return through doreti to handle ast's. This is necessary for the
clock interrupts to work properly.
- Change the clock interrupts on the x86 to be fast instead of threaded.
This is needed because both hardclock() and statclock() need to run in
the context of the current process, not in a separate thread context.
- Kill the prevproc hack as it is no longer needed.
- We really need Giant when we call psignal(), but we don't want to block
during the clock interrupt. Instead, use two p_flag's in the proc struct
to mark the current process as having a pending SIGVTALRM or a SIGPROF
and let them be delivered during ast() when hardclock() has finished
running.
- Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was
broken on the x86 if it was turned on since cpl is gone. It's only use
was to bogusly run softclock() directly during hardclock() rather than
scheduling an SWI.
- Remove the COM_LOCK simplelock and replace it with a clock_lock spin
mutex. Since the spin mutex already handles disabling/restoring
interrupts appropriately, this also lets us axe all the *_intr() fu.
- Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use
temporary fast interrupts for the APIC trial.
- Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending
signals in hardclock() that are to be delivered in ast().
Submitted by: jakeb (making statclock safe in a fast interrupt)
Submitted by: cp (concept of delaying signals until ast())
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
- stop using the evil 'struct trapframe' argument for mi_startup()
(formerly main()). There are much better ways of doing it.
- do not use prepare_usermode() - setregs() in execve() will do it
all for us as long as the p_md.md_regs pointer is set. (which is
now done in machdep.c rather than init_main.c. The Alpha port did it
this way all along and is much cleaner).
- collect all the magic %cr0 etc register settings into one place and
have the AP's call that instead of using magic numbers (!!) that keep
changing over and over again.
- Make it safe to call kthread_create() earlier, including during the
device probe sequence. It doesn't need the callback mechanism that
NetBSD's version uses.
- kthreads created this way are root-less as they exist before the root
filesystem is mounted. init(1) is set up so that it aquires the root
pointers prior to running. If other kthreads want filesystem acccess
we can make this code more generic.
- set all threads start times once we have decided what time it is.
- init uses a trampoline rather than the evil prepare_usermode() hack.
- kern_descrip.c has a couple of tweaks to deal with forking when there
is no rootdir or cwd etc.
- adjust the early SYSINIT() sequence so that a few prereqisites are in
place. eg: make sure the run queue is initialized before doing forks.
With this, the USB code can easily create a kthread to do the device
tree discovery. (I have tested it, it works nicely).
There are still some open issues before this is truely useful.
- tsleep() does not like working before the clock is running. It
sort-of tries to spin wait, but it can do more useful things now.
- stopping a kthread in kld code at unload time is "interesting" but
we have a solution for that.
The Alpha code needs no changes for this. It already uses pretty much the
same strategies, but a little cleaner.
Don't allow cpu entries in the MP table to contain APIC IDs out of range.
Don't write outside array boundaries if an IO APIC entry in the MP table
contains an APIC ID out of range.
Assign APIC IDs for all IO APICs according to section 3.6.6 in the
Intel MP spec:
- If the current APIC ID on an IO APIC doesn't conflict with other
IO APICs or CPUs, that APIC ID should be used. The copy of the MP
table must be updated if the corresponding APIC ID in the MP table
is different.
- If the current APIC ID was in conflict with other units, the
corresponding APIC ID specified in the MP table is checked for conflict.
- If a conflict is still found then fall back to using a new unique ID.
The copy of the MP table must be updated.
- IDs out of range is considered to be in conflict.
During these operations, the IO_TO_ID array cannot be used, since any
conflict would have caused information loss. The array is then corrected,
since all APIC ID conflicts should have been resolved.
PR: 20312, 18919
Further experimentation showed that some Dell 2450 machines with the
prevention kludge installed still got T_RESERVED traps. CPU interrupt
vector 0x7A was observed to be triggered. This might have been the
bitwise OR of two different vectors sent from each of the IOAPICs at
the same time.
IOAPIC #0: 0x68 --> irq 8: RTC timer interrupt
IOAPIC #1: 0x32 --> irq 18: scsi host adapter or network interface
----
0x7a --> T_RESERVED
Both IOAPICs had ID 0.
Appendix B.3 in the MP spec indicates that the operating system is
responsible for assigning unique IDs to the IOAPICs.
The enclosed patch programs the IOAPIC IDs according to the IOAPIC
entries in the MP table.
Submitted by: tegge
syscall path inward. A system call may select whether it needs the MP
lock or not (the default being that it does need it).
A great deal of conditional SMP code for various deadended experiments
has been removed. 'cil' and 'cml' have been removed entirely, and the
locking around the cpl has been removed. The conditional
separately-locked fast-interrupt code has been removed, meaning that
interrupts must hold the CPL now (but they pretty much had to anyway).
Another reason for doing this is that the original separate-lock for
interrupts just doesn't apply to the interrupt thread mechanism being
contemplated.
Modifications to the cpl may now ONLY occur while holding the MP
lock. For example, if an otherwise MP safe syscall needs to mess with
the cpl, it must hold the MP lock for the duration and must (as usual)
save/restore the cpl in a nested fashion.
This is precursor work for the real meat coming later: avoiding having
to hold the MP lock for common syscalls and I/O's and interrupt threads.
It is expected that the spl mechanisms and new interrupt threading
mechanisms will be able to run in tandem, allowing a slow piecemeal
transition to occur.
This patch should result in a moderate performance improvement due to
the considerable amount of code that has been removed from the critical
path, especially the simplification of the spl*() calls. The real
performance gains will come later.
Approved by: jkh
Reviewed by: current, bde (exception.s)
Some work taken from: luoqi's patch
the low level interrupt handler number should be used. Change
setup_apic_irq_mapping() to allocate low level interrupt handler X (Xintr${X})
for any ISA interrupt X mentioned in the MP table.
Remove an assumption in the driver for the system clock (clock.c) that
interrupts mentioned in the MP table as delivered to IOAPIC #0 intpin Y
is handled by low level interrupt handler Y (Xintr${Y}) but don't assume
that low level interrupt handler 0 (Xintr0) is used.
Don't allocate two low level interrupt handlers for the system clock.
Reviewed by: NOKUBI Hirotaka <hnokubi@yyy.or.jp>
and extend. The new function containing the code is named schedclock()
as in NetBSD, but it has slightly different semantics (it already handles
incrementation of p->p_cpticks, and it should handle any calling frequency).
Agreed with in principle by: dufault
the caller to specify a function to be guarded between an entry and exit
barrier, as well as pre- and post-barrier functions.
The primary use for this function is synchronised update of per-cpu private
data. The implementation is almost (but not quite) MI; with a better
mechanism for masking per-CPU interrupts it could probably be hoisted.
Reviewed by: peter (partially)
range attributes after they have been extracted from the master.
Hook up the i686 MP code to do this for each AP.
Be more careful about printing the default memory type for the i686.
Suggestions from: luoqi
- %fs register is added to trapframe and saved/restored upon kernel entry/exit.
- Per-cpu pages are no longer mapped at the same virtual address.
- Each cpu now has a separate gdt selector table. A new segment selector
is added to point to per-cpu pages, per-cpu global variables are now
accessed through this new selector (%fs). The selectors in gdt table are
rearranged for cache line optimization.
- fask_vfork is now on as default for both UP and SMP.
- Some aio code cleanup.
Reviewed by: Alan Cox <alc@cs.rice.edu>
John Dyson <dyson@iquest.net>
Julian Elischer <julian@whistel.com>
Bruce Evans <bde@zeta.org.au>
David Greenman <dg@root.com>
numbers as chars or use bogus casts in an attempt to unmisrepresnt
them. In top, don't assume that 0xff is the only negative cpu
number when cpu numbers are (mis)represented.
is the preparation step for moving pmap storage out of vmspace proper.
Reviewed by: Alan Cox <alc@cs.rice.edu>
Matthew Dillion <dillon@apollo.backplane.com>
and use this when masking/unmasking interrupts.
Maintain a mapping from (iopaic number, int pin) tuple to irq number,
and use this when configuring devices and programming the ioapics.
Previous code assumed that irq number was equal to int pin number, and
that the ioapic number was 0.
Don't let an AP enter _cpu_switch before all local apics are initialized.