kld_unload event handler which gets invoked after a linker file has been
successfully unloaded. The kld_unload and kld_load event handlers are now
invoked with the shared linker lock held, while kld_unload_try is invoked
with the lock exclusively held.
Convert hwpmc(4) to use these event handlers instead of having
kern_kldload() and kern_kldunload() invoke hwpmc(4) hooks whenever files are
loaded or unloaded. This has no functional effect, but simplifes the linker
code somewhat.
Reviewed by: jhb
2 predictable branches nowadays. However as a pre-condition the
caller had to ensure that the mbuf pkthdr did not have any mtags
attached to it, costing some potential branches again.
Sponsored by: The FreeBSD Foundation
linker_init_kernel_modules() and linker_preload() in order to remove most
of the checks for !cold before asserting that the kld lock is held. These
routines are invoked by SYSINIT(9), so there's no harm in them taking the
kld lock.
features. The changes in particular are:
o Remove rarely used "header" pointer and replace it with a 64bit protocol/
layer specific union PH_loc for local use. Protocols can flexibly overlay
their own 8 to 64 bit fields to store information while the packet is
worked on.
o Mechanically convert IP reassembly, IGMP/MLD and ATM to use pkthdr.PH_loc
instead of pkthdr.header.
o Extend csum_flags to 64bits to allow for additional future offload
information to be carried (e.g. iSCSI, IPsec offload, and others).
o Move the RSS hash type enumerator from abusing m_flags to its own 8bit
rsstype field. Adjust accessor macros.
o Add cosqos field to store Class of Service / Quality of Service information
with the packet. It is not yet supported in any drivers but allows us to
get on par with Cisco/Juniper in routing applications (plus MPLS QoS) with
a modernized ALTQ.
o Add four 8 bit fields l[2-5]hlen to store the relative header offsets
from the start of the packet. This is important for various offload
capabilities and to relieve the drivers from having to parse the packet
and protocol headers to find out location of checksums and other
information. Header parsing in drivers is a lot of copy-paste and
unhandled corner cases which we want to avoid.
o Add another flexible 64bit union to map various additional persistent
packet information, like ether_vtag, tso_segsz and csum fields.
Depending on the csum_flags settings some fields may have different usage
making it very flexible and adaptable to future capabilities.
o Restructure the CSUM flags to better signify their outbound (down the
stack) and inbound (up the stack) use. The CSUM flags used to be a bit
chaotic and rather poorly documented leading to incorrect use in many
places. Bring clarity into their use through better naming.
Compatibility mappings are provided to preserve the API. The drivers
can be corrected one by one and MFC'd without issue.
o The size of pkthdr stays the same at 48/56bytes (32/64bit architectures).
Sponsored by: The FreeBSD Foundation
free function access to the mbuf the external memory was attached
to.
Mechanically adjust all users to include the mbuf parameter.
This fixes a long standing annoyance for external free functions.
Before one had to sacrifice one of the argument pointers for this.
Sponsored by: The FreeBSD Foundation
Remove locking from taskqueue_member(). The list of threads is static
during the taskqueue life cycle, so there is no need to protect it,
taking quite congested lock several more times for each ZFS I/O.
to 8 bits. ext_type is an enumerator and the number of types we
have is a mere dozen.
A couple of ext_types are renumbered to fit within 8 bits.
EXT_VENDOR[1-4] and EXT_EXP[1-4] types for vendor-internal and
experimental local mapping.
The ext_flags field is currently unused but has a couple of flags
already defined for future use. Again vendor and experimental
flags are provided for local mapping.
EXT_FLAG_BITS is provided for the printf(9) %b identifier.
Initialize and copy ext_flags in the relevant mbuf functions.
Improve alignment and packing of struct m_ext on 32 and 64 archs
by carefully sorting the fields.
configure sa(4) to request no I/O splitting by default.
For tape devices, the user needs to be able to clearly understand
what blocksize is actually being used when writing to a tape
device. The previous behavior of physio(9) was that it would split
up any I/O that was too large for the device, or too large to fit
into MAXPHYS. This means that if, for instance, the user wrote a
1MB block to a tape device, and MAXPHYS was 128KB, the 1MB write
would be split into 8 128K chunks. This would be done without
informing the user.
This has suboptimal effects, especially when trying to communicate
status to the user. In the event of an error writing to a tape
(e.g. physical end of tape) in the middle of a 1MB block that has
been split into 8 pieces, the user could have the first two 128K
pieces written successfully, the third returned with an error, and
the last 5 returned with 0 bytes written. If the user is using
a standard write(2) system call, all he will see is the ENOSPC
error. He won't have a clue how much actually got written. (With
a writev(2) system call, he should be able to determine how much
got written in addition to the error.)
The solution is to prevent physio(9) from splitting the I/O. The
new cdev flag, SI_NOSPLIT, tells physio that the driver does not
want I/O to be split beforehand.
Although the sa(4) driver now enables SI_NOSPLIT by default,
that can be disabled by two loader tunables for now. It will not
be configurable starting in FreeBSD 11.0. kern.cam.sa.allow_io_split
allows the user to configure I/O splitting for all sa(4) driver
instances. kern.cam.sa.%d.allow_io_split allows the user to
configure I/O splitting for a specific sa(4) instance.
There are also now three sa(4) driver sysctl variables that let the
users see some sa(4) driver values. kern.cam.sa.%d.allow_io_split
shows whether I/O splitting is turned on. kern.cam.sa.%d.maxio shows
the maximum I/O size allowed by kernel configuration parameters
(e.g. MAXPHYS, DFLTPHYS) and the capabilities of the controller.
kern.cam.sa.%d.cpi_maxio shows the maximum I/O size supported by
the controller.
Note that a better long term solution would be to implement support
for chaining buffers, so that that MAXPHYS is no longer a limiting
factor for I/O size to tape and disk devices. At that point, the
controller and the tape drive would become the limiting factors.
sys/conf.h: Add a new cdev flag, SI_NOSPLIT, that allows a
driver to tell physio not to split up I/O.
sys/param.h: Bump __FreeBSD_version to 1000049 for the addition
of the SI_NOSPLIT cdev flag.
kern_physio.c: If the SI_NOSPLIT flag is set on the cdev, return
any I/O that is larger than si_iosize_max or
MAXPHYS, has more than one segment, or would have
to be split because of misalignment with EFBIG.
(File too large).
In the event of an error, print a console message to
give the user a clue about what happened.
scsi_sa.c: Set the SI_NOSPLIT cdev flag on the devices created
for the sa(4) driver by default.
Add tunables to control whether we allow I/O splitting
in physio(9).
Explain in the comments that allowing I/O splitting
will be deprecated for the sa(4) driver in FreeBSD
11.0.
Add sysctl variables to display the maximum I/O
size we can do (which could be further limited by
read block limits) and the maximum I/O size that
the controller can do.
Limit our maximum I/O size (recorded in the cdev's
si_iosize_max) by MAXPHYS. This isn't strictly
necessary, because physio(9) will limit it to
MAXPHYS, but it will provide some clarity for the
application.
Record the controller's maximum I/O size reported
in the Path Inquiry CCB.
sa.4: Document the block size behavior, and explain that
the option of allowing physio(9) to split the I/O
will disappear in FreeBSD 11.0.
Sponsored by: Spectra Logic
does not make sense to wait for the soft busy state of the page to
drain. The vm object lock is dropped immediately after, so the result
of the wait is invalidated.
It might make sense to not wait for the hard busy state as well,
esp. for the fully valid page, but this is postponed for now.
Reviewed by: alc
Tested by: pho
Sponsored by: The FreeBSD Foundation
than using a home-rolled version. The home-rolled version could result
in shorter-than-requested sleeps.
Reported by: Vitja Makarov <vitja.makarov@gmail.com>
MFC after: 2 weeks
shared busy without first draining the hard busy state. Previously it
went unnoticed since VPO_BUSY and m->busy fields were distinct, and
vm_page_io_start() did not verified that the passed page has VPO_BUSY
flag cleared, but such page state is wrong. New implementation is
more strict and catched this case.
Drain the busy state as needed, before calling vm_page_sbusy().
Tested by: pho, jkim
Sponsored by: The FreeBSD Foundation
The flag was mandatory since r209792, where vm_page_grab(9) was
changed to only support the alloc retry semantic.
Suggested and reviewed by: alc
Sponsored by: The FreeBSD Foundation
Add MAC framework entries for posix shm read and write.
Do not allow implicit extension of the underlying memory segment past
the limit set by ftruncate(2) by either of the syscalls. Read and
write returns short i/o, lseek(2) fails with EINVAL when resulting
offset does not fit into the limit.
Discussed with: alc
Tested by: pho
Sponsored by: The FreeBSD Foundation
that don't support superpages. This keeps the number of spans and internal
fragmentation lower.
- When the user asks for alignment from vmem_xalloc adjust the imported size
by 2*align to be certain we can satisfy the allocation. This comes at
the expense of potential failures when the backend can't supply enough
memory but could supply the requested size and alignment.
Sponsored by: EMC / Isilon Storage Division
for a very long time, if ever.
Should such a functionality ever be needed again the appropriate and
much better way to do it is through a custom EXT_SOMETHING external mbuf
type together with a dedicated *ext_free function.
Discussed with: trociny, glebius
When an existing process is provided, the thread selected to use
to initialize the new thread could have exited and be reaped.
Acquire the proc lock earlier to ensure the thread remains valid.
Reviewed by: jhb, julian (previous version)
MFC after: 3 days
The previous method was to set the D_UNMAPPED_IO flag in the cdevsw
for the driver. The problem with this is that in many cases (e.g.
sa(4)) there may be some instances of the driver that can handle
unmapped I/O and some that can't. The isp(4) driver can handle
unmapped I/O, but the esp(4) driver currently cannot. The cdevsw
is shared among all driver instances.
So instead of setting a flag on the cdevsw, set a flag on the cdev.
This allows drivers to indicate support for unmapped I/O on a
per-instance basis.
sys/conf.h: Remove the D_UNMAPPED_IO cdevsw flag and replace it
with an SI_UNMAPPED cdev flag.
kern_physio.c: Look at the cdev SI_UNMAPPED flag to determine
whether or not a particular driver can handle
unmapped I/O.
geom_dev.c: Set the SI_UNMAPPED flag for all GEOM cdevs.
Since GEOM will create a temporary mapping when
needed, setting SI_UNMAPPED unconditionally will
work.
Remove the D_UNMAPPED_IO flag.
nvme_ns.c: Set the SI_UNMAPPED flag on cdevs created here
if NVME_UNMAPPED_BIO_SUPPORT is enabled.
vfs_aio.c: In aio_qphysio(), check the SI_UNMAPPED flag on a
cdev instead of the D_UNMAPPED_IO flag on the cdevsw.
sys/param.h: Bump __FreeBSD_version to 1000045 for the switch from
setting the D_UNMAPPED_IO flag in the cdevsw to setting
SI_UNMAPPED in the cdev.
Reviewed by: kib, jimharris
MFC after: 1 week
Sponsored by: Spectra Logic
the order that they arrive, to holding
(a) granted write lock requests, followed by
(b) granted read lock requests, followed by
(c) ungranted requests, in order of arrival.
This changes the stopping condition for iterating through granted locks to
see if a new request can be granted: When considering a read lock request,
we can stop iterating as soon as we see a read lock request, since anything
after that point is either a granted read lock request or a request which
has not yet been granted. (For write lock requests, we must still compare
against all granted lock requests.)
For workloads with R parallel reads and W parallel writes, this improves
the time spent from O((R+W)^2) to O(W*(R+W)); i.e., heavy parallel-read
workloads become significantly more scalable.
No statistically significant change in buildworld time has been measured,
but synthetic tests of parallel 'dd > /dev/null' and 'openssl enc >/dev/null'
with the input file cached yield dramatic (up to 10x) improvement with high
(up to 128 processes) levels of parallelism.
Reviewed by: kib
using SDT_PROBE_ARGTYPE(). This will make it easy to extend the SDT(9) API
to allow probes with dynamically-translated types.
There is no functional change.
MFC after: 2 weeks
- Set NOTE_TRACKERR before running filt_proc(). If the knote did not
have NOTE_FORK set in fflags when registered, then the TRACKERR event
could miss being posted.
- Don't pass the pid in to filt_proc() for NOTE_FORK events. The special
handling for pids is done knote_fork() directly and no longer in
filt_proc().
MFC after: 2 weeks
probes declared in a kernel module when that module is unloaded. In
particular,
* Unloading a module with active SDT probes will cause a panic. [1]
* A module's (FBT/SDT) probes aren't destroyed when the module is unloaded;
trying to use them after the fact will generally cause a panic.
This change fixes both problems by porting the DTrace module load/unload
handlers from illumos and registering them with the corresponding
EVENTHANDLER(9) handlers. This allows the DTrace framework to destroy all
probes defined in a module when that module is unloaded, and to prevent a
module unload from proceeding if some of its probes are active. The latter
problem has already been fixed for FBT probes by checking lf->nenabled in
kern_kldunload(), but moving the check into the DTrace framework generalizes
it to all kernel providers and also fixes a race in the current
implementation (since a probe may be activated between the check and the
call to linker_file_unload()).
Additionally, the SDT implementation has been reworked to define SDT
providers/probes/argtypes in linker sets rather than using SYSINIT/SYSUNINIT
to create and destroy SDT probes when a module is loaded or unloaded. This
simplifies things quite a bit since it means that pretty much all of the SDT
code can live in sdt.ko, and since it becomes easier to integrate SDT with
the DTrace framework. Furthermore, this allows FreeBSD to be quite flexible
in that SDT providers spanning multiple modules can be created on the fly
when a module is loaded; at the moment it looks like illumos' SDT
implementation requires all SDT probes to be statically defined in a single
kernel table.
PR: 166927, 166926, 166928
Reported by: davide [1]
Reviewed by: avg, trociny (earlier version)
MFC after: 1 month
called after the module has been loaded, and the unload handlers are called
before the module is unloaded. Moreover, the module unload handlers may
return an error to prevent the unload from proceeding.
Reviewed by: avg
MFC after: 2 weeks
is operational. init_sleepqueues() initializes 256 mutexes, which,
due to witness still being cold, started to overflow the pending_locks
array.
As stated in the reported panic message, increase WITNESS_PENDLIST
from 768 to 1024, which provides space for additional 256 locks.
Reported by: many
Tested by: rakuco, bdrewery
for nodes used in vm_radix.
On architectures supporting direct mapping, also avoid to pre-allocate
the KVA for such nodes.
In order to do so make the operations derived from vm_radix_insert()
to fail and handle all the deriving failure of those.
vm_radix-wise introduce a new function called vm_radix_replace(),
which can replace a leaf node, already present, with a new one,
and take into account the possibility, during vm_radix_insert()
allocation, that the operations on the radix trie can recurse.
This means that if operations in vm_radix_insert() recursed
vm_radix_insert() will start from scratch again.
Sponsored by: EMC / Isilon storage division
Reviewed by: alc (older version)
Reviewed by: jeff
Tested by: pho, scottl
Now the MTX_RECURSE flag can be passed to the mtx_*_flag() calls.
This helps in cases we want to narrow down to specific calls the
possibility to recurse for some locks.
Sponsored by: EMC / Isilon storage division
Reviewed by: jeff, alc
Tested by: pho
Unify the 2 concept into a real, minimal, sxlock where the shared
acquisition represent the soft busy and the exclusive acquisition
represent the hard busy.
The old VPO_WANTED mechanism becames the hard-path for this new lock
and it becomes per-page rather than per-object.
The vm_object lock becames an interlock for this functionality:
it can be held in both read or write mode.
However, if the vm_object lock is held in read mode while acquiring
or releasing the busy state, the thread owner cannot make any
assumption on the busy state unless it is also busying it.
Also:
- Add a new flag to directly shared busy pages while vm_page_alloc
and vm_page_grab are being executed. This will be very helpful
once these functions happen under a read object lock.
- Move the swapping sleep into its own per-object flag
The KPI is heavilly changed this is why the version is bumped.
It is very likely that some VM ports users will need to change
their own code.
Sponsored by: EMC / Isilon storage division
Discussed with: alc
Reviewed by: jeff, kib
Tested by: gavin, bapt (older version)
Tested by: pho, scottl