details from consumers.
- Track individual selecters on a per-descriptor basis such that there
are no longer collisions and after sleeping for events only those
descriptors which triggered events must be rescaned.
- Protect the selinfo (per descriptor) structure with a mtx pool mutex.
mtx pool mutexes were chosen to preserve api compatibility with
existing code which does nothing but bzero() to setup selinfo
structures.
- Use a per-thread wait channel rather than a global wait channel.
- Hide select implementation details in a seltd structure which is
opaque to the rest of the kernel.
- Provide a 'selsocket' interface for those kernel consumers who wish to
select on a socket when they have no fd so they no longer have to
be aware of select implementation details.
Tested by: kris
Reviewed on: arch
the ABI when enabled. There is no longer an embedded lock_profile_object
in each lock. Instead a list of lock_profile_objects is kept per-thread
for each lock it may own. The cnt_hold statistic is now always 0 to
facilitate this.
- Support shared locking by tracking individual lock instances and
statistics in the per-thread per-instance lock_profile_object.
- Make the lock profiling hash table a per-cpu singly linked list with a
per-cpu static lock_prof allocator. This removes the need for an array
of spinlocks and reduces cache contention between cores.
- Use a seperate hash for spinlocks and other locks so that only a
critical_enter() is required and not a spinlock_enter() to modify the
per-cpu tables.
- Count time spent spinning in the lock statistics.
- Remove the LOCK_PROFILE_SHARED option as it is always supported now.
- Specifically drop and release the scheduler locks in both schedulers
since we track owners now.
In collaboration with: Kip Macy
Sponsored by: Nokia
process_fini, thread_ctor, thread_dtor, thread_init, thread_fini. This
will allow us to extend dynamically areas in proc/thread for dtrace ;-)
Reviewed by: rwatson
communicate that it relates to (is called by) thread_alloc()
o Add cpu_thread_free() which is called from thread_free()
to counter-act cpu_thread_alloc().
i386: Have cpu_thread_free() call cpu_thread_clean() to
preserve behaviour.
ia64: Have cpu_thread_free() call mtx_destroy() for the
mutex initialized in cpu_thread_alloc().
PR: ia64/118024
silent NULL pointer dereference in the i386 and sparc64 pmap_pinit()
when the kmem_alloc_nofault() failed to allocate address space. Both
functions now return error instead of panicing or dereferencing NULL.
As consequence, vmspace_exec() and vmspace_unshare() returns the errno
int. struct vmspace arg was added to vm_forkproc() to avoid dealing
with failed allocation when most of the fork1() job is already done.
The kernel stack for the thread is now set up in the thread_alloc(),
that itself may return NULL. Also, allocation of the first process
thread is performed in the fork1() to properly deal with stack
allocation failure. proc_linkup() is separated into proc_linkup()
called from fork1(), and proc_linkup0(), that is used to set up the
kernel process (was known as swapper).
In collaboration with: Peter Holm
Reviewed by: jhb
kthread_add() takes the same parameters as the old kthread_create()
plus a pointer to a process structure, and adds a kernel thread
to that process.
kproc_kthread_add() takes the parameters for kthread_add,
plus a process name and a pointer to a pointer to a process instead of just
a pointer, and if the proc * is NULL, it creates the process to the
specifications required, before adding the thread to it.
All other old kthread_xxx() calls return, but act on (struct thread *)
instead of (struct proc *). One reason to change the name is so that
any old kernel modules that are lying around and expect kthread_create()
to make a process will not just accidentally link.
fix top to show kernel threads by their thread name in -SH mode
add a tdnam formatting option to ps to show thread names.
make all idle threads actual kthreads and put them into their own idled process.
make all interrupt threads kthreads and put them in an interd process
(mainly for aesthetic and accounting reasons)
rename proc 0 to be 'kernel' and it's swapper thread is now 'swapper'
man page fixes to follow.
In particular:
- smp_tlb_mtx is no longer used, so it is axed.
- smp rendezvous lock isn't really a leaf spin-mutex. Its bad placement in
the table, however, has been the source of a false positive LOR reporting
with the dt_lock. However, smp rendezvous lock would have had sched_lock
there for older lock, so it wasn't still a leaf lock.
- allpmaps is only used in ia32 architecture, so it is inserted in the
appropriate stub.
Addictionally:
- kse_zombie_lock is no longer present, so its definition is axed out.
- zombie_lock doesn't need to have an exported symbol, so just let's it be
declared as static.
Tested by: kris
Approved by: jeff (mentor)
Approved by: re
- p_sflag was mostly protected by PROC_LOCK rather than the PROC_SLOCK or
previously the sched_lock. These bugs have existed for some time.
- Allow swapout to try each thread in a process individually and then
swapin the whole process if any of these fail. This allows us to move
most scheduler related swap flags into td_flags.
- Keep ki_sflag for backwards compat but change all in source tools to
use the new and more correct location of P_INMEM.
Reported by: pho
Reviewed by: attilio, kib
Approved by: re (kensmith)
should call uma_zfree() with various spinlock helds. Rearranging the
code would not help here because we cannot break atomicity respect
prcess spinlock, so the only one choice we have is to defer the operation.
In order to do this use a global queue synchronized through the kse_lock
spinlock which is freed at any thread_alloc() / thread_wait() through a
call to thread_reap().
Note that this approach is not ideal as we should want a per-process
list of zombie upcalls, but it follows initial guidelines of KSE authors.
Tested by: jkim, pav
Approved by: jeff, julian
Approved by: re
dangerous races.
Fix this problems adding correct locking for the members of 'struct
kse_upcall' and other struct proc/struct thread related members.
For the moment, just leave ku_mflag and ku_flags "lazy" locked.
While here, cleanup the code removing the function kse_GC() (unused),
and merging upcall_link(), upcall_unlink(), upcall_stash() in their
respective callers (static functions, very short and only called in one
place).
Reported by: pav
Tested by: pav (on some pointyhat cluster nodes)
Approved by: jeff
Approved by: re
Sponsorized by: NGX Italy (http://www.ngx.it)
- Remove unused kse fields from struct proc.
- Group remaining fields and #ifdef KSE them.
- Move some kern_kse.c only prototypes out of proc and into kern_kse.
Discussed with: Julian
- Add a count of exiting threads, p_exitthreads, to struct proc.
- Increment p_exithreads when we set the deadthread in thread_exit().
- When we thread_stash() a deadthread use an atomic to drop the count.
- Spin until the p_exithreads count reaches 0 in thread_wait().
- Lock the last exiting thread momentarily to be certain that it has
exited cpu_throw().
- Restructure thread_wait(). It does not need a loop as there will only
ever be one thread.
Tested by: moose@opera.com
Reported by: kris, moose@opera.com
- Unsafeness on ruadd() in thread_exit()
- Unatomicity of thread_exiit() in the exit1() operations
This patch addresses these problems allocating p_fd as part of the
process and modifying the way it is accessed.
A small chunk of this patch, resolves a race about p_state in kern_wait(),
since we have to be sure about the zombif-ing process.
Submitted by: jeff
Approved by: jeff (mentor)
- Use thread_lock() rather than sched_lock for per-thread scheduling
sychronization.
- Use the per-process spinlock rather than the sched_lock for per-process
scheduling synchronization.
- Move some common code into thread_suspend_switch() to handle the
mechanics of suspending a thread. The locking here is incredibly
convoluted and should be simplified.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
Now, we assume no more sched_lock protection for some of them and use the
distribuited loads method for vmmeter (distribuited through CPUs).
Reviewed by: alc, bde
Approved by: jeff (mentor)
td_ru. This removes the requirement for per-process synchronization in
statclock() and mi_switch(). This was previously supported by
sched_lock which is going away. All modifications to rusage are now
done in the context of the owning thread. reads proceed without locks.
- Aggregate exiting threads rusage in thread_exit() such that the exiting
thread's rusage is not lost.
- Provide a new routine, rufetch() to fetch an aggregate of all rusage
structures from all threads in a process. This routine must be used
in any place requiring a rusage from a process prior to it's exit. The
exited process's rusage is still available via p_ru.
- Aggregate tick statistics only on demand via rufetch() or when a thread
exits. Tick statistics are kept in the thread and protected by sched_lock
until it exits.
Initial patch by: attilio
Reviewed by: attilio, bde (some objections), arch (mostly silent)
Probabilly, a general approach is not the better solution here, so we should
solve the sched_lock protection problems separately.
Requested by: alc
Approved by: jeff (mentor)
vmcnts. This can be used to abstract away pcpu details but also changes
to use atomics for all counters now. This means sched lock is no longer
responsible for protecting counts in the switch routines.
Contributed by: Attilio Rao <attilio@FreeBSD.org>
always 0. Previously we aligned threads on a minimum of 8-byte boundaries.
Note: This changes the uma zone to no longer cache align threads. We
really want the uma zone to do align threads to MAX(16, cache line size)
but there currently isn't a good way to express that to uma.
Submitted by: attilio
GETATTRs being generated - one from lookup()/namei() and the other
from nfs_open() (for cto consistency). This change eliminates the
GETATTR in nfs_open() if an otw GETATTR was done from the namei()
path. Instead of extending the vop interface, we timestamp each attr
load, and use this to detect whether a GETATTR was done from namei()
for this syscall. Introduces a thread-local variable that counts the
syscalls made by the thread and uses <pid, tid, thread syscalls> as
the attrload timestamp. Thanks to jhb@ and peter@ for a discussion on
thread state that could be used as the timestamp with minimal overhead.
Make part of John Birrell's KSE patch permanent..
Specifically, remove:
Any reference of the ksegrp structure. This feature was
never fully utilised and made things overly complicated.
All code in the scheduler that tried to make threaded programs
fair to unthreaded programs. Libpthread processes will already
do this to some extent and libthr processes already disable it.
Also:
Since this makes such a big change to the scheduler(s), take the opportunity
to rename some structures and elements that had to be moved anyhow.
This makes the code a lot more readable.
The ULE scheduler compiles again but I have no idea if it works.
The 4bsd scheduler still reqires a little cleaning and some functions that now do
ALMOST nothing will go away, but I thought I'd do that as a separate commit.
Tested by David Xu, and Dan Eischen using libthr and libpthread.
mutex structure is added as following:
struct umutex {
__lwpid_t m_owner;
uint32_t m_flags;
uint32_t m_ceilings[2];
uint32_t m_spare[4];
};
The m_owner represents owner thread, it is a thread id, in non-contested
case, userland can simply use atomic_cmpset_int to lock the mutex, if the
mutex is contested, high order bit will be set, and userland should do locking
and unlocking via kernel syscall. Flag UMUTEX_PRIO_INHERIT represents
pthread's PTHREAD_PRIO_INHERIT mutex, which when contention happens, kernel
should do priority propagating. Flag UMUTEX_PRIO_PROTECT indicates it is
pthread's PTHREAD_PRIO_PROTECT mutex, userland should initialize m_owner
to contested state UMUTEX_CONTESTED, then atomic_cmpset_int will be failure
and kernel syscall should be invoked to do locking, this becauses
for such a mutex, kernel should always boost the thread's priority before
it can lock the mutex, m_ceilings is used by PTHREAD_PRIO_PROTECT mutex,
the first element is used to boost thread's priority when it locked the mutex,
second element is used when the mutex is unlocked, the PTHREAD_PRIO_PROTECT
mutex's link list is kept in userland, the m_ceiling[1] is managed by thread
library so kernel needn't allocate memory to keep the link list, when such
a mutex is unlocked, kernel reset m_owner to UMUTEX_CONTESTED.
Flag USYNC_PROCESS_SHARED indicate if the synchronization object is process
shared, if the flag is not set, it saves a vm_map_lookup() call.
The umtx chain is still used as a sleep queue, when a thread is blocked on
PTHREAD_PRIO_INHERIT mutex, a umtx_pi is allocated to support priority
propagating, it is dynamically allocated and reference count is used,
it is not optimized but works well in my tests, while the umtx chain has
its own locking protocol, the priority propagating protocol are all protected
by sched_lock because priority propagating function is called with sched_lock
held from scheduler.
No visible performance degradation is found which these changes. Some parameter
names in _umtx_op syscall are renamed.
suspension code. When a thread A is going to sleep, it calls
sleepq_catch_signals() to detect any pending signals or thread
suspension request, if nothing happens, it returns without
holding process lock or scheduler lock, this opens a race
window which allows thread B to come in and do process
suspension work, however since A is still at running state,
thread B can do nothing to A, thread A continues, and puts
itself into actually sleeping state, but B has never seen it,
and it sits there forever until B is woken up by other threads
sometimes later(this can be very long delay or never
happen). Fix this bug by forcing sleepq_catch_signals to
return with scheduler lock held.
Fix sleepq_abort() by passing it an interrupted code, previously,
it worked as wakeup_one(), and the interruption can not be
identified correctly by sleep queue code when the sleeping
thread is resumed.
Let thread_suspend_check() returns EINTR or ERESTART, so sleep
queue no longer has to use SIGSTOP as a hack to build a return
value.
Reviewed by: jhb
MFC after: 1 week
remote CPU. While here, abstract thread suspension code into a function
called sig_suspend_threads, the function is called when a process received
a STOP signal.
audit thread exit, but should that happen, this will prevent
unhappiness, as the thread exit system call will never return, and
hence not commit the record.
Pointed out by/with: cognet
Obtained from: TrustedBSD Project
This should not happen, but with this assert, brueffer and I would
not have spent 45 minutes trying to figure out why he wasn't
seeing audit records with the audit version in CVS.
Obtained from: TrustedBSD Project
- td_ar to struct thread, which holds the in-progress audit record during
a system call.
- p_au to struct proc, which holds per-process audit state, such as the
audit identifier, audit terminal, and process audit masks.
In the earlier implementation, td_ar was added to the zero'd section of
struct thread. In order to facilitate merging to RELENG_6, it has been
moved to the end of the data structure, requiring explicit
initalization in the thread constructor.
Much help from: wsalamon
Obtained from: TrustedBSD Project
For each child process whose status has been changed, a SIGCHLD instance
is queued, if the signal is stilling pending, and process changed status
several times, signal information is updated to reflect latest process
status. If wait() returns because the status of a child process is
available, pending SIGCHLD signal associated with the child process is
discarded. Any other pending SIGCHLD signals remain pending.
The signal information is allocated at the same time when proc structure
is allocated, if process signal queue is fully filled or there is a memory
shortage, it can still send the signal to process.
There is a booting time tunable kern.sigqueue.queue_sigchild which
can control the behavior, setting it to zero disables the SIGCHLD queueing
feature, the tunable will be removed if the function is proved that it is
stable enough.
Tested on: i386 (SMP and UP)
clock are supported. I have plan to merge XSI timer ITIMER_REAL and other
two CPU timers into the new code, current three slots are available for
the XSI timers.
The SIGEV_THREAD notification type is not supported yet because our
sigevent struct lacks of two member fields:
sigev_notify_function
sigev_notify_attributes
I have found the sigevent is used in AIO, so I won't add the two members
unless the AIO code is adjusted.
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64