The later firmware devices (including iwn!) support multiple configuration
contexts for a lot of things, leaving it up to the firmware to decide
which channel and vap is active. This allows for things like off-channel
p2p sta/ap operation and other weird things.
However, net80211 is still focused on a "net80211 drives all" when it comes to driving
the NIC, and as part of this history a lot of these options are global and not per-VAP.
This is fine when net80211 drives things and all VAPs share a single channel - these
parameters importantly really reflect the state of the channel! - but it will increasingly
be not fine when we start supporting more weird configurations and more recent NICs.
Yeah, recent like iwn/iwm.
Anyway - so, migrate all of the HT protection, legacy protection and preamble
stuff to be per-VAP. The global flags are still there; they're now calculated
in a deferred taskqueue that mirrors the old behaviour. Firmware based drivers
which have per-VAP configuration of these parameters can now just listen to the
per-VAP options.
What do I mean by per-channel? Well, the above configuration parameters really
are about interoperation with other devices on the same channel. Eg, HT protection
mode will flip to legacy/mixed if it hears ANY BSS that supports non-HT stations or
indicates it has non-HT stations associated. So, these flags really should be
per-channel rather than per-VAP, and then for things like "do i need short preamble
or long preamble?" turn into a "do I need it for this current operating channel".
Then any VAP using it can query the channel that it's on, reflecting the real
required state.
This patch does none of the above paragraph just yet.
I'm also cheating a bit - I'm currently not using separate taskqueues for
the beacon updates and the per-VAP configuration updates. I can always further
split it later if I need to but I didn't think it was SUPER important here.
So:
* Create vap taskqueue entries for ERP/protection, HT protection and short/long
preamble;
* Migrate the HT station count, short/long slot station count, etc - into per-VAP
variables rather than global;
* Fix a bug with my WME work from a while ago which made it per-VAP - do the WME
beacon update /after/ the WME update taskqueue runs, not before;
* Any time the HT protmode configuration changes or the ERP protection mode
config changes - schedule the task, which will call the driver without the
net80211 lock held and all correctly serialised;
* Use the global flags for beacon IEs and VAP flags for probe responses and
other IE situations.
The primary consumer of this is ath10k. iwn could use it when sending RXON,
but we don't support IBSS or AP modes on it yet, and I'm not yet sure whether
it's required in STA mode (ie whether the firmware parses beacons to change
protection mode or whether we need to.)
Tested:
* AR9280, STA/AP
* AR9380, DWDS STA+STA/AP
* ath10k work, STA/AP
* Intel 6235, STA
* Various rtwn / run NICs, DWDS STA and STA configurations
This is a new, optional (for now!) method that drivers can use to separate
node allocation and node initialisation. Right now they're the same, and
drivers that need to do node allocation via firmware commands need to sleep
and thus they need to defer node allocation into an internal taskqueue.
Right now they're just separate but not deferred. Later on if I get the time
we'll start deferring the node and key related operations but that requires
making a bunch of other stuff (notably things that generate frames!) also
async/deferred.
Tested:
* RT3593, STA/DWDS mode
* AR9380, STA/AP modes
* QCA9880 (athp) - STA/AP modes
The 11b/11g ERP and slot time update handling are two things which weren't
migrated into the per-VAP state when Sam did the initial VAP work.
That makes sense for a lot of setups where net80211 is driving radio state
and the radio only cares about the shared state.
However, as noted by a now deleted comment, the ERP and slot time updates
aren't EXACTLY correct/accurate - they only take into account the most
RECENTLY created VAP, and the state updates when one creates/destroys
VAPs isn't exactly great.
So:
* track the short slot logic per VAP;
* whenever the slot time configuration changes, just push it into a deferred
task queue update so drivers don't have to serialise it themselves;
* if a driver registers a per-VAP slot time handler then it'll just get the
per VAP one;
* .. if a driver registers a global one then the legacy behaviour is maintained -
a single slot time is calculated and pushed out.
Note that the calculated slot time is better than the existing logic - if ANY
of the VAPs require long slot then it's disabled for all VAPs rather than
whatever the last configured VAP did.
Now, this isn't entirely complete - the rest of ERP tracking around short/long
slot capable station tracking needs to be converted into per-VAP, as well
as the preamble/barker flags. Luckily those also can be done in a similar
fashion - keep per-VAP counters/flags and unify them before doing the driver
update. I'll defer that work until later.
All the existing drivers can keep doing what they're doing with the global
slot time flags as that is maintained. One driver (iwi) used the per-VAP
flags instead of the ic flags, so now that driver will work properly.
This unblocks some ath10k porting work as the firmware takes the slot time
configuration per-VAP rather than globally, and some firmware handles
STA+AP and STA+STA (on same/different channels) configurations where
the firmware will switch slot time as appropriate.
Tested:
* AR9380, STA/AP mode
* AR9880 (ath10k), STA mode
ieee80211_alloc_node() does not initialize rateset tables; that's not
expected by rate control modules and will result in array access at
index -1 - where ni_essid[] array is located (zeroed at allocation, so
there are no user-visible consequences).
Just delay rate control initialization to the moment, when rateset
tables are initiaziled; nothing will use rates here anyway.
MFC after: 4 days
The comment above ieee80211_ageq_cleanup specifically notes that the queue
is assumed to be empty, and in order to make it so, ieee80211_ageq_drain
must be used.
Submitted by: Augustin Cavalier <waddlesplash@gmail.com>
Obtained from: Haiku (dffc3e235360cd7b71261239ee8507b7d62a1471)
MFC after: 1 week
Select proper mode when node can do VHT.
Currently there are no drivers with VHT support in the tree,
so this should be noop.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D9806
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
No functional change intended.
* Migrate the rx_params stuff out from ieee80211_freebsd.h where it doesn't belong -
this isn't freebsd specific anymore.
* Don't use a hard-coded number of chains in the ioctl header; now we can shuffle
MAX_CHAINS around so it can be used in the right spot.
* Extend the signal/noisefloor levels in the mimo stats struct to userland to include
the signal and noisefloor levels for each 20MHz slice of a 160MHz channel.
* Bump the number of EVM pilots in preparation for 4x4 and 160MHz channels.
Tested:
* ath(4), STA mode
* iwn(4), STA mode
* local ath10k port, STA mode
TODO:
* 11ax chips will come with 5GHz 8x8 hardware for lots of MU-MIMO - I'll re-bump it
at that point.
Note:
* This breaks the driver and ifconfig ABI; please recompile the kernel,
ifconfig and wpa_supplicant/hostapd.
Flags
- IEEE80211_F_ASCAN
- IEEE80211_F_SIBSS
- IEEE80211_F_IBSSON
are not used since r170530 (old WI compatibility ioctls removal)
and r178354 (removed from other places).
IEEE80211_F_TXPOW_FIXED was never utilized; initially added with
IEEE80211_F_TXPOW_AUTO / IEEE80211_F_TXPOW_OFF flags,
which were replaced with IEEE80211_C_TXPMGT capability check in r138568.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D9369
This is the bulk of the magic to start enabling VHT channel negotiation.
It is absolutely, positively not yet even a complete VHT wave-1 implementation.
* parse IEs in scan, assoc req/resp, probe req/resp;
* break apart the channel upgrade from the HT IE parsing - do it after the
VHT IEs are parsed;
* (dirty! sigh) add channel width decision making in ieee80211_ht.c htinfo_update_chw().
This is the main bit where negotiated channel promotion through IEs occur.
* Shoehorn in VHT node init ,teardown, rate control, etc calls like the HT
versions;
* Do VHT channel adjustment where appropriate
Tested:
* monitor mode, ath10k port
* STA mode, ath10k port - VHT20, VHT40, VHT80 modes
TODO:
* IBSS;
* hostap;
* (ignore mesh, wds for now);
* finish 11n state engine - channel width change, opmode notifications, SMPS, etc;
* VHT basic rate negotiation and acceptance criteria when scanning, associating, etc;
* VHT control/management frame handling (group managment and operating mode being
the two big ones);
* Verify TX/RX VHT rate negotiation is actually working correctly.
Whilst here, add some comments about seqno allocation and locking. To achieve
the full VHT rates I need to push seqno allocation into the drivers and
finally remove the IEEE80211_TX_LOCK() I added years ago to fix issues. :/
This just stores pointers to the IE; it doesn't yet parse anything.
Note: it blows out the size of ieee80211_node, so this will require
ye olde kernel/modules recompile.
* Pepper comments around which describe what state(s) we're in when faking
up 11n nodes.
* By default don't fake it up as 11n until we properly negotiate the 11n
capabilities using probe request/response frames.
* Send a probe request with our HT information, as the 802.11-2012 spec
suggests.
* Reassociate with the driver if we've been promoted.
This is done because although learning a peer via beacons can learn 11n
state, learning peers via hearing probe frames and broadcast frames
does not. Thus, sometimes you end up with an 11n peer in the peer
table and sometimes you don't.
Note that the probe request/response exchange may not actually succeed.
Ideally we'd put the peer into some blocking state until we've exchanged
probe request/reponse to learn capabilities, or we timeout and just
stay non-11n.
This is more an experiment to get 11n IBSS nodes actually discovering
each other and be able to transmit. There are other issues that creep
up which I'll attempt to address in future commits.
Tested:
* AR9380 NICs in 11n mode.
Reviewed by: avos
Differential Revision: https://reviews.freebsd.org/D8365
- Add a counter into 'struct ieee80211_node_table' to save current number
of allocated nodes.
(allows to remove array overflow checking in ieee80211_iterate_nodes()).
- Add ieee80211_iterate_nodes_vap() function; unlike non-vap version,
it iterates on nodes for specified vap only.
In addition to the above:
- Remove ieee80211_iterate_nt(); it is not used by drivers / net80211
outside ieee80211_iterate_nodes() function + cannot be separated due
to structural changes in code.
Since size of 'struct ieee80211_node_table' (part of ieee80211com,
which is a part of driver's softc) is changed all wireless drivers /
kernel need to be recompiled.
Tested with wpi(4), STA mode.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D7996
The adhoc probe/beacon input path was creating nodes for all SSIDs.
This wasn't a problem when the NICs were configured to only process
frames for the current BSSID, but that didn't allow IBSS merges.
Once avos and I flipped on "beacons from all BSSIDs" to allow for
correct IBSS merging, we found this interesting behaviour.
This adds a check against the current SSID.
* If there's no VAP SSID, allow anything
* If there's a VAP SSID, check if the incoming frame has a suitable
SSID and if so, allow it.
This prevents nodes being created for other SSIDs in probe and beacon
frames - ie, beacons overlapping IBSSes with different SSIDs, and
probe requests from arbitrary devices.
Tested:
* AR9380, IBSS mode, both local and other IBSSes.
Reviewed by: avos
Differential Revision: https://reviews.freebsd.org/D7959
Drop scan generation number and node table scan lock - the only place
where ni_scangen is checked is in ieee80211_timeout_stations() (and it
is used to prevent duplicate checking of the same node); node scan lock
protects only this variable + node table scan generation number.
This will fix (at least) next LOR (hostap mode):
lock order reversal:
1st 0xc175f84c urtwm0_scan_loc (urtwm0_scan_loc) @ /usr/src/sys/modules/wlan/../../net80211/ieee80211_node.c:2019
2nd 0xc175e018 urtwm0_com_lock (urtwm0_com_lock) @ /usr/src/sys/modules/wlan/../../net80211/ieee80211_node.c:2693
stack backtrace:
#0 0xa070d1c5 at witness_debugger+0x75
#1 0xa070d0f6 at witness_checkorder+0xd46
#2 0xa0694cce at __mtx_lock_flags+0x9e
#3 0xb03ad9ef at ieee80211_node_leave+0x12f
#4 0xb03afd13 at ieee80211_timeout_stations+0x483
#5 0xb03aa1c2 at ieee80211_node_timeout+0x42
#6 0xa06c6fa1 at softclock_call_cc+0x1e1
#7 0xa06c7518 at softclock+0xc8
#8 0xa06789ae at intr_event_execute_handlers+0x8e
#9 0xa0678fa0 at ithread_loop+0x90
#10 0xa0675fbe at fork_exit+0x7e
#11 0xa08af910 at fork_trampoline+0x8
In addition to the above:
* switch to ieee80211_iterate_nodes();
* do not assert that node table lock is held, while calling node_age();
that's not really needed (there are no resources, which can be protected
by this lock) + this fixes LOR/deadlock between ieee80211_timeout_stations()
and ieee80211_set_tim() (easy to reproduce in HOSTAP mode while
sending something to an STA with enabled power management).
Tested:
* (avos) urtwn0, hostap mode
* (adrian) AR9380, STA mode
* (adrian) AR9380, AR9331, AR9580, hostap mode
Notes:
* This changes the net80211 internals, so you have to recompile all of it
and the wifi drivers.
Submitted by: avos
Approved by: re (delphij)
Differential Revision: https://reviews.freebsd.org/D6833
The ath(4) driver now sees beacons and management frames for different
BSSIDs in IBSS mode, which is a problem when you're in a very busy
IBSS environment.
So, expose this function so drivers can use it to check if the current
RX node is actually for a BSS we need to pay attention to or not.
PR: kern/208644
Sponsored by: Eva Automation. Inc.
A-MSDU is another 11n aggregation mechanism where multiple ethernet
frames get LLC encapsulated (so they have a length field), padded,
and put in a single MPDU (802.11 MAC frame.) This means it gets sent
out as a single frame, with a single seqno, it's acked as one frame, etc.
It turns out that, hah, atheros fast frames is almost but not quite
like this, so I'm reusing all of the current superg/fast-frames stuff
in order to actually transmit A-MSDU. Yes, this means that A-MSDU
frames are also only aggregated two at a time, so it's not necessarily
a huge win, but it's better than nothing.
This doesn't do anything by default - the driver needs to say it does
A-MSDU as well as set the AMSDU software TX capability so this code path
gets exercised.
For now, the only driver that enables this is urtwn. I'll enable it
for rsu at some point soon.
Tested:
* Add an amsdu encap path to aggregate two frames, same as the
fast-frames path.
* Always do the superg init/teardown and node init/teardown stuff,
regardless of whether the nodes are doing fast-frames (the ATH
capability stuff.) That way we can reuse it for amsdu.
* Don't do AMSDU for multicast/broadcast and EAPOL frames.
* If we're doing A-MPDU, then don't bother doing FF/A-MSDU.
We can likely do both together, but I don't want to change
behaviour.
* Teach the fast frames approx txtime logic to support the 11n
rates. But, since we don't currently have a full "current rate"
support, assume it's HT20, long-gi, etc. That way we overshoot
on the TX time estimation, so we're always inside the requirements.
(And we only aggregate two frames for now, so we're not really
going to exceed that.)
* Drop the maximum FF age default down to 2ms, otherwise we end up
with some very annoyingly large latencies.
TODO:
* We only aggregate two ethernet frames, so I'm not checking the max
A-MSDU size. But when it comes time to support >2 frames, we should
obey that.
Tested:
* urtwn(4)
It turns out that these will clash very annoyingly with the linux
macros in the linuxkpi layer, so let the wookie^Wlinux win.
The only user that I can find is ath(4), so fix it there too.
Remove duplicate 'ni->ni_associd = 0' assignment from
ieee80211_node_leave(), since it breaks iv_set_tim() in
ic->ic_node_cleanup() (associd is cleared right after this call).
Tested with RTL8188EU (HOSTAP mode) and
WUSB54GC (STA mode, with powersaving enabled).
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D5398
DragonflyBSD uses the FreeBSD wireless stack and drivers. Their malloc()
API is named differently, so they don't have userland/kernel symbol
clashes like we do (think libuinet.)
So, to make it easier for them and to port to other BSDs/other operating
systems, start hiding the malloc specific bits behind defines in
ieee80211_freebsd.h.
DragonflyBSD can now put these portability defines in their local
ieee80211_dragonflybsd.h.
This should be a great big no-op for everyone running wifi.
TODO:
* kill M_WAITOK - some platforms just don't want you to use it
* .. and/or handle it returning NULL rather than waiting forever.
* MALLOC_DEFINE() ?
* Migrate the well-known malloc names (eg M_TEMP) to net80211
namespace defines.
years for head. However, it is continuously misused as the mpsafe argument
for callout_init(9). Deprecate the flag and clean up callout_init() calls
to make them more consistent.
Differential Revision: https://reviews.freebsd.org/D2613
Reviewed by: jhb
MFC after: 2 weeks
This may happen on RUN -> SCAN -> RUN -> SCAN state transition:
1. RUN -> SCAN: in ieee80211_sta_join1(): iv_bss will be moved to obss,
refcnt will be reduced by 2 (default minimum).
Now, if old iv_bss have some extra references (for example, from
unacknowledged probe responses), it will not be freed and will stay
in the node table.
2. SCAN -> RUN.
3. If old iv_bss will not be deleted by the time when the next RUN -> SCAN
state transition occurs, then sta_leave() will reduce it's reference
counter once more. As a result, two last users will free it -> this will
lead to kernel panic.
In this patch old iv_bss entry is explicitly removed from the node table in
ieee80211_sta_join1() (as a result, it will not be processed by sta_leave()).
PR: kern/199676
Differential Revision: Andriy Voskoboinyk <s3erios@gmail.com>
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
* Add HTINFO field decoding to ieee80211_ies_expand() - it's likely not
100% correct as it's not looking at the draft 11n HTINFO location,
but I don't think anyone will care.
* When doing an IBSS join make sure the 11n channel configuration
is used - otherwise the 11a/11bg channel will be used
and there won't be any chance for an upgrade to 11n.
* When creating an IBSS network, ensure the channel is updated to an
11n channel so other 11n nodes can see it and speak to it with MCS
rates.
* Add a bit of code that's disabled for now which handles the HT
field updating. This won't work out very well with lots of adhoc
nodes as we'd end up ping-ponging between the HT configuration for
each node. Instead, we should likely only pay attention to the
"master" node we initially associated against and then ensure we
propagate that information forward in our subsequent beacons. However,
due to the nature of IBSS (ie, there's no specific "master" node in
the specification) it's unclear which node we should lift the HT
parameters from.
So for now this assumes the HT parameters are squirreled away in the
initial beacon/probe response.
So there's some trickiness here.
With ap/sta pairing, the probe response just populates a legacy node
and the association request/response is what is used for negotiation
11n-ness (and upgrading things as needed.)
With ibss networks, the pairing is done with probe request/response,
with discovery being done by creating nodes when new beacons in the
IBSS / BSSID are heard. There's no assoc request/response frames going on.
So the trick here has been to figure out where to upgrade things.
I don't like how I just taught ieee80211_sta_join() to "speak" HT -
I'd rather there be an upgrade path when an IBSS node joins and there
are HT parameters present. Once I've done that, I'll kill this
HT special casing that's going on in ieee80211_sta_join().
Tested:
* AR9280, AR5416, AR5212 - basic iperf and ping interoperability tests
whilst in a non-encrypted adhoc network.
TODO:
* Fix up the HT upgrade path for IBSS nodes rather than adding code
in ieee80211_sta_join(), then remove my code from there.
* When associating, there's a concept of a "master" node in the IBSS
which is the node you first joined the network through. It's possible
the correct thing to do is to listen to HT updates and configure WME
parameters from that node. However, once that node goes away, which
node(s) should be listened to for configuration changes?
For things like HT channel width, it's likely going to be ok to
just associate as HT40 and then use the per-neighbor rate control
and HTINFO/HTCAP fields to figure out which rates and configuration
to speak. Ie, for a 20MHz 11n node, just speak 20MHz rates to
it. It shouldn't "change", like what goes on in AP/STA configurations.
iterate lock.
This causes LORs and deadlocks as some code paths will have the com lock
held when calling ieee80211_iterate_nodes().
Here, the comlock isn't held during the node table and node iteration
locks; and the callback isn't called with any (extra) lock held.
PR: kern/170098
Submitted by: moonlightakkiy@yahoo.ca
MFC after: 4 weeks
Currently, a channel width change updates the 802.11n HT info data in
net80211 but it doesn't trigger any device changes. So the device
driver may decide that HT40 frames can be transmitted but the last
device channel set only had HT20 set.
Now, a task is scheduled so a hardware reset or change isn't done
during any active ongoing RX. It also means that it's serialised
with the other task operations (eg channel change.)
This isn't the final incantation of this work, see below.
For now, any unmodified drivers will simply receive a channel
change log entry. A subsequent patch to ath(4) will introduce
some basic channel change handling (by resetting the NIC.)
Other NICs may need to update their rate control information.
TODO:
* There's still a small window at the present moment where the
channel width has been updated but the task hasn't been fired.
The final version of this should likely pass in a channel width
field to the driver and let the driver atomically do whatever
it needs to before changing the channel.
PR: kern/166286
This introduces struct ieee80211_rx_stats - which stores the various kinds
of RX statistics which a MIMO and non-MIMO 802.11 device can export.
It also fleshes out the mimo export to userland (node_getmimoinfo()).
It assumes that MIMO radios (for now) export both ctl and ext channels.
Non-11n MIMO radios are possible (and I believe Atheros made at least
one), so if that chipset support is added, extra flags to the
struct ieee80211_rx_stats can be added to extend this support.
Two new input functions have been added - ieee80211_input_mimo() and
ieee80211_input_mimo_all() - which MIMO-aware devices can call with
MIMO specific statistics.
802.11 devices calling the non-MIMO input functions will still function.
This fixes hostap mode for at least ral(4) and run(4), because there is
no sufficient call into drivers which could be used initialize the node
related ratectl variables.
MFC after: 3 days
the IEEE80211_C_RATECTL flag set, default to NONE for all drivers. Only if
a driver calls ieee80211_ratectl_init() check if the NONE algo is still
selected and try to use AMRR in that case. Drivers are still free to use
any other algo by calling ieee80211_ratectl_set() prior to the
ieee80211_ratectl_init() call.
After this change it is now safe to assume that a ratectl algo is always
available and selected, which renders the IEEE80211_C_RATECTL flag pretty
much useless. Therefore revert r211314 and 211546.
Reviewed by: rpaulo
MFC after: 2 weeks
This framework allows drivers to abstract the rate control algorithm and
just feed the framework with the usable parameters. The rate control
framework will now deal with passing the parameters to the selected
algorithm. Right now we have AMRR (the default) and RSSADAPT but there's
no way to select one with ifconfig, yet.
The objective is to have more rate control algorithms in the net80211
stack so all drivers[0] can use it. Ideally, we'll have the well-known
sample rate control algorithm in the net80211 at some point so all
drivers can use it (not just ath).
[0] all drivers that do rate control in software, that is.
Reviewed by: bschmidt, thompsa, weyongo
MFC after: 1 months