To reduce the diff struct pcu.cnt field was not renamed, so
PCPU_OP(cnt.field) is still used. pc_cnt and pcpu are also used in
kvm(3) and vmstat(8). The goal was to not affect externally used KPI.
Bump __FreeBSD_version_ in case some out-of-tree module/code relies on the
the global cnt variable.
Exp-run revealed no ports using it directly.
No objection from: arch@
Sponsored by: EMC / Isilon Storage Division
It turned out that on pSeries machines the call into OF modified the trap
vectors and this made further behaviour unpredictable.
With this commit I'm now able to boot multi user on a network booted
environment on my IntelliStation 285. This is a POWER5+ machine.
Discussed with: nwhitehorn
MFC after: 1 week
- Remove explicit requirement that the SOC registers be found except as an
optimization (although the MPC85XX LAW drivers still require they be found
externally, which should change).
- Remove magic CCSRBAR_VA value.
- Allow bus_machdep.c's early-boot code to handle non 1:1 mappings and
systems not in real-mode or global 1:1 maps in early boot.
- Allow pmap_mapdev() on Book-E to reissue previous addresses if the
area is already mapped. Additionally have it check all mappings, not
just the CCSR area.
This allows the console on e500 systems to actually work on systems where
the boot loader was not kind enough to set up a 1:1 mapping before starting
the kernel.
future further optimizations where the vm_object lock will be held
in read mode most of the time the page cache resident pool of pages
are accessed for reading purposes.
The change is mostly mechanical but few notes are reported:
* The KPI changes as follow:
- VM_OBJECT_LOCK() -> VM_OBJECT_WLOCK()
- VM_OBJECT_TRYLOCK() -> VM_OBJECT_TRYWLOCK()
- VM_OBJECT_UNLOCK() -> VM_OBJECT_WUNLOCK()
- VM_OBJECT_LOCK_ASSERT(MA_OWNED) -> VM_OBJECT_ASSERT_WLOCKED()
(in order to avoid visibility of implementation details)
- The read-mode operations are added:
VM_OBJECT_RLOCK(), VM_OBJECT_TRYRLOCK(), VM_OBJECT_RUNLOCK(),
VM_OBJECT_ASSERT_RLOCKED(), VM_OBJECT_ASSERT_LOCKED()
* The vm/vm_pager.h namespace pollution avoidance (forcing requiring
sys/mutex.h in consumers directly to cater its inlining functions
using VM_OBJECT_LOCK()) imposes that all the vm/vm_pager.h
consumers now must include also sys/rwlock.h.
* zfs requires a quite convoluted fix to include FreeBSD rwlocks into
the compat layer because the name clash between FreeBSD and solaris
versions must be avoided.
At this purpose zfs redefines the vm_object locking functions
directly, isolating the FreeBSD components in specific compat stubs.
The KPI results heavilly broken by this commit. Thirdy part ports must
be updated accordingly (I can think off-hand of VirtualBox, for example).
Sponsored by: EMC / Isilon storage division
Reviewed by: jeff
Reviewed by: pjd (ZFS specific review)
Discussed with: alc
Tested by: pho
possible, and double faults within an SLB trap handler are not. The result
is that it possible to take an SLB fault at any time, on any address, for
any reason, at any point in the kernel.
This lets us do two important things. First, it removes the (soft) 16 GB RAM
ceiling on PPC64 as well as any architectural limitations on KVA space.
Second, it lets the kernel tolerate poorly designed hypervisors that
have a tendency to fail to restore the SLB properly after a hypervisor
context switch.
MFC after: 6 weeks
instead of a PCPU field for curthread. This averts a race on SMP systems
with a high interrupt rate where the thread looking up the value of
curthread could be preempted and migrated between obtaining the PCPU
pointer and reading the value of pc_curthread, resulting in curthread being
observed to be the current thread on the thread's original CPU. This played
merry havoc with the system, in particular with mutexes. Many thanks to
jhb for helping me work this one out.
Note that Book-E is in principle susceptible to the same problem, but has
not been modified yet due to lack of Book-E hardware.
MFC after: 2 weeks
mappings need to end up in the kernel anyway since the kernel begins
executing in OF context. Separating them adds needless complexity,
especially since the powerpc64 and mmu_oea64 code gave up on it a long
time ago.
As a side effect, the PPC ofw_machdep code is no longer AIM-specific,
so move it to powerpc/ofw.
work properly with single-stepping in a kernel debugger. Specifically,
these routines have always disabled interrupts before increasing the nesting
count and restored the prior state of interrupts after decreasing the nesting
count to avoid problems with a nested interrupt not disabling interrupts
when acquiring a spin lock. However, trap interrupts for single-stepping
can still occur even when interrupts are disabled. Now the saved state of
interrupts is not saved in the thread until after interrupts have been
disabled and the nesting count has been increased. Similarly, the saved
state from the thread cannot be read once the nesting count has been
decreased to zero. To fix this, use temporary variables to store interrupt
state and shuffle it between the thread's MD area and the appropriate
registers.
In cooperation with: bde
MFC after: 1 month
values to zero. A correct solution would involve emulating vector
operations on denormalized values, but this has little effect on accuracy
and is much less complicated for now.
MFC after: 2 weeks
The main goal of this is to generate timer interrupts only when there is
some work to do. When CPU is busy interrupts are generating at full rate
of hz + stathz to fullfill scheduler and timekeeping requirements. But
when CPU is idle, only minimum set of interrupts (down to 8 interrupts per
second per CPU now), needed to handle scheduled callouts is executed.
This allows significantly increase idle CPU sleep time, increasing effect
of static power-saving technologies. Also it should reduce host CPU load
on virtualized systems, when guest system is idle.
There is set of tunables, also available as writable sysctls, allowing to
control wanted event timer subsystem behavior:
kern.eventtimer.timer - allows to choose event timer hardware to use.
On x86 there is up to 4 different kinds of timers. Depending on whether
chosen timer is per-CPU, behavior of other options slightly differs.
kern.eventtimer.periodic - allows to choose periodic and one-shot
operation mode. In periodic mode, current timer hardware taken as the only
source of time for time events. This mode is quite alike to previous kernel
behavior. One-shot mode instead uses currently selected time counter
hardware to schedule all needed events one by one and program timer to
generate interrupt exactly in specified time. Default value depends of
chosen timer capabilities, but one-shot mode is preferred, until other is
forced by user or hardware.
kern.eventtimer.singlemul - in periodic mode specifies how much times
higher timer frequency should be, to not strictly alias hardclock() and
statclock() events. Default values are 2 and 4, but could be reduced to 1
if extra interrupts are unwanted.
kern.eventtimer.idletick - makes each CPU to receive every timer interrupt
independently of whether they busy or not. By default this options is
disabled. If chosen timer is per-CPU and runs in periodic mode, this option
has no effect - all interrupts are generating.
As soon as this patch modifies cpu_idle() on some platforms, I have also
refactored one on x86. Now it makes use of MONITOR/MWAIT instrunctions
(if supported) under high sleep/wakeup rate, as fast alternative to other
methods. It allows SMP scheduler to wake up sleeping CPUs much faster
without using IPI, significantly increasing performance on some highly
task-switching loads.
Tested by: many (on i386, amd64, sparc64 and powerc)
H/W donated by: Gheorghe Ardelean
Sponsored by: iXsystems, Inc.
the existing code was very platform specific, and broken for SMP systems
trying to reboot from KDB.
- Add a new PLATFORM_RESET() method to the platform KOBJ interface, and
migrate existing reset functions into platform modules.
- Modify the OF_reboot() routine to submit the request by hand to avoid
the IPIs involved in the regular openfirmware() routine. This fixes
reboot from KDB on SMP machines.
- Move non-KDB reset and poweroff functions on the Powermac platform
into the relevant power control drivers (cuda, pmu, smu), instead of
using them through the Open Firmware backdoor.
- Rename platform_chrp to platform_powermac since it has become
increasingly Powermac specific. When we gain support for IBM systems,
we will grow a new platform_chrp.
Kernel sources for 64-bit PowerPC, along with build-system changes to keep
32-bit kernels compiling (build system changes for 64-bit kernels are
coming later). Existing 32-bit PowerPC kernel configurations must be
updated after this change to specify their architecture.
(exec_setregs, etc.) in order to simplify the addition of 64-bit support,
and possible future extension of the Book-E code to handle hard floating
point and Altivec.
MFC after: 1 month
to the image_params struct instead of several members of that struct
individually. This makes it easier to expand its arguments in the future
without touching all platforms.
Reviewed by: jhb
UMA segments at their physical addresses instead of into KVA. This emulates
the direct mapping behavior of OEA32 in an ad-hoc way. To make this work
properly required sharing the entire kernel PMAP with Open Firmware, so
ofw_pmap is transformed into a stub on 64-bit CPUs.
Also implement some more tweaks to get more mileage out of our limited
amount of KVA, principally by extending KVA into segment 16 until the
beginning of the first OFW mapping.
Reported by: linimon
more. This provides three new sysctls to user space:
hw.cpu_features - A bitmask of available CPU features
hw.floatingpoint - Whether or not there is hardware FP support
hw.altivec - Whether or not Altivec is available
PR: powerpc/139154
MFC after: 10 days
while in kernel mode, and later changing signal mask to block the
signal, was fixed for sigprocmask(2) and ptread_exit(3). The same race
exists for sigreturn(2), setcontext(2) and swapcontext(2) syscalls.
Use kern_sigprocmask() instead of direct manipulation of td_sigmask to
reschedule newly blocked signals, closing the race.
Reviewed by: davidxu
Tested by: pho
MFC after: 1 month
aim/machdep.c:
- the RI status register bit needs to be set when doing the mtmsrd 64-bit
instruction test
- psim doesn't implement the dcbz instruction so the run-time cacheline
test fails. Set the cachline size to 32 to avoid infinite loops in
future calls to __syncicache()
aim/platform_chrp.c:
- if after iterating through / and a name property of "cpus" still isn't
found, just search directly for '/cpus'.
- psim doesn't put a "reg" property on it's cpu nodes, so assume 0
since it is uniprocessor-only at this point
powerpc/openpic.c
- the number of CPUs reported is 1 too many on psim's openpic
Reviewed by: nwhitehorn
MFC after: 1 week (openpic part)
possible future I-cache coherency operation can succeed. On ARM
for example the L1 cache can be (is) virtually mapped, which
means that any I/O that uses temporary mappings will not see the
I-cache made coherent. On ia64 a similar behaviour has been
observed. By flushing the D-cache, execution of binaries backed
by md(4) and/or NFS work reliably.
For Book-E (powerpc), execution over NFS exhibits SIGILL once in
a while as well, though cpu_flush_dcache() hasn't been implemented
yet.
Doing an explicit D-cache flush as part of the non-DMA based I/O
read operation eliminates the need to do it as part of the
I-cache coherency operation itself and as such avoids pessimizing
the DMA-based I/O read operations for which D-cache are already
flushed/invalidated. It also allows future optimizations whereby
the bcopy() followed by the D-cache flush can be integrated in a
single operation, which could be implemented using on-chips DMA
engines, by-passing the D-cache altogether.
new platform module. These are probed in early boot, and have the
responsibility of determining the layout of physical memory, determining
the CPU timebase frequency, and handling the zoo of SMP mechanisms
found on PowerPC.
Reviewed by: marcel, raj
Book-E parts by: raj
When memory is not zero'ed by firmware, uninitialized PCB can have bogus
contents, which appear as a saved onfault condition, Altivec context to
restore etc. and lead to corruption/crashes. This commit fixes such issues.
Submitted by: Michal Mazur arg ! semihalf dot com
Tested by: Andreas Tobler andreast-list ! fgznet dot ch
CPUs known to use 128 byte cache lines and defaulting to 32, use the dcbz
instruction to measure it. Also make dcbz behave the way you would
expect on PPC 970.
provided, for example, on the PowerPC 970 (G5), as well as on related CPUs
like the POWER3 and POWER4.
This also adds support for various built-in hardware found on Apple G5
hardware (e.g. the IBM CPC925 northbridge).
Reviewed by: grehan