- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
add separate rx/tx ring indexes
add ring specifier in nm_open device name
netmap.c, netmap_vale.c
more consistent errno numbers
netmap_generic.c
correctly handle failure in registering interfaces.
tools/tools/netmap/
massive cleanup of the example programs
(a lot of common code is now in netmap_user.h.)
nm_util.[ch] are going away soon.
pcap.c will also go when i commit the native netmap support for libpcap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.