option, unbreak the lock tracing release semantic by embedding
calls to LOCKSTAT_PROFILE_RELEASE_LOCK() direclty in the inlined
version of the releasing functions for mutex, rwlock and sxlock.
Failing to do so skips the lockstat_probe_func invokation for
unlocking.
- As part of the LOCKSTAT support is inlined in mutex operation, for
kernel compiled without lock debugging options, potentially every
consumer must be compiled including opt_kdtrace.h.
Fix this by moving KDTRACE_HOOKS into opt_global.h and remove the
dependency by opt_kdtrace.h for all files, as now only KDTRACE_FRAMES
is linked there and it is only used as a compile-time stub [0].
[0] immediately shows some new bug as DTRACE-derived support for debug
in sfxge is broken and it was never really tested. As it was not
including correctly opt_kdtrace.h before it was never enabled so it
was kept broken for a while. Fix this by using a protection stub,
leaving sfxge driver authors the responsibility for fixing it
appropriately [1].
Sponsored by: EMC / Isilon storage division
Discussed with: rstone
[0] Reported by: rstone
[1] Discussed with: philip
MAC_BOOLEAN -> MAC_POLICY_BOOLEAN
MAC_BOOLEAN_NOSLEEP -> MAC_POLICY_BOOLEANN_NOSLEEP
MAC_CHECK -> MAC_POLICY_CHECK
MAC_CHECK_NOSLEEP -> MAC_POLICY_CHECK_NOSLEEP
MAC_EXTERNALIZE -> MAC_POLICY_EXTERNALIZE
MAC_GRANT -> MAC_POLICY_GRANT
MAC_GRANT_NOSLEEP -> MAC_POLICY_GRANT_NOSLEEP
MAC_INTERNALIZE -> MAC_POLICY_INTERNALIZE
MAC_PERFORM -> MAC_POLICY_PERFORM_CHECK
MAC_PERFORM_NOSLEEP -> MAC_POLICY_PERFORM_NOSLEEP
This frees up those macro names for use in wrapping calls into the MAC
Framework from the remainder of the kernel.
Obtained from: TrustedBSD Project
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
privilege grants so that dtrace can be more easily used to monitor
the security decisions being generated by the MAC Framework following
policy invocation.
Successful access control checks will be reported by:
mac_framework:kernel:<entrypoint>:mac_check_ok
Failed access control checks will be reported by:
mac_framework:kernel:<entrypoint>:mac_check_err
Successful privilege grants will be reported by:
mac_framework:kernel:priv_grant:mac_grant_ok
Failed privilege grants will be reported by:
mac_framework:kernel:priv_grant:mac_grant_err
In all cases, the return value (always 0 for _ok, otherwise an errno
for _err) will be reported via arg0 on the probe, and subsequent
arguments will hold entrypoint-specific data, in a style similar to
privilege tracing.
Obtained from: TrustedBSD Project
Sponsored by: Google, Inc.
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
from Mac OS X Leopard--rationalize naming for entry points to
the following general forms:
mac_<object>_<method/action>
mac_<object>_check_<method/action>
The previous naming scheme was inconsistent and mostly
reversed from the new scheme. Also, make object types more
consistent and remove spaces from object types that contain
multiple parts ("posix_sem" -> "posixsem") to make mechanical
parsing easier. Introduce a new "netinet" object type for
certain IPv4/IPv6-related methods. Also simplify, slightly,
some entry point names.
All MAC policy modules will need to be recompiled, and modules
not updates as part of this commit will need to be modified to
conform to the new KPI.
Sponsored by: SPARTA (original patches against Mac OS X)
Obtained from: TrustedBSD Project, Apple Computer
variable name conventions for arguments passed into the framework --
for example, name network interfaces 'ifp', sockets 'so', mounts 'mp',
mbufs 'm', processes 'p', etc, wherever possible. Previously there
was significant variation in this regard.
Normalize copyright lists to ranges where sensible.
Don't perform a nested include of _label.h in mac.h, as mac.h now
describes only the user API to MAC, and _label.h defines the in-kernel
representation of MAC labels.
Remove mac.h includes from policies and MAC framework components that do
not use userspace MAC API definitions.
Add _KERNEL inclusion checks to mac_internal.h and mac_policy.h, as these
are kernel-only include files
Obtained from: TrustedBSD Project
Framework and security modules, to src/sys/security/mac/mac_policy.h,
completing the removal of kernel-only MAC Framework include files from
src/sys/sys. Update the MAC Framework and MAC policy modules. Delete
the old mac_policy.h.
Third party policy modules will need similar updating.
Obtained from: TrustedBSD Project
subsystems will be a property of policy modules, which may require
access control check entry points to be invoked even when not actively
enforcing (i.e., to track information flow without providing
protection).
Obtained from: TrustedBSD Project
Suggested by: Christopher dot Vance at sparta dot com
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
other problems while labels were first being added to various kernel
objects. They have outlived their usefulness.
MFC after: 1 month
Suggested by: Christopher dot Vance at SPARTA dot com
Obtained from: TrustedBSD Project
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
type, rather than "object_label" as the first argument. This reduces
complexity a little for the consumer, and also makes it easier for
use to rename the underlying entry points in struct mac_policy_obj.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
Pipe enforcement flag.
Pipe object debugging counters.
MALLOC type for MAC label storage.
Pipe MAC label management routines, externalize/internalization/change
routines.
Pipe MAC access control checks.
Un-staticize functions called from mac_set_fd() when operating on a
pipe. Abstraction improvements in this space seem likely.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mac_reflect_mbuf_icmp()
mac_reflect_mbuf_tcp()
These entry points permit MAC policies to do "update in place"
changes to the labels on ICMP and TCP mbuf headers when an ICMP or
TCP response is generated to a packet outside of the context of
an existing socket. For example, in respond to a ping or a RST
packet to a SYN on a closed port.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
explicit access control checks to delete and list extended attributes
on a vnode, rather than implicitly combining with the setextattr and
getextattr checks. This reflects EA API changes in the kernel made
recently, including the move to explicit VOP's for both of these
operations.
Obtained from: TrustedBSD PRoject
Sponsored by: DARPA, Network Associates Laboratories
MAC_DEBUG_COUNTER_INC() and MAC_DEBUG_COUNTER_DEC() to maintain
debugging counter values rather than #ifdef'ing the atomic
operations to MAC_DEBUG.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
the MAC policy modules to improve robustness against C string
bugs and vulnerabilities. Following these revisions, all
string construction of labels for export to userspace (or
elsewhere) is performed using the sbuf API, which prevents
the consumer from having to perform laborious and intricate
pointer and buffer checks. This substantially simplifies
the externalization logic, both at the MAC Framework level,
and in individual policies; this becomes especially useful
when policies export more complex label data, such as with
compartments in Biba and MLS.
Bundled in here are some other minor fixes associated with
externalization: including avoiding malloc while holding the
process mutex in mac_lomac, and hence avoid a failure mode
when printing labels during a downgrade operation due to
the removal of the M_NOWAIT case.
This has been running in the MAC development tree for about
three weeks without problems.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
Several of the subtypes have an associated vnode which is used for
stuff like the f*() functions.
By giving the vnode a speparate field, a number of checks for the specific
subtype can be replaced simply with a check for f_vnode != NULL, and
we can later free f_data up to subtype specific use.
At this point in time, f_data still points to the vnode, so any code I
might have overlooked will still work.
constants in question refer to the number of label slots, not the
maximum number of policies that may be loaded. This should reduce
confusion regarding an element in the MAC sysctl MIB, as well as
make it more clear what the affect of changing the compile-time
constants is.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
- Add a parameter to vm_pageout_flush() that tells vm_pageout_flush()
whether its caller has locked the vm_object. (This is a temporary
measure to bootstrap vm_object locking.)
don't try and convert the argument flags to malloc flags, or we risk
implicitly requesting blocking and generating witness warnings.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mbuf_to_label(). This permits the vast majority of entry point code
to be unaware that labels are stored in m->m_pkthdr.label, such that
we can experiment storage of labels elsewhere (such as in m_tags).
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
of asserting that an mbuf has a packet header. Use it instead of hand-
rolled versions wherever applicable.
Submitted by: Hiten Pandya <hiten@unixdaemons.com>
additional flags argument to indicate blocking disposition, and
pass in M_NOWAIT from the IP reassembly code to indicate that
blocking is not OK when labeling a new IP fragment reassembly
queue. This should eliminate some of the WITNESS warnings that
have started popping up since fine-grained IP stack locking
started going in; if memory allocation fails, the creation of
the fragment queue will be aborted.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
check, mac_check_sysarch_ioperm(), permitting MAC security policy
modules to control access to these interfaces. Currently, they
protect access to IOPL on i386, and setting HAE on Alpha.
Additional checks might be required on other platforms to prevent
bypass of kernel security protections by unauthorized processes.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
modules to authorize disabling of swap against a particular vnode.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
pointer types, and remove a huge number of casts from code using it.
Change struct xfile xf_data to xun_data (ABI is still compatible).
If we need to add a #define for f_data and xf_data we can, but I don't
think it will be necessary. There are no operational changes in this
commit.
unused. Replace it with a dm_mount back-pointer to the struct mount
that the devfs_mount is associated with. Export that pointer to MAC
Framework entry points, where all current policies don't use the
pointer. This permits the SEBSD port of SELinux's FLASK/TE to compile
out-of-the-box on 5.0-CURRENT with full file system labeling support.
Approved by: re (murray)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
by policy modules making use of downgrades in the MAC AST event. This
is required by the mac_lomac port of LOMAC to the MAC Framework.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
in struct proc. While the process label is actually stored in the
struct ucred pointed to by p_ucred, there is a need for transient
storage that may be used when asynchronous (deferred) updates need to
be performed on the "real" label for locking reasons. Unlike other
label storage, this label has no locking semantics, relying on policies
to provide their own protection for the label contents, meaning that
a policy leaf mutex may be used, avoiding lock order issues. This
permits policies that act based on historical process behavior (such
as audit policies, the MAC Framework port of LOMAC, etc) can update
process properties even when many existing locks are held without
violating the lock order. No currently committed policies implement use
of this label storage.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
checks permit policy modules to augment the system policy for permitting
kld operations. This permits policies to limit access to kld operations
based on credential (and other) properties, as well as to perform checks
on the kld being loaded (integrity, etc).
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories