support machines having multiple independently numbered PCI domains
and don't support reenumeration without ambiguity amongst the
devices as seen by the OS and represented by PCI location strings.
This includes introducing a function pci_find_dbsf(9) which works
like pci_find_bsf(9) but additionally takes a domain number argument
and limiting pci_find_bsf(9) to only search devices in domain 0 (the
only domain in single-domain systems). Bge(4) and ofw_pcibus(4) are
changed to use pci_find_dbsf(9) instead of pci_find_bsf(9) in order
to no longer report false positives when searching for siblings and
dupe devices in the same domain respectively.
Along with this change the sole host-PCI bridge driver converted to
actually make use of PCI domain support is uninorth(4), the others
continue to use domain 0 only for now and need to be converted as
appropriate later on.
Note that this means that the format of the location strings as used
by pciconf(8) has been changed and that consumers of <sys/pciio.h>
potentially need to be recompiled.
Suggested by: jhb
Reviewed by: grehan, jhb, marcel
Approved by: re (kensmith), jhb (PCI maintainer hat)
ways:
(1) Cached pages are no longer kept in the object's resident page
splay tree and memq. Instead, they are kept in a separate per-object
splay tree of cached pages. However, access to this new per-object
splay tree is synchronized by the _free_ page queues lock, not to be
confused with the heavily contended page queues lock. Consequently, a
cached page can be reclaimed by vm_page_alloc(9) without acquiring the
object's lock or the page queues lock.
This solves a problem independently reported by tegge@ and Isilon.
Specifically, they observed the page daemon consuming a great deal of
CPU time because of pages bouncing back and forth between the cache
queue (PQ_CACHE) and the inactive queue (PQ_INACTIVE). The source of
this problem turned out to be a deadlock avoidance strategy employed
when selecting a cached page to reclaim in vm_page_select_cache().
However, the root cause was really that reclaiming a cached page
required the acquisition of an object lock while the page queues lock
was already held. Thus, this change addresses the problem at its
root, by eliminating the need to acquire the object's lock.
Moreover, keeping cached pages in the object's primary splay tree and
memq was, in effect, optimizing for the uncommon case. Cached pages
are reclaimed far, far more often than they are reactivated. Instead,
this change makes reclamation cheaper, especially in terms of
synchronization overhead, and reactivation more expensive, because
reactivated pages will have to be reentered into the object's primary
splay tree and memq.
(2) Cached pages are now stored alongside free pages in the physical
memory allocator's buddy queues, increasing the likelihood that large
allocations of contiguous physical memory (i.e., superpages) will
succeed.
Finally, as a result of this change long-standing restrictions on when
and where a cached page can be reclaimed and returned by
vm_page_alloc(9) are eliminated. Specifically, calls to
vm_page_alloc(9) specifying VM_ALLOC_INTERRUPT can now reclaim and
return a formerly cached page. Consequently, a call to malloc(9)
specifying M_NOWAIT is less likely to fail.
Discussed with: many over the course of the summer, including jeff@,
Justin Husted @ Isilon, peter@, tegge@
Tested by: an earlier version by kris@
Approved by: re (kensmith)
of pages don't sum to anywhere near the total number of pages on amd64.
This is for the most part because uma_small_alloc() pages have never been
counted as wired pages, like their kmem_malloc() brethren. They should
be. This changes fixes that.
It is no longer necessary for the page queues lock to be held to free
pages allocated by uma_small_alloc(). I removed the acquisition and
release of the page queues lock from uma_small_free() on amd64 and ia64
weeks ago. This patch updates the other architectures that have
uma_small_alloc() and uma_small_free().
Approved by: re (kensmith)
topology foo functions.
Working at the patch for topology problems in ia32/amd64 evicted some
problems regarding functions ordering in the SI_SUB_CPU family of
SYSINIT'ed subsystems.
In order to avoid problems with new modified to involved functions, a
correct ordering is not semantically specified for SI_SUB_CPU functions
(for a larger view of the issue please visit:
http://lists.freebsd.org/pipermail/freebsd-current/2007-July/075409.html )
Discussed with: peter
Tested by: kris, Rui Paulo <rpaulo@FreeBSD.org>
Approved by: jeff
Approved by: re
moving OF_set_mmfsa_traptable() (SUNW,set-trap-table with the two
arguments used here is specific to sun4v) to MD code.
- In sys/dev/ofw/openfirm.h remove prototypes for unimplemented
functions and unused Solaris compatibility macros.
This allocator uses a binary buddy system with a twist. First and
foremost, this allocator is required to support the implementation of
superpages. As a side effect, it enables a more robust implementation
of contigmalloc(9). Moreover, this reimplementation of
contigmalloc(9) eliminates the acquisition of Giant by
contigmalloc(..., M_NOWAIT, ...).
The twist is that this allocator tries to reduce the number of TLB
misses incurred by accesses through a direct map to small, UMA-managed
objects and page table pages. Roughly speaking, the physical pages
that are allocated for such purposes are clustered together in the
physical address space. The performance benefits vary. In the most
extreme case, a uniprocessor kernel running on an Opteron, I measured
an 18% reduction in system time during a buildworld.
This allocator does not implement page coloring. The reason is that
superpages have much the same effect. The contiguous physical memory
allocation necessary for a superpage is inherently colored.
Finally, the one caveat is that this allocator does not effectively
support prezeroed pages. I hope this is temporary. On i386, this is
a slight pessimization. However, on amd64, the beneficial effects of
the direct-map optimization outweigh the ill effects. I speculate
that this is true in general of machines with a direct map.
Approved by: re
more exposure. The current state of SCTP implementation is
considered to be ready for 32-bit platforms, but still need some
work/testing on 64-bit platforms.
Approved by: re (kensmith)
Discussed with: rrs
making the relevant files standard. This avoids duplication and
makes it easier to override/disable unwanted schemes. Since ARM
doesn't have a DEFAULTS configuration file, leave the source
files for the BSD and MBR partitioning schemes in files.arm for
now.
caches with data caches after writing to memory. This typically
is required to make breakpoints work on ia64 and powerpc. For
those architectures the function is implemented.
- Use sched_throw() rather than replicating the same cpu_throw() code for
each architecture. This also allows the scheduler to use any locking it
may want to.
- Use the thread_lock() rather than sched_lock when preempting.
- The scheduler lock is not required to synchronize release_aps.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
- Rename PCPU_LAZY_INC into PCPU_INC
- Add the PCPU_ADD interface which just does an add on the pcpu member
given a specific value.
Note that for most architectures PCPU_INC and PCPU_ADD are not safe.
This is a point that needs some discussions/work in the next days.
Reviewed by: alc, bde
Approved by: jeff (mentor)
Probabilly, a general approach is not the better solution here, so we should
solve the sched_lock protection problems separately.
Requested by: alc
Approved by: jeff (mentor)
handler is wrapped in a couple of functions - a filter wrapper and an
ithread wrapper. In this case (and just in this case), the filter
wrapper could ask the system to schedule the ithread and mask the
interrupt source if the wrapped handler is composed of just an ithread
handler: modify the "old" interrupt code to make it support
this situation, while the "new" interrupt code is already ok.
Discussed with: jhb
used to return PAGE_SIZE without respect to restrictions of a DMA tag.
This affected all of the busdma load functions that use
_bus_dmamap_loader_buffer() as their back-end.
Reviewed by: scottl
in the sun4v source in order to be able to compile the source which
is shared between sparc64 and sun4v just #include the sparc64
version here instead of duplicating it.
This is based on the approach taken by pc98 headers in order to
compile the source shared between i386 and pc98.
iommureg.h (which already began to bitrot) and iommuvar.h from the
sun4v source and adjust some of the source which is shared between
sparc64 and sun4v as appropriate.
vmcnts. This can be used to abstract away pcpu details but also changes
to use atomics for all counters now. This means sched lock is no longer
responsible for protecting counts in the switch routines.
Contributed by: Attilio Rao <attilio@FreeBSD.org>
VM_PHYSSEG_SPARSE depending on whether the physical address space is
densely or sparsely populated with memory. The effect of this
definition is to determine which of two implementations of
vm_page_array and PHYS_TO_VM_PAGE() is used. The legacy
implementation is obtained by defining VM_PHYSSEG_DENSE, and a new
implementation that trades off time for space is obtained by defining
VM_PHYSSEG_SPARSE. For now, all architectures except for ia64 and
sparc64 define VM_PHYSSEG_DENSE. Defining VM_PHYSSEG_SPARSE on ia64
allows the entirety of my Itanium 2's memory to be used. Previously,
only the first 1 GB could be used. Defining VM_PHYSSEG_SPARSE on
sparc64 allows USIIIi-based systems to boot without crashing.
This change is a combination of Nathan Whitehorn's patch and my own
work in perforce.
Discussed with: kmacy, marius, Nathan Whitehorn
PR: 112194
vm.kmem_size_min. Useful when using ZFS to make sure that vm.kmem size will
be at least 256mb (for example) without forcing a particular value via vm.kmem_size.
Approved by: njl (mentor)
Reviewed by: alc
partitioning class that supports multiple schemes. Current
schemes supported are APM (Apple Partition Map) and GPT.
Change all GEOM_APPLE anf GEOM_GPT options into GEOM_PART_APM
and GEOM_PART_GPT (resp).
The ctlreq interface supports verbs to create and destroy
partitioning schemes on a disk; to add, delete and modify
partitions; and to commit or undo changes made.
headers in .S directly rather than getting to their macros through
genassym.c/assym.s so there are less headers genassym.c has to be
kept in sync with.
While at it fix some stytle(9) bugs (indentation, prototype format,
sort headers, etc) and remove trailing whitespace.
may also reflect a Fireplane/Safari or JBus bus (or a virtual bus which
in turn reflects a JBus bus or something like that...).
- In the both the sparc64 and sun4v bus_machdep.c use __FBSDID.
- Spell SBus the official way in comments.
- Replace hardcoded function names (all of which were actually outdated)
in panic and status strings with __func__.
- Fix whitespace nits.
and friends along with all hacks required to implement them. None of
the drivers currently built (as part of GENERIC, LINT or modules) on
sparc64 or sun4v and none of those we might want to use there in
future uses them, AFAICT there actually never was a driver hooked up
to the sparc64 or sun4v build that correctly used these functions
(and it looks like that due to a bug read{b,w,l}()/write{b,w,l}() and
the other functions working on a memory handle never actually worked on
sun4v). All they ever were good for on sparc64 and sun4v was erroneously
dragging in dependencies on isa(4) in drivers like f.e. dpt(4), si(4)
and syscons(4) in source files that supposedly were bus-neutral and
hiding issues with drivers like f.e. ng_bt3c(4) that used these
functions with busses other than isa(4) and therefore couldn't work on
these platforms.