-obvious how to do this in the VFS framework.
Reviewed by: Julian Elischer
procfs/mem file. While this doesn't prevent an unkillable process, it
means that a broken truss prorgam won't do it accidently now (well,
there's a small window of opportunity). Note that this requires the
change to truss I am about to commit.
it in struct proc instead.
This fixes a boatload of compiler warning, and removes a lot of cruft
from the sources.
I have not removed the /*ARGSUSED*/, they will require some looking at.
libkvm, ps and other userland struct proc frobbing programs will need
recompiled.
Rename vn_default_error to vop_defaultop all over the place.
Move vn_bwrite from vfs_bio.c to vfs_default.c and call it vop_stdbwrite.
Use vop_null instead of nullop.
Move vop_nopoll from vfs_subr.c to vfs_default.c
Move vop_sharedlock from vfs_subr.c to vfs_default.c
Move vop_nolock from vfs_subr.c to vfs_default.c
Move vop_nounlock from vfs_subr.c to vfs_default.c
Move vop_noislocked from vfs_subr.c to vfs_default.c
Use vop_ebadf instead of *_ebadf.
Add vop_defaultop for getpages on master vnode in MFS.
1. Add defaults for more VOPs
VOP_LOCK vop_nolock
VOP_ISLOCKED vop_noislocked
VOP_UNLOCK vop_nounlock
and remove direct reference in filesystems.
2. Rename the nfsv2 vnop tables to improve sorting order.
1. Remove VOP_UPDATE, it is (also) an UFS/{FFS,LFS,EXT2FS,MFS}
intereface function, and now lives in the ufsmount structure.
2. Remove VOP_SEEK, it was unused.
3. Add mode default vops:
VOP_ADVLOCK vop_einval
VOP_CLOSE vop_null
VOP_FSYNC vop_null
VOP_IOCTL vop_enotty
VOP_MMAP vop_einval
VOP_OPEN vop_null
VOP_PATHCONF vop_einval
VOP_READLINK vop_einval
VOP_REALLOCBLKS vop_eopnotsupp
And remove identical functionality from filesystems
4. Add vop_stdpathconf, which returns the canonical stuff. Use
it in the filesystems. (XXX: It's probably wrong that specfs
and fifofs sets this vop, shouldn't it come from the "host"
filesystem, for instance ufs or cd9660 ?)
5. Try to make system wide VOP functions have vop_* names.
6. Initialize the um_* vectors in LFS.
(Recompile your LKMS!!!)
1. Add new file "sys/kern/vfs_default.c" where default actions for
VOPs go. Implement proper defaults for ABORTOP, BWRITE, LEASE,
POLL, REVOKE and STRATEGY. Various stuff spread over the entire
tree belongs here.
2. Change VOP_BLKATOFF to a normal function in cd9660.
3. Kill VOP_BLKATOFF, VOP_TRUNCATE, VOP_VFREE, VOP_VALLOC. These
are private interface functions between UFS and the underlying
storage manager layer (FFS/LFS/MFS/EXT2FS). The functions now
live in struct ufsmount instead.
4. Remove a kludge of VOP_ functions in all filesystems, that did
nothing but obscure the simplicity and break the expandability.
If a filesystem doesn't implement VOP_FOO, it shouldn't have an
entry for it in its vnops table. The system will try to DTRT
if it is not implemented. There are still some cruft left, but
the bulk of it is done.
5. Fix another VCALL in vfs_cache.c (thanks Bruce!)
2/ Show the dummy mount in the mount list. it cannot be reached (that I know of)
but puting it there, means that disks mounted from devfs will have their things such as the superblock and the bitmaps, synced to disk :)
1. Use the default function to access all the specfs operations.
2. Use the default function to access all the fifofs operations.
3. Use the default function to access all the ufs operations.
4. Fix VCALL usage in vfs_cache.c
5. Use VOCALL to access specfs functions in devfs_vnops.c
6. Staticize most of the spec and fifofs vnops functions.
7. Make UFS panic if it lacks bits of the underlying storage handling.
1. Remove comment stating the blatantly obvious.
2. Align in two columns.
3. Sort all but the default element alphabetically.
4. Remove XXX comments pointing out entries not needed.
Distribute all but the most fundamental malloc types. This time I also
remembered the trick to making things static: Put "static" in front of
them.
A couple of finer points by: bde
1. Clustered I/O is switched by the MNT_NOCLUSTERR and MNT_NOCLUSTERW
bits of the mnt_flag. The sysctl variables, vfs.foo.doclusterread
and vfs.foo.doclusterwrite are deleted. Only mount option can
control clustered I/O from userland.
2. When foofs_mount mounts block device, foofs_mount checks D_CLUSTERR
and D_CLUSTERW bits of the d_flags member in the block device switch
table. If D_NOCLUSTERR / D_NOCLUSTERW are set, MNT_NOCLUSTERR /
MNT_NOCLUSTERW bits will be set. In this case, MNT_NOCLUSTERR and
MNT_NOCLUSTERW cannot be cleared from userland.
3. Vnode driver disables both clustered read and write.
4. Union filesystem disables clutered write.
Reviewed by: bde
plus the previous changes to use the zone allocator decrease the useage
of malloc by half. The Zone allocator will be upgradeable to be able
to use per CPU-pools, and has more intelligent usage of SPLs. Additionally,
it has reasonable stats gathering capabilities, while making most calls
inline.
socket addresses in mbufs. (Socket buffers are the one exception.) A number
of kernel APIs needed to get fixed in order to make this happen. Also,
fix three protocol families which kept PCBs in mbufs to not malloc them
instead. Delete some old compatibility cruft while we're at it, and add
some new routines in the in_cksum family.
uerror == 0 && lerror == EACCES, lowervp == NULLVP and union_allocvp
doesn't find existing union node and new union node is created.
Sicne it is dificult to cover all the case, union_lookup always
returns when union_lookup1() returns EACCES.
Submitted by: Naofumi Honda <honda@Kururu.math.sci.hokudai.ac.jp>
Obtained from: NetBSD/pc98
reading/writing of mem and regs). Also have to check for the requesting
process being group KMEM -- this is a bit of a hack, but ps et al need it.
Reviewed by: davidg
in savedvp variable and it is used for the argument of
MOUNTTOUNIONMOUNT(). I didn't realize ap->a_vp is modified before
MOUNTTOUNIONMOUNT(), so the change by revision 1.22 is incorrect.
UN_KLOCK flag.
When UN_KLOCK is set, VOP_UNLOCK should keep uppervp locked and clear
UN_ULOCK flag. To do this, when UN_KLOCK is set, (1) union_unlock
clears UN_ULOCK and does not clear UN_KLOCK, (2) union_lock() does not
access uppervp and does not clear UN_KLOCK, and (3) callers of
vput/VOP_UNLOCK should clear UN_KLOCK. For example, vput becomes:
SETKLOCK(union_node);
vput(vnode);
CLEARKLOCK(union_node);
where SETKLOCK macro sets UN_KLOCK and CLEARKLOCK macro clears
UN_KLOCK.
Our vput calls vm_object_deallocate() --> vm_object_terminate(). The
vm_object_terminate() calls vn_lock(), since UN_LOCKED has been
already cleared in union_unlock(). Then, union_lock locks upper vnode
when UN_ULOCK is not set. The upper vnode is not unlocked when
UN_KLOCK is set in union_unlock(), thus, union_lock tries to lock
locked vnode and we get panic.
UN_ULOCK flag. This shows a locking violation but I couldn't find the
reason UN_ULOCK is not set or upper vnode is not unlocked. I added
the code that detect this case and adjust un_flags. DIAGNOSTIC kernel
doesn't adjust un_flags, but just panic here to help debug by kernel
hackers.
# mount -t union (or null) dir1 dir2
# mount -t union (or null) dir2 dir1
The function namei in union_mount calls union_root. The upper vnode
has been already locked and vn_lock in union_root causes above panic.
Add printf's included in `#ifdef DIAGNOSTIC' for EDEADLK cases.
is NULLVP, union node will have neither uppervp nor lowervp. This
causes page fault trap.
The union_removed_upper just remove union node from cache and it
doesn't set uppervp to NULLVP. Since union node is removed from
cache, it will not be referenced.
The code that remove union node from cache was copied from
union_inactive.
VOP_LINK(). The reason of strange behavior was wrong order of the
argument, that is, the operation
# ln foo bar
in a union fs tried to do
# ln bar foo
in ufs layer.
Now we can make a link in a union fs.
fix!
The ufs_link() assumes that vnode is not unlocked and tries to lock it
in certain case. Because union_link calls VOP_LINK after locking vnode,
vn_lock in ufs_link causes above panic.
Currently, I don't know the real fix for a locking violation in
union_link, but I think it is important to avoid panic.
A vnode is unlocked before calling VOP_LINK and is locked after it if
the vnode is not union fs. Even though panic went away, the process
that access the union fs in which link was made will hang-up.
Hang-up can be easily reproduced by following operation:
mount -t union a b
cd b
ln foo bar
ls
same directory pair.
If we do:
mount -t union a b
mount -t union a b
then, (1) namei tries to lock fs which has been already locked by
first union mount and (2) union_root() tries to lock locked fs. To
avoid first deadlock condition, unlock vnode if lowerrootvp is union
node, and to avoid second case, union_mount returns EDEADLK when multi
union mount is detected.
dolock is not set (that is, targetvp == overlaying vnode object).
Current code use FIXUP macro to do this, and never unlocks overlaying
vnode object in union_fsync. So, the vnode object will be locked
twice and never unlocked.
PR: 3271
Submitted by: kato
relookup() in union_relookup() is succeeded. However, if relookup()
returns non-zero value, that is relookup fails, VOP_MKDIR is never
called (c.f. union_mkshadow). Thus, pathname buffer is never FREEed.
Reviewed by: phk
Submitted by: kato
PR: 3262
by Alan Cox <alc@cs.rice.edu>, and his description of the problem.
The bug was primarily in procfs_mem, but the mistake likely happened
due to the lack of vm system support for the operation. I added
better support for selective marking of page dirty flags so that
vm_map_pageable(wiring) will not cause this problem again.
The code in procfs_mem is now less bogus (but maybe still a little
so.)
in procfs_allocvp(). This fixes at least stat() of /proc/*/mem.
stat() of /proc/*/file already worked. I think procfs_allocvp() isn't
actually called for type Pfile.
partly because the #define's for them were moved to a different
file. At least the null VOP_LOCK() no longer works, since vclean()
expects VOP_LOCK( ..., LK_DRAIN | LK_INTERLOCK, ...) to clear the
interlock. This probably only matters when simple_lock() is not
null, i.e., when there are multiple CPUs or SIMPLELOCK_DEBUG is
defined.
Call vget/VOP_UNLOCK with the correct number of
arguments. Call vn_lock where appropriate.
vfs_goneall is now replaced by VOP_REVOKE.
Submitted by: bde
changes, so don't expect to be able to run the kernel as-is (very well)
without the appropriate Lite/2 userland changes.
The system boots and can mount UFS filesystems.
Untested: ext2fs, msdosfs, NFS
Known problems: Incorrect Berkeley ID strings in some files.
Mount_std mounts will not work until the getfsent
library routine is changed.
Reviewed by: various people
Submitted by: Jeffery Hsu <hsu@freebsd.org>
This will make a number of things easier in the future, as well as (finally!)
avoiding the Id-smashing problem which has plagued developers for so long.
Boy, I'm glad we're not using sup anymore. This update would have been
insane otherwise.
Broke locking on named pipes in the same way as locking on non-vnodes
(wrong errno). This will be fixed later.
The fix involves negative logic. Named pipes are now distinguished from
other types of files with vnodes, and there is additional code to handle
vnodes and named pipes in the same way only where that makes sense (not
for lseek, locking or TIOCSCTTY).
fcntl() and EOPNOTSUPP for flock(). POSIX specifies the weaker EINVAL
errno and the man page agrees.
Not fixed:
deadfs: always returns wrong EBADF
devfs, msdosfs: always return sometimes-wrong EINVAL
cd9660, fdesc, kernfs, portal: always return sometimes-wrong EOPNOTSUPP
procfs: always returns wrong EIO
mfs: panic?!
nfs: fudged
NetBSD uses a generic file system genfs to do return the sometimes-wrong
EOPNOTSUPP more consistently :-)(.
Found by: NIST-PCTS
also fixes a bug I've been chasing for a LONG TIME,
due to the fact that spec_bwrite is a NOP and I didn't realise it..
old symptom:
mount -t devfs devfs /mnt
mount /mnt/wd0e /mnt/mnt2
umount /mnt2 <process hangs>
there are some pretty large structural differences internal to devfs
but outwards it should look the same.
I have not yet tested extensively but will do so and fix 3 warnings tomorrow.