read requests to its consumer. It has been developed to address
the problem of a horrible read performance of a 64k blocksize FS
residing on a RAID3 array with 8 data components, where a single
disk component would only get 8k read requests, thus effectively
killing disk performance under high load. Documentation will be
provided later. I'd like to thank Vsevolod Lobko for his bright
ideas, and Pawel Jakub Dawidek for helping me fix the nasty bug.
This class is used for detecting volume labels on file systems:
UFS, MSDOSFS (FAT12, FAT16, FAT32) and ISO9660.
It also provide native labelization (there is no need for file system).
g_label_ufs.c is based on geom_vol_ffs from Gordon Tetlow.
g_label_msdos.c and g_label_iso9660.c are probably hacks, I just found
where volume labels are stored and I use those offsets here,
but with this class it should be easy to do it as it should be done by
someone who know how.
Implementing volume labels detection for other file systems also should
be trivial.
New providers are created in those directories:
/dev/ufs/ (UFS1, UFS2)
/dev/msdosfs/ (FAT12, FAT16, FAT32)
/dev/iso9660/ (ISO9660)
/dev/label/ (native labels, configured with glabel(8))
Manual page cleanups and some comments inside were submitted by
Simon L. Nielsen, who was, as always, very helpful. Thanks!
GEOM classes. It works by loading a shared library via dlopen(3) mechanism
with class-specific code, it is also responsible for communicating with
GEOM via libgeom(3).
Per-class shared libraries are going to be stored in /lib/geom/ directory.
It provides also few standard commands like 'list', 'load' and 'unload'
for existing classes which aren't aware of geom(8).
More info will be send on freebsd-current@ mailing list.
Supported by: Wheel - Open Technologies - http://www.wheel.pl