aware drivers on Xen hypervisors that advertise support for some
HyperV features.
x86/xen/hvm.c:
When running in HVM mode on a Xen hypervisor, set vm_guest
to VM_GUEST_XEN so other virtualization aware components in
the FreeBSD kernel can detect this mode is active.
dev/hyperv/vmbus/hv_hv.c:
Use vm_guest to ignore Xen's HyperV emulation when Xen is
detected and Xen PV drivers are active.
Reported by: Shanker Balan
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (Xen blanket)
Set cpu_ops correctly for Xen hypervisors lacking the
vector callback feature.
Set preliminary Xen cpu_ops settings during early HVM
initialization. The old location raced with the startup
of APs.
Submitted by: Roger Pau Monné
Reviewed by: gibbs
Approved by: re (blanket Xen)
amd64 and i386.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (blanket Xen)
MFC after: 2 weeks
sys/amd64/amd64/mp_machdep.c:
sys/amd64/include/cpu.h:
sys/i386/i386/mp_machdep.c:
sys/i386/include/cpu.h:
- Introduce two new CPU hooks for initialization and resume
purposes. This allows us to get rid of the XENHVM ifdefs in
mp_machdep, and also sets some hooks into common code that can be
used by other hypervisor implementations.
sys/amd64/conf/XENHVM:
sys/i386/conf/XENHVM:
- Remove these configs now that GENERIC has builtin support for Xen
HVM.
sys/kern/subr_smp.c:
- Make sure there are no pending IPIs when suspending a system.
sys/x86/xen/hvm.c:
- Add cpu init and resume vectors that are called from mp_machdep
using the new hooks.
- Only clear the vcpu_info mapping data on resume. It is already
clear for the BSP on a cold boot and is set correctly as APs
are started.
- Gate xen_hvm_init_cpu only to systems running under Xen.
sys/x86/xen/xen_intr.c:
- Gate the setup of event channels only to systems running under Xen.
Xen PVHVM guest.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (blanket Xen)
MFC after: 2 weeks
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
- Make sure that are no MMU related IPIs pending on migration.
- Reset pending IPI_BITMAP on resume.
- Init vcpu_info on resume.
sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
sys/x86/acpica/acpi_wakeup.c:
sys/x86/x86/intr_machdep.c:
sys/x86/isa/atpic.c:
sys/x86/x86/io_apic.c:
sys/x86/x86/local_apic.c:
- Add a "suspend_cancelled" parameter to pic_resume(). For the
Xen PIC, restoration of interrupt services differs between
the aborted suspend and normal resume cases, so we must provide
this information.
sys/dev/acpica/acpi_timer.c:
sys/dev/xen/timer/timer.c:
sys/timetc.h:
- Don't swap out "suspend safe" timers across a suspend/resume
cycle. This includes the Xen PV and ACPI timers.
sys/dev/xen/control/control.c:
- Perform proper suspend/resume process for PVHVM:
- Suspend all APs before going into suspension, this allows us
to reset the vcpu_info on resume for each AP.
- Reset shared info page and callback on resume.
sys/dev/xen/timer/timer.c:
- Implement suspend/resume support for the PV timer. Since FreeBSD
doesn't perform a per-cpu resume of the timer, we need to call
smp_rendezvous in order to correctly resume the timer on each CPU.
sys/dev/xen/xenpci/xenpci.c:
- Don't reset the PCI interrupt on each suspend/resume.
sys/kern/subr_smp.c:
- When suspending a PVHVM domain make sure there are no MMU IPIs
in-flight, or we will get a lockup on resume due to the fact that
pending event channels are not carried over on migration.
- Implement a generic version of restart_cpus that can be used by
suspended and stopped cpus.
sys/x86/xen/hvm.c:
- Implement resume support for the hypercall page and shared info.
- Clear vcpu_info so it can be reset by APs when resuming from
suspension.
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/x86/xen/xen_intr.c:
- Support UP kernel configurations.
sys/x86/xen/xen_intr.c:
- Properly rebind per-cpus VIRQs and IPIs on resume.
IPI implmementations.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Submitted by: gibbs (misc cleanup, table driven config)
Reviewed by: gibbs
MFC after: 2 weeks
sys/amd64/include/cpufunc.h:
sys/amd64/amd64/pmap.c:
Move invltlb_globpcid() into cpufunc.h so that it can be
used by the Xen HVM version of tlb shootdown IPI handlers.
sys/x86/xen/xen_intr.c:
sys/xen/xen_intr.h:
Rename xen_intr_bind_ipi() to xen_intr_alloc_and_bind_ipi(),
and remove the ipi vector parameter. This api allocates
an event channel port that can be used for ipi services,
but knows nothing of the actual ipi for which that port
will be used. Removing the unused argument and cleaning
up the comments surrounding its declaration helps clarify
its actual role.
sys/amd64/amd64/mp_machdep.c:
sys/amd64/include/cpu.h:
sys/i386/i386/mp_machdep.c:
sys/i386/include/cpu.h:
Implement a generic framework for amd64 and i386 that allows
the implementation of certain CPU management functions to
be selected at runtime. Currently this is only used for
the ipi send function, which we optimize for Xen when running
on a Xen hypervisor, but can easily be expanded to support
more operations.
sys/x86/xen/hvm.c:
Implement Xen PV IPI handlers and operations, replacing native
send IPI.
sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
sys/i386/include/smp.h:
Remove NR_VIRQS and NR_IPIS from FreeBSD headers. NR_VIRQS
is defined already for us in the xen interface files.
NR_IPIS is only needed in one file per Xen platform and is
easily inferred by the IPI vector table that is defined in
those files.
sys/i386/xen/mp_machdep.c:
Restructure to more closely match the HVM implementation by
performing table driven IPI setup.
sys/x86/xen/hvm.c:
Do not rely on implicit conversion to boolean in expressions
(e.g. use "if (rc != 0)" instead of "if (rc)".
Line continuations for functions are indented an additional
4 spaces.
Insert an empty line if the function has no local variables.
Prefer separate initializtion statements to initialzing
local variables in their declaration.
Braces that are not necessary may be left out.
MFC after: 2 weeks
Re-structure Xen HVM support so that:
- Xen is detected and hypercalls can be performed very
early in system startup.
- Xen interrupt services are implemented using FreeBSD's native
interrupt delivery infrastructure.
- the Xen interrupt service implementation is shared between PV
and HVM guests.
- Xen interrupt handlers can optionally use a filter handler
in order to avoid the overhead of dispatch to an interrupt
thread.
- interrupt load can be distributed among all available CPUs.
- the overhead of accessing the emulated local and I/O apics
on HVM is removed for event channel port events.
- a similar optimization can eventually, and fairly easily,
be used to optimize MSI.
Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure,
and misc Xen cleanups:
Sponsored by: Spectra Logic Corporation
Unification of PV & HVM interrupt infrastructure, bug fixes,
and misc Xen cleanups:
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
sys/x86/x86/local_apic.c:
sys/amd64/include/apicvar.h:
sys/i386/include/apicvar.h:
sys/amd64/amd64/apic_vector.S:
sys/i386/i386/apic_vector.s:
sys/amd64/amd64/machdep.c:
sys/i386/i386/machdep.c:
sys/i386/xen/exception.s:
sys/x86/include/segments.h:
Reserve IDT vector 0x93 for the Xen event channel upcall
interrupt handler. On Hypervisors that support the direct
vector callback feature, we can request that this vector be
called directly by an injected HVM interrupt event, instead
of a simulated PCI interrupt on the Xen platform PCI device.
This avoids all of the overhead of dealing with the emulated
I/O APIC and local APIC. It also means that the Hypervisor
can inject these events on any CPU, allowing upcalls for
different ports to be handled in parallel.
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
Map Xen per-vcpu area during AP startup.
sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
Increase the FreeBSD IRQ vector table to include space
for event channel interrupt sources.
sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
Remove Xen HVM per-cpu variable data. These fields are now
allocated via the dynamic per-cpu scheme. See xen_intr.c
for details.
sys/amd64/include/xen/hypercall.h:
sys/dev/xen/blkback/blkback.c:
sys/i386/include/xen/xenvar.h:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/xen/gnttab.c:
Prefer FreeBSD primatives to Linux ones in Xen support code.
sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/console/xencons_ring.c:
sys/dev/xen/control/control.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/xenpci/xenpci.c:
sys/i386/i386/machdep.c:
sys/i386/include/pmap.h:
sys/i386/include/xen/xenfunc.h:
sys/i386/isa/npx.c:
sys/i386/xen/clock.c:
sys/i386/xen/mp_machdep.c:
sys/i386/xen/mptable.c:
sys/i386/xen/xen_clock_util.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/xen_rtc.c:
sys/xen/evtchn/evtchn_dev.c:
sys/xen/features.c:
sys/xen/gnttab.c:
sys/xen/gnttab.h:
sys/xen/hvm.h:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_if.m:
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenstore/xenstore.c:
sys/xen/xenstore/xenstore_dev.c:
sys/xen/xenstore/xenstorevar.h:
Pull common Xen OS support functions/settings into xen/xen-os.h.
sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
Remove constants, macros, and functions unused in FreeBSD's Xen
support.
sys/xen/xen-os.h:
sys/i386/xen/xen_machdep.c:
sys/x86/xen/hvm.c:
Introduce new functions xen_domain(), xen_pv_domain(), and
xen_hvm_domain(). These are used in favor of #ifdefs so that
FreeBSD can dynamically detect and adapt to the presence of
a hypervisor. The goal is to have an HVM optimized GENERIC,
but more is necessary before this is possible.
sys/amd64/amd64/machdep.c:
sys/dev/xen/xenpci/xenpcivar.h:
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/sys/kernel.h:
Refactor magic ioport, Hypercall table and Hypervisor shared
information page setup, and move it to a dedicated HVM support
module.
HVM mode initialization is now triggered during the
SI_SUB_HYPERVISOR phase of system startup. This currently
occurs just after the kernel VM is fully setup which is
just enough infrastructure to allow the hypercall table
and shared info page to be properly mapped.
sys/xen/hvm.h:
sys/x86/xen/hvm.c:
Add definitions and a method for configuring Hypervisor event
delievery via a direct vector callback.
sys/amd64/include/xen/xen-os.h:
sys/x86/xen/hvm.c:
sys/conf/files:
sys/conf/files.amd64:
sys/conf/files.i386:
Adjust kernel build to reflect the refactoring of early
Xen startup code and Xen interrupt services.
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
sys/dev/xen/control/control.c:
sys/dev/xen/evtchn/evtchn_dev.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/xen/xenstore/xenstore.c:
sys/xen/evtchn/evtchn_dev.c:
sys/dev/xen/console/console.c:
sys/dev/xen/console/xencons_ring.c
Adjust drivers to use new xen_intr_*() API.
sys/dev/xen/blkback/blkback.c:
Since blkback defers all event handling to a taskqueue,
convert this task queue to a "fast" taskqueue, and schedule
it via an interrupt filter. This avoids an unnecessary
ithread context switch.
sys/xen/xenstore/xenstore.c:
The xenstore driver is MPSAFE. Indicate as much when
registering its interrupt handler.
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbusvar.h:
Remove unused event channel APIs.
sys/xen/evtchn.h:
Remove all kernel Xen interrupt service API definitions
from this file. It is now only used for structure and
ioctl definitions related to the event channel userland
device driver.
Update the definitions in this file to match those from
NetBSD. Implementing this interface will be necessary for
Dom0 support.
sys/xen/evtchn/evtchnvar.h:
Add a header file for implemenation internal APIs related
to managing event channels event delivery. This is used
to allow, for example, the event channel userland device
driver to access low-level routines that typical kernel
consumers of event channel services should never access.
sys/xen/interface/event_channel.h:
sys/xen/xen_intr.h:
Standardize on the evtchn_port_t type for referring to
an event channel port id. In order to prevent low-level
event channel APIs from leaking to kernel consumers who
should not have access to this data, the type is defined
twice: Once in the Xen provided event_channel.h, and again
in xen/xen_intr.h. The double declaration is protected by
__XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared
twice within a given compilation unit.
sys/xen/xen_intr.h:
sys/xen/evtchn/evtchn.c:
sys/x86/xen/xen_intr.c:
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/xenpci/xenpcivar.h:
New implementation of Xen interrupt services. This is
similar in many respects to the i386 PV implementation with
the exception that events for bound to event channel ports
(i.e. not IPI, virtual IRQ, or physical IRQ) are further
optimized to avoid mask/unmask operations that aren't
necessary for these edge triggered events.
Stubs exist for supporting physical IRQ binding, but will
need additional work before this implementation can be
fully shared between PV and HVM.
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
sys/i386/xen/mp_machdep.c
sys/x86/xen/hvm.c:
Add support for placing vcpu_info into an arbritary memory
page instead of using HYPERVISOR_shared_info->vcpu_info.
This allows the creation of domains with more than 32 vcpus.
sys/i386/i386/machdep.c:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/exception.s:
Add support for new event channle implementation.
into threads each processing queue in a single domain. The structure
of the pagedaemons and queues is kept intact, most of the changes come
from the need for code to find an owning page queue for given page,
calculated from the segment containing the page.
The tie between NUMA domain and pagedaemon thread/pagequeue split is
rather arbitrary, the multithreaded daemon could be allowed for the
single-domain machines, or one domain might be split into several page
domains, to further increase concurrency.
Right now, each pagedaemon thread tries to reach the global target,
precalculated at the start of the pass. This is not optimal, since it
could cause excessive page deactivation and freeing. The code should
be changed to re-check the global page deficit state in the loop after
some number of iterations.
The pagedaemons reach the quorum before starting the OOM, since one
thread inability to meet the target is normal for split queues. Only
when all pagedaemons fail to produce enough reusable pages, OOM is
started by single selected thread.
Launder is modified to take into account the segments layout with
regard to the region for which cleaning is performed.
Based on the preliminary patch by jeff, sponsored by EMC / Isilon
Storage Division.
Reviewed by: alc
Tested by: pho
Sponsored by: The FreeBSD Foundation
transparent layering and better fragmentation.
- Normalize functions that allocate memory to use kmem_*
- Those that allocate address space are named kva_*
- Those that operate on maps are named kmap_*
- Implement recursive allocation handling for kmem_arena in vmem.
Reviewed by: alc
Tested by: pho
Sponsored by: EMC / Isilon Storage Division
1. Common headers for fdt.h and ofw_machdep.h under x86/include
with indirections under i386/include and amd64/include.
2. New modinfo for loader provided FDT blob.
3. Common x86_init_fdt() called from hammer_time() on amd64 and
init386() on i386.
4. Split-off FDT specific low-level console functions from FDT
bus methods for the uart(4) driver. The low-level console
logic has been moved to uart_cpu_fdt.c and is used for arm,
mips & powerpc only. The FDT bus methods are shared across
all architectures.
5. Add dev/fdt/fdt_x86.c to hold the fdt_fixup_table[] and the
fdt_pic_table[] arrays. Both are empty right now.
FDT addresses are I/O ports on x86. Since the core FDT code does
not handle different address spaces, adding support for both I/O
ports and memory addresses requires some thought and discussion.
It may be better to use a compile-time option that controls this.
Obtained from: Juniper Networks, Inc.
freelist.
o Split the pool of free pages queues really by domain and not rely on
definition of VM_RAW_NFREELIST.
o For MAXMEMDOM > 1, wrap the RR allocation logic into a specific
function that is called when calculating the allocation domain.
The RR counter is kept, currently, per-thread.
In the future it is expected that such function evolves in a real
policy decision referee, based on specific informations retrieved by
per-thread and per-vm_object attributes.
o Add the concept of "probed domains" under the form of vm_ndomains.
It is responsibility for every architecture willing to support multiple
memory domains to correctly probe vm_ndomains along with mem_affinity
segments attributes. Those two values are supposed to remain always
consistent.
Please also note that vm_ndomains and td_dom_rr_idx are both int
because segments already store domains as int. Ideally u_int would
have much more sense. Probabilly this should be cleaned up in the
future.
o Apply RR domain selection also to vm_phys_zero_pages_idle().
Sponsored by: EMC / Isilon storage division
Partly obtained from: jeff
Reviewed by: alc
Tested by: jeff
and printing at boot.
For reference on table informations and purposes please review ACPI specs.
Sponsored by: EMC / Isilon storage division
Obtained from: jeff
Reviewed by: jhb (earlier version)
order to match the MAXCPU concept. The change should also be useful
for consolidation and consistency.
Sponsored by: EMC / Isilon storage division
Obtained from: jeff
Reviewed by: alc
respective functionality, allowing to synchronize TSC on APs to match BSP's
during boot. It may be unsafe in general case due to theoretical chance of
later drift if CPUs are using different clock rate or source, but it allows
to use TSC in some cases when difference caused by some initialization bug,
while TSCs are known to increment synchronously.
Reviewed by: jimharris, kib
MFC after: 1 month
- use clock_gettime(2) as the time base for the emulated ACPI timer instead
of directly using rdtsc().
- don't advertise the invariant TSC capability to the guest to discourage it
from using the TSC as its time base.
Discussed with: jhb@ (about making 'smp_tsc' a global)
Reported by: Dan Mack on freebsd-virtualization@
Obtained from: NetApp
Switch eventtimers(9) from using struct bintime to sbintime_t.
Even before this not a single driver really supported full dynamic range of
struct bintime even in theory, not speaking about practical inexpediency.
This change legitimates the status quo and cleans up the code.
this code to depessimize the worst case we've lived with silently and
uneventfully for the past 12 years. Add a comment about a refinement
for those needing more assurance of accuracy.
Fix ddb's show rtc command deadlock potential when debugging rtc code
by not taking the lock if we're in the debugger. If you need a thumb
to count the number of people that have encountered this, I'd be
surprised.
Submitted by: bde
machine/signal.h and machine/ucontext.h into common x86 includes,
copying from amd64 and merging with i386.
Kernel-only compat definitions are kept in the i386/include/sigframe.h
and i386/include/signal.h, to reduce amd64 kernel namespace pollution.
The amd64 compat uses its own definitions so far.
The _MACHINE_ELF_WANT_32BIT definition is to allow the
sys/boot/userboot/userboot/elf32_freebsd.c to use i386 ELF definitions
on the amd64 compile host. The same hack could be usefully abused by
other code too.
Microoptimize i8254 one-shot operation mode (disabled by default to allow
timecounter functionality) by not writing to mode and MSB registers when
it is not required. This saves several microseconds of CPU time per call,
reducing minimal measured interrupts interval to 19.5us.
every architecture's busdma_machdep.c. It is done by unifying the
bus_dmamap_load_buffer() routines so that they may be called from MI
code. The MD busdma is then given a chance to do any final processing
in the complete() callback.
The cam changes unify the bus_dmamap_load* handling in cam drivers.
The arm and mips implementations are updated to track virtual
addresses for sync(). Previously this was done in a type specific
way. Now it is done in a generic way by recording the list of
virtuals in the map.
Submitted by: jeff (sponsored by EMC/Isilon)
Reviewed by: kan (previous version), scottl,
mjacob (isp(4), no objections for target mode changes)
Discussed with: ian (arm changes)
Tested by: marius (sparc64), mips (jmallet), isci(4) on x86 (jharris),
amd64 (Fabian Keil <freebsd-listen@fabiankeil.de>)
- change 'pics' from STAILQ to TAILQ
- ensure that Local APIC is always first in 'pics'
Reviewed by: jhb
Tested by: Sergey V. Dyatko <sergey.dyatko@gmail.com>,
KAHO Toshikazu <kaho@elam.kais.kyoto-u.ac.jp>
MFC after: 12 days
zero on slower machines, which make the fenced get_timecount methods
not used despite needed. Remove the (shift > 0) condition when
selecting the get_timecount() implementation.
Rename smp_tsc_shift to tsc_shift, and apply it for the UP case too.
Allow shift to reach value of 31 instead of 30, as it was previously
(should be nop).
Reorganize the tc quality calculation to remove the conditionally
compiled block. Rename test_smp_tsc() to test_tsc() and provide
separate versions for SMP and UP builds. The check for virtialized
hardware is more natural to perform in the smp version of the
test_tsc(), since it is only done for smp case.
Noted and reviewed by: bde (previous version)
MFC after: 12 days
timecounter to 1, and correspondingly increase the precision of the
gettimeofday(2) and related functions in the default configuration.
The motivation for the TSC-low timecounter, as described in the
r222866, seems to provide a workaround for the non-serializing
behaviour of the RDTSC on some Intel hardware. Tests demonstrate that
even with the pre-shift of 8, the cross-core non-monotonicity of the
RDTSC is still observed reliably, e.g. on the Nehalems. The r238755
and r238973 implemented the proper fix for the issue.
The pre-shift of 1 is applied to keep TSC not overflowing for the
frequency of hardclock down to 2 sec/intr. The pre-shift is made a
tunable to allow the easy debugging of the issues users could see with
the shift being too low.
Reviewed by: bde
MFC after: 2 weeks
CPUs exhibit bad behavior if this is done (Intel Errata AAJ3, hangs on
Pentium-M, and trashing of the local APIC registers on a VIA C7). The
local APIC is implicitly mapped UC already via MTRRs, so the clflush isn't
necessary anyway.
MFC after: 2 weeks
Rather than trying to KASSERT for callers that invoke this on
IO tags, either do nothing (for write_8) or return ~0 (for read_8).
Using KASSERT here just makes bus.h too messy from both
polluting bus.h with systm.h (for any number of drivers that include
bus.h without first including systm.h) or ports that use bus.h
directly (i.e. libpciaccess) as reported by zeising@.
Also don't try to implement all of the other bus_space functions for
8 byte access since realistically only these two are needed for some
devices that expose 64-bit memory-mapped registers.
Put the amd64-specific functions here rather than sys/amd64/include/bus.h
so that we can keep this header unified for x86, as requested by mdf@
and tijl@.
Submitted by: Carl Delsey <carl.r.delsey@intel.com>
MFC after: 3 days
Programming the low bits has a side-effect if unmasking the pin if it is
not disabled. So if an interrupt was pending then it would be delivered
with the correct new vector but to the incorrect old LAPIC.
This fix could be made clearer by preserving the mask bit while
programming the low bits and then explicitly resetting the mask bit
after all the programming is done.
Probability to trip over the fixed bug could be increased by bootverbose
because printing of the interrupt information in ioapic_assign_cpu
lengthened the time window during which an interrupt could arrive while
a pin is masked.
Reported by: Andreas Longwitz <longwitz@incore.de>
Tested by: Andreas Longwitz <longwitz@incore.de>
MFC after: 12 days
introduced with the IvyBridge CPUs. Provide the definitions for new
bits in CR3 and CR4 registers.
Tested by: avg, Michael Moll <kvedulv@kvedulv.de>
MFC after: 2 weeks
instruction loads/stores at its will.
The macro __compiler_membar() is currently supported for both gcc and
clang, but kernel compilation will fail otherwise.
Reviewed by: bde, kib
Discussed with: dim, theraven
MFC after: 2 weeks
r234247.
Use, instead, the static intializer introduced in r239923 for x86 and
sparc64 intr_cpus, unwinding the code to the initial version.
Reviewed by: marius
bits under #ifdef _KERNEL but leave definitions for various structures
defined by standards ($PIR table, SMAP entries, etc.) available to
userland.
- Consolidate duplicate SMBIOS table structure definitions in ipmi(4)
and smbios(4) in <machine/pc/bios.h> and make them available to
userland.
MFC after: 2 weeks
segments for the entire allocation to use kmem_alloc_attr() to allocate
KVM rather than using kmem_alloc_contig(). This avoids requiring
a single physically contiguous chunk in this case.
Submitted by: Peter Jeremy (original version)
MFC after: 1 month
protect against 32-bit TSC overflow while the sync test is running.
On dual-socket Xeon E5-2600 (SNB) systems with up to 32 threads, there
is non-trivial chance (2-3%) that TSC synchronization test fails due to
32-bit TSC overflow while the synchronization test is running.
Sponsored by: Intel
Reviewed by: jkim
Discussed with: jkim, kib
programming using earlier cached values. This makes respective routines to
disappear from PMC top and reduces total number of active CPU cycles on idle
24-core system by 10%.
attributes (currently just BUS_DMA_NOCACHE):
- Don't call pmap_change_attr() on the returned address, instead use
kmem_alloc_contig() to ask the VM system for memory with the requested
attribute.
- As a result, always use kmem_alloc_contig() for non-default memory
attributes, even for sub-page allocations. This requires adjusting
bus_dmamem_free()'s logic for determining which free routine to use.
- For x86, add a new dummy bus_dmamap that is used for static DMA
buffers allocated via kmem_alloc_contig(). bus_dmamem_free() can then
use the map pointer to determine which free routine to use.
- For powerpc, add a new flag to the allocated map (bus_dmamem_alloc()
always creates a real map on powerpc) to indicate which free routine
should be used.
Note that the BUS_DMA_NOCACHE handling in powerpc is currently #ifdef'd out.
I have left it disabled but updated it to match x86.
Reviewed by: scottl
MFC after: 1 month
message for r238973:
Rdtsc instruction is not synchronized, it seems on some Intel cores it
can bypass even the locked instructions. As a result, rdtsc executed
on different cores may return unordered TSC values even when the rdtsc
appearance in the instruction sequences is provably ordered.
Similarly to what has been done in r238755 for TSC synchronization
test, add explicit fences right before rdtsc in the timecounters 'get'
functions. Intel recommends to use LFENCE, while AMD refers to
MFENCE. For VIA follow what Linux does and use LFENCE. With this
change, I see no reordered reads of TSC on Nehalem.
Change the rmb() to inlined CPUID in the SMP TSC synchronization test.
On i386, locked instruction is used for rmb(), and as noted earlier,
it is not enough. Since i386 machine may not support SSE2, do simplest
possible synchronization with CPUID.
MFC after: 1 week
Discussed with: avg, bde, jkim
Intel Architecture Manual specifies that rdtsc instruction is not serialized,
so without this change, TSC synchronization test would periodically fail,
resulting in use of HPET timecounter instead of TSC-low. This caused
severe performance degradation (40-50%) when running high IO/s workloads due to
HPET MMIO reads and GEOM stat collection.
Tests on Xeon E5-2600 (Sandy Bridge) 8C systems were seeing TSC synchronization
fail approximately 20% of the time.
Sponsored by: Intel
Reviewed by: kib
MFC after: 3 days
mostly meets the guidelines set by the Intel SDM:
1. We use XRSTOR and XSAVE from the same CPL using the same linear
address for the store area
2. Contrary to the recommendations, we cannot zero the FPU save area
for a new thread, since fork semantic requires the copy of the
previous state. This advice seemingly contradicts to the advice
from the item 6.
3. We do use XSAVEOPT in the context switch code only, and the area
for XSAVEOPT already always contains the data saved by XSAVE.
4. We do not modify the save area between XRSTOR, when the area is
loaded into FPU context, and XSAVE. We always spit the fpu context
into save area and start emulation when directly writing into FPU
context.
5. We do not use segmented addressing to access save area, or rather,
always address it using %ds basing.
6. XSAVEOPT can be only executed in the area which was previously
loaded with XRSTOR, since context switch code checks for FPU use by
outgoing thread before saving, and thread which stopped emulation
forcibly get context loaded with XRSTOR.
7. The PCB cannot be paged out while FPU emulation is turned off, since
stack of the executing thread is never swapped out.
The context switch code is patched to issue XSAVEOPT instead of XSAVE
if supported. This approach eliminates one conditional in the context
switch code, which would be needed otherwise.
For user-visible machine context to have proper data, fpugetregs()
checks for unsaved extension blocks and manually copies pristine FPU
state into them, according to the description provided by CPUID leaf
0xd.
MFC after: 1 month
This is required for ARM EABI. Section 7.1.1 of the Procedure Call for the
ARM Architecture (AAPCS) defines wchar_t as either an unsigned int or an
unsigned short with the former preferred.
Because of this requirement we need to move the definition of __wchar_t to
a machine dependent header. It also cleans up the macros defining the limits
of wchar_t by defining __WCHAR_MIN and __WCHAR_MAX in the same machine
dependent header then using them to define WCHAR_MIN and WCHAR_MAX
respectively.
Discussed with: bde
usermode, using shared page. The structures and functions have vdso
prefix, to indicate the intended location of the code in some future.
The versioned per-algorithm data is exported in the format of struct
vdso_timehands, which mostly repeats the content of in-kernel struct
timehands. Usermode reading of the structure can be lockless.
Compatibility export for 32bit processes on 64bit host is also
provided. Kernel also provides usermode with indication about
currently used timecounter, so that libc can fall back to syscall if
configured timecounter is unknown to usermode code.
The shared data updates are initiated both from the tc_windup(), where
a fast task is queued to do the update, and from sysctl handlers which
change timecounter. A manual override switch
kern.timecounter.fast_gettime allows to turn off the mechanism.
Only x86 architectures export the real algorithm data, and there, only
for tsc timecounter. HPET counters page could be exported as well, but
I prefer to not further glue the kernel and libc ABI there until
proper vdso-based solution is developed.
Minimal stubs neccessary for non-x86 architectures to still compile
are provided.
Discussed with: bde
Reviewed by: jhb
Tested by: flo
MFC after: 1 month
suspend/resume procedures are minimized among them.
common:
- Add global cpuset suspended_cpus to indicate APs are suspended/resumed.
- Remove acpi_waketag and acpi_wakemap from acpivar.h (no longer used).
- Add some variables in acpi_wakecode.S in order to minimize the difference
among amd64 and i386.
- Disable load_cr3() because now CR3 is restored in resumectx().
amd64:
- Add suspend/resume related members (such as MSR) in PCB.
- Modify savectx() for above new PCB members.
- Merge acpi_switch.S into cpu_switch.S as resumectx().
i386:
- Merge(and remove) suspendctx() into savectx() in order to match with
amd64 code.
Reviewed by: attilio@, acpi@
intr_bind() on x86.
This has been requested by jhb and I strongly disagree with this,
but as long as he is the x86 and interrupt subsystem maintainer I will
follow his directives.
The disagreement cames from what we should really consider as a
public KPI. IMHO, if we really need a selection between the kernel
functions, we may need an explicit protection like _KERNEL_KPI, which
defines which subset of the kernel function might really be considered
as part of the KPI (for thirdy part modules) and which not.
As long as we don't have this mechanism I just consider any possible
function as usable by thirdy part code, thus intr_bind() included.
MFC after: 1 week
discrepancy between modules and kernel, but deal with SMP differences
within the functions themselves.
As an added bonus this also helps in terms of code readability.
Requested by: gibbs
Reviewed by: jhb, marius
MFC after: 1 week
222813, that left all un-pinned interrupts assigned to CPU 0.
sys/x86/x86/intr_machdep.c:
In intr_shuffle_irqs(), remove CPU_SETOF() call that initialized
the "intr_cpus" cpuset to only contain CPU0.
This initialization is too late and nullifies the results of calls
the intr_add_cpu() that occur much earlier in the boot process.
Since "intr_cpus" is statically initialized to the empty set, and
all processors, including the BSP, already add themselves to
"intr_cpus" no special initialization for the BSP is necessary.
MFC after: 3 days
sleeping from a swi handler (even though in this case it would be ok), so
switch the refill and scanning SWI handlers to being tasks on a fast
taskqueue. Also, only schedule the refill task for a CMCI as an MC# can
fire at any time, so it should do the minimal amount of work needed and
avoid opportunities to deadlock before it panics (such as scheduling a
task it won't ever need in practice). To handle the case of an MC# only
finding recoverable errors (which should never happen), always try to
refill the event free list when the periodic scan executes.
MFC after: 2 weeks
an uncorrected ECC error tends to fire on all CPUs in a package
simultaneously and the current printf hacks are not sufficient to make
the messages legible. Instead, use the existing mca_lock spinlock to
serialize calls to mca_log() and change the machine check code to panic
directly when an unrecoverable error is encoutered rather than falling
back to a trap_fatal() call in trap() (which adds nearly a screen-full of
logging messages that aren't useful for machine checks).
MFC after: 2 weeks
- Don't malloc() new MCA records for machine checks logged due to a
CMCI or MC# exception. Instead, use a pre-allocated pool of records.
When a CMCI or MC# exception fires, schedule a swi to refill the pool.
The pool is sized to hold at least one record per available machine
bank, and one record per CPU. This should handle the case of all CPUs
triggering a single bank at once as well as the case a single CPU
triggering all of its banks. The periodic scans still use malloc()
since they are run from a safe context.
- Since we have to create an swi to handle refills, make the periodic scan
a second swi for the same thread instead of having a separate taskqueue
thread for the scans.
Suggested by: mdf (avoiding malloc())
MFC after: 2 weeks
that revision, the bswapXX_const() macros were renamed to bswapXX_gen().
Also, bswap64_gen() was implemented as two calls to bswap32(), and
similarly, bswap32_gen() as two calls to bswap16(). This mainly helps
our base gcc to produce more efficient assembly.
However, the arguments are not properly masked, which results in the
wrong value being calculated in some instances. For example,
bswap32(0x12345678) returns 0x7c563412, and bswap64(0x123456789abcdef0)
returns 0xfcdefc9a7c563412.
Fix this by appropriately masking the arguments to bswap16() in
bswap32_gen(), and to bswap32() in bswap64_gen(). This should also
silence warnings from clang.
Submitted by: jh
revision has two problems:
- It can produce worse code with both clang and gcc.
- It doesn't fix the actual issue introduced in r232721, which will be
fixed in the next commit.
Submitted by: bde, tijl and jh
Pointy hat to: dim
bridges. Rather than blindly enabling the windows on all of them, only
enable the window when an MSI interrupt is enabled for a device behind
the bridge, similar to what already happens for HT PCI-PCI bridges.
To implement this, each x86 Host-PCI bridge driver has to be able to
locate it's actual backing device on bus 0. For ACPI, use the _ADR
method to find the slot and function of the device. For the non-ACPI
case, the legacy(4) driver already scans bus 0 looking for Host-PCI
bridge devices. Now it saves the slot and function of each bridge that
it finds as ivars that the Host-PCI bridge driver can then use in its
pcib_map_msi() method.
This fixes machines where non-MSI interrupts were broken by the previous
round of HT MSI changes.
Tested by: bapt
MFC after: 1 week
added, the call to pmap_kextract() was moved up, and as a result the
code never updated the physical address to use for DMA if a bounce
buffer was used. Restore the earlier location of pmap_kextract() so
it takes bounce buffers into account.
Tested by: kargl
MFC after: 1 week
recent changes in sys/x86/include/endian.h:
sys/dev/dcons/dcons.c:190:15: error: implicit conversion from '__uint32_t' (aka 'unsigned int') to '__uint16_t' (aka 'unsigned short') changes value from 1684238190 to 28526 [-Werror,-Wconstant-conversion]
buf->magic = ntohl(DCONS_MAGIC);
^~~~~~~~~~~~~~~~~~
sys/sys/param.h:306:18: note: expanded from:
#define ntohl(x) __ntohl(x)
^
./x86/endian.h:128:20: note: expanded from:
#define __ntohl(x) __bswap32(x)
^
./x86/endian.h:78:20: note: expanded from:
__bswap32_gen((__uint32_t)(x)) : __bswap32_var(x))
^
./x86/endian.h:68:26: note: expanded from:
(((__uint32_t)__bswap16(x) << 16) | __bswap16((x) >> 16))
^
./x86/endian.h:75:53: note: expanded from:
__bswap16_gen((__uint16_t)(x)) : __bswap16_var(x)))
~~~~~~~~~~~~~ ^
This is because the __bswapXX_gen() macros (for x86) call the regular
__bswapXX() macros. Since the __bswapXX_gen() variants are only called
when their arguments are constant, there is no need to do that constancy
check recursively. Also, it causes the above error with clang.
Fix it by calling __bswap16_gen() from __bswap32_gen(), and similarly,
__bswap32_gen() from __bswap64_gen().
While here, add extra parentheses around the __bswap16_gen() macro
expansion, to prevent unexpected side effects.
private to this file. The 'lapics' array was actually shadowing a
completely different 'lapics' array that is private to local_apic.c.
Reported by: bde
MFC after: 2 weeks
segments.h to a new x86 segments.h.
Add __packed attribute to some structs (just to be sure).
Also make it clear that i386 GDT and LDT entries are used in ia64 code.
reg.h with stubs.
The tREGISTER macros are only made visible on i386. These macros are
deprecated and should not be available on amd64.
The i386 and amd64 versions of struct reg have been renamed to struct
__reg32 and struct __reg64. During compilation either __reg32 or __reg64
is defined as reg depending on the machine architecture. On amd64 the i386
struct is also available as struct reg32 which is used in COMPAT_FREEBSD32
code.
Most of compat/ia32/ia32_reg.h is now IA64 only.
Reviewed by: kib (previous version)
Remove FPU types from compat/ia32/ia32_reg.h that are no longer needed.
Create machine/npx.h on amd64 to allow compiling i386 code that uses
this header.
The original npx.h and fpu.h define struct envxmm differently. Both
definitions have been included in the new x86 header as struct __envxmm32
and struct __envxmm64. During compilation either __envxmm32 or __envxmm64
is defined as envxmm depending on machine architecture. On amd64 the i386
struct is also available as struct envxmm32.
Reviewed by: kib
- Merge r232744 changes to pc98.
(Allow a kernel to be built with 'nodevice atpic'.)
- Move ICU related defines from x86/isa/atpic.c to x86/isa/icu.h and
use them in x86/x86/intr_machdep.c.
Reviewed by: jhb
didn't already have them. This is because the ternary expression will
return int, due to the Usual Arithmetic Conversions. Such casts are not
needed for the 32 and 64 bit variants.
While here, add additional parentheses around the x86 variant, to
protect against unintended consequences.
MFC after: 2 weeks