dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic
the thread ID and call db_trace_thread().
Since arm has all the logic in db_stack_trace_cmd(), rename the
new DB_COMMAND function to db_stack_trace to avoid conflicts on
arm.
While here, have db_stack_trace parse its own arguments so that
we can use a more natural radix for IDs. If the ID is not a thread
ID, or more precisely when no thread exists with the ID, try if
there's a process with that ID and return the first thread in it.
This makes it easier to print stack traces from the ps output.
requested by: rwatson@
tested on: amd64, i386, ia64
future:
rename ttyopen() -> tty_open() and ttyclose() -> tty_close().
We need the ttyopen() and ttyclose() for the new generic cdevsw
functions for tty devices in order to have consistent naming.
pmap_protect() and pmap_remove(). In general, they require the lock in
order to modify a page's pv list or flags. In some cases, however,
pmap_protect() can avoid acquiring the lock.
pmap_remove_pages(). (The implementation of pmap_remove_pages() is
optional. If pmap_remove_pages() is unimplemented, the acquisition and
release of the page queues lock is unnecessary.)
Remove spl calls from the alpha, arm, and ia64 pmap_remove_pages().
Most of the changes are a direct result of adding thread awareness.
Typically, DDB_REGS is gone. All registers are taken from the
trapframe and backtraces use the PCB based contexts. DDB_REGS was
defined to be a trapframe on all platforms anyway.
Thread awareness introduces the following new commands:
thread X switch to thread X (where X is the TID),
show threads list all threads.
The backtrace code has been made more flexible so that one can
create backtraces for any thread by giving the thread ID as an
argument to trace.
With this change, ia64 has support for breakpoints.
o ksym_start and ksym_end changed type to vm_offset_t.
o Make debugging support conditional upon KDB instead of DDB.
o Call kdb_enter() instead of breakpoint().
o Remove implementation of Debugger().
o Call kdb_trap() according to the new world order.
unwinder:
o s/db_active/kdb_active/g
o Various s/ddb/kdb/g
o Add support for unwinding from the PCB as well as the trapframe.
Abuse a spare field in the special register set to flag whether
the PCB was actually constructed from a trapframe so that we can
make the necessary adjustments.
md_var.h:
o Add RSE convenience macros.
o Add ia64_bsp_adjust() to add or subtract from BSP while taking
NaT collections into account.
a PCB from a trapframe for purposes of unwinding the stack. The PCB
is used as the thread context and all but the thread that entered the
debugger has a valid PCB.
This function can also be used to create a context for the threads
running on the CPUs that have been stopped when the debugger got
entered. This however is not done at the time of this commit.
in which multiple (presumably different) debugger backends can be
configured and which provides basic services to those backends.
Besides providing services to backends, it also serves as the single
point of contact for any and all code that wants to make use of the
debugger functions, such as entering the debugger or handling of the
alternate break sequence. For this purpose, the frontend has been
made non-optional.
All debugger requests are forwarded or handed over to the current
backend, if applicable. Selection of the current backend is done by
the debug.kdb.current sysctl. A list of configured backends can be
obtained with the debug.kdb.available sysctl. One can enter the
debugger by writing to the debug.kdb.enter sysctl.
backend improves over the old GDB support in the following ways:
o Unified implementation with minimal MD code.
o A simple interface for devices to register themselves as debug
ports, ala consoles.
o Compression by using run-length encoding.
o Implements GDB threading support.
bootp -> BOOTP
bootp.nfsroot -> BOOTP_NFSROOT
bootp.nfsv3 -> BOOTP_NFSV3
bootp.compat -> BOOTP_COMPAT
bootp.wired_to -> BOOTP_WIRED_TO
- i.e. back out the previous commit. It's already possible to
pxeboot(8) with a GENERIC kernel.
Pointed out by: dwmalone
has outlined which break numbers are software interrupts, debugger
breakpoints and ABI specific breaks. We mostly treated all break
numbers we didn't care about as debugger breakpoints.
BOOTP -> bootp
BOOTP_NFSROOT -> bootp.nfsroot
BOOTP_NFSV3 -> bootp.nfsv3
BOOTP_COMPAT -> bootp.compat
BOOTP_WIRED_TO -> bootp.wired_to
This lets you PXE boot with a GENERIC kernel by putting this sort of thing
in loader.conf:
bootp="YES"
bootp.nfsroot="YES"
bootp.nfsv3="YES"
bootp.wired_to="bge1"
or even setting the variables manually from the OK prompt.
than as one-off hacks in various other parts of the kernel:
- Add a function maybe_preempt() that is called from sched_add() to
determine if a thread about to be added to a run queue should be
preempted to directly. If it is not safe to preempt or if the new
thread does not have a high enough priority, then the function returns
false and sched_add() adds the thread to the run queue. If the thread
should be preempted to but the current thread is in a nested critical
section, then the flag TDF_OWEPREEMPT is set and the thread is added
to the run queue. Otherwise, mi_switch() is called immediately and the
thread is never added to the run queue since it is switch to directly.
When exiting an outermost critical section, if TDF_OWEPREEMPT is set,
then clear it and call mi_switch() to perform the deferred preemption.
- Remove explicit preemption from ithread_schedule() as calling
setrunqueue() now does all the correct work. This also removes the
do_switch argument from ithread_schedule().
- Do not use the manual preemption code in mtx_unlock if the architecture
supports native preemption.
- Don't call mi_switch() in a loop during shutdown to give ithreads a
chance to run if the architecture supports native preemption since
the ithreads will just preempt DELAY().
- Don't call mi_switch() from the page zeroing idle thread for
architectures that support native preemption as it is unnecessary.
- Native preemption is enabled on the same archs that supported ithread
preemption, namely alpha, i386, and amd64.
This change should largely be a NOP for the default case as committed
except that we will do fewer context switches in a few cases and will
avoid the run queues completely when preempting.
Approved by: scottl (with his re@ hat)
to <sys/gmon.h>. Cleaned them up a little by not attempting to ifdef
for incomplete and out of date support for GUPROF in userland, as in
the sparc64 version.
remove the empty line between the fdc and sio devices. The empty
line suggests that the comment applies to fdc only while it applies
to all following devices and options.
Typo spotted by: ru@
gets the relocation base passed in relocbase, we cannot declare a
local variable with the same name. Assume the argument holds the
same value as the local variable did...
elf_reloc() backends for two reasons. First, to support the possibility
of there being two elf linkers in the kernel (eg: amd64), and second, to
pass the relocbase explicitly (for relocating .o format kld files).
the kernel. We can guarantee this by resetting the FP status register.
This masks all FP traps. The reason we did get FP traps was that we
didn't reset the FP status register in all cases.
Make sure to reset the FP status register in syscall(). This is one of
the places where it was forgotten.
While on the subject, reset the FP status register only when we trapped
from user space.
individual asm versions. The global lock is shared between the BIOS and
OS and thus cannot use our mutexes. It is defined in section 5.2.9.1 of
the ACPI specification.
Reviewed by: marcel, bde, jhb
o Fix and improve comments and references,
o Add PFIL_HOOKS, UFS_ACL and UFS_DIRHASH,
o Switch from SCHED_4BSD to SCHED_ULE,
o Remove SCSI_DELAY (there's no SCSI support),
move its declaration to the machine-dependent header file on those
machines that use it. In principle, only i386 should have it.
Alpha and AMD64 should use their direct virtual-to-physical mapping.
- Remove pmap_kenter_temporary() from ia64. It is unused. Approved
by: marcel@
distinguish between debugger inserted breakpoints and fixed
breakpoints. While here, make sure the break instruction never
ends up in the last slot of a bundle by forcing it to be an
M-unit instruction. This makes it easier for use to skip over
it.
level of abstraction for any and all CPU mask and CPU bitmap variables
so that platforms have the ability to break free from the hard limit
of 32 CPUs, simply because we don't have more bits in an u_int. Note
that the type is not supposed to solve massive parallelism, where
the number of CPUs can be larger than the width of the widest integral
type. As such, cpumask_t is not supposed to be a compound type. If
such would be necessary in the future, we can deal with the issues
then and there. For now, it can be assumed that the type is integral
and unsigned.
With this commit, all MD definitions start off as u_int. This allows
us to phase-in cpumask_t at our leasure without breaking anything.
Once cpumask_t is used consistently, platforms can switch to wider
(or smaller) types if such would be beneficial (or not; whatever :-)
Compile-tested on: i386
for uart(4) to figure out which device to use as console. Use this file
to define hw.uart.console instead so that we don't have to put it in
the default loader.conf, which makes it hard to override.
dependent function by the same name and a machine-independent function,
sf_buf_mext(). Aside from the virtue of making more of the code machine-
independent, this change also makes the interface more logical. Before,
sf_buf_free() did more than simply undo an sf_buf_alloc(); it also
unwired and if necessary freed the page. That is now the purpose of
sf_buf_mext(). Thus, sf_buf_alloc() and sf_buf_free() can now be used
as a general-purpose emphemeral map cache.
based on the Madison core and targeting the low end of the spectrum.
Its clock frequency is 1Ghz, whereas Madison starts at 1.3Ghz. Since
the CPUID information is the same for Madison and Deerfield, we use
the clock frequency to identify the processor.
Supposedly the Deerfield only uses 62W, which seems to be less than
modern Xeon processors (about 70W) and about half what a Madison would
need.
ever since alpha/alpha/pmap.c revision 1.81 introduced the list allpmaps,
there has been no reason for having this function on Alpha. Briefly,
when pmap_growkernel() relied upon the list of all processes to find and
update the various pmaps to reflect a growth in the kernel's valid
address space, pmap_init2() served to avoid a race between pmap
initialization and pmap_growkernel(). Specifically, pmap_pinit2() was
responsible for initializing the kernel portions of the pmap and
pmap_pinit2() was called after the process structure contained a pointer
to the new pmap for use by pmap_growkernel(). Thus, an update to the
kernel's address space might be applied to the new pmap unnecessarily,
but an update would never be lost.
with a memory mapped I/O range that's immediately before it and is
not 256MB aligned. As a result, when an address is accessed in the
memory mapped range and a direct mapping is added for it, it overlaps
with the pre-mapped I/O port space and causes a machine check.
Based on a patch from: arun@
Introduce d_version field in struct cdevsw, this must always be
initialized to D_VERSION.
Flip sense of D_NOGIANT flag to D_NEEDGIANT, this involves removing
four D_NOGIANT flags and adding 145 D_NEEDGIANT flags.
Add missing D_TTY flags to various drivers.
Complete asserts that dev_t's passed to ttyread(), ttywrite(),
ttypoll() and ttykqwrite() have (d_flags & D_TTY) and a struct tty
pointer.
Make ttyread(), ttywrite(), ttypoll() and ttykqwrite() the default
cdevsw methods for D_TTY drivers and remove the explicit initializations
in various drivers cdevsw structures.
Free approx 86 major numbers with a mostly automatically generated patch.
A number of strategic drivers have been left behind by caution, and a few
because they still (ab)use their major number.
Previously the "struct disk" were owned by the device driver and this
gave us problems when the device disappared and the users of that device
were not immediately disappearing.
Now the struct disk is allocate with a new call, disk_alloc() and owned
by geom_disk and just abandonned by the device driver when disk_create()
is called.
Unfortunately, this results in a ton of "s/\./->/" changes to device
drivers.
Since I'm doing the sweep anyway, a couple of other API improvements
have been carried out at the same time:
The Giant awareness flag has been flipped from DISKFLAG_NOGIANT to
DISKFLAG_NEEDSGIANT
A version number have been added to disk_create() so that we can detect,
report and ignore binary drivers with old ABI in the future.
Manual page update to follow shortly.
o For traps, the cr.iip register points to the next instruction to
execute on interrupt return (modulo slot). Since we need to get
the bundle of the instruction that caused the FP fault/trap, make
sure we fetch the previous bundle if the next instruction is in
fact the first in a bundle.
o When we call the FPSWA handler, we need to tell it whether it's
a trap or a fault (first argument). This was hardcoded to mean a
fault.
Also, for FP faults, when a fault is converted to a trap, adjust the
cr.iip and cr.ipsr registers to point to the next instruction. This
makes sure that the SIGFPE handler gets a consistent state.
at it, use the ANSI C generic pointer type for the second argument,
thus matching the documentation.
Remove the now extraneous (and now conflicting) function declarations
in various libc sources. Remove now unnecessary casts.
Reviewed by: bde
is useless for threaded programs, multiple threads can not share same
stack.
The alternative signal stack is private for thread, no lock is needed,
the orignal P_ALTSTACK is now moved into td_pflags and renamed to
TDP_ALTSTACK.
For single thread or Linux clone() based threaded program, there is no
semantic changed, because those programs only have one kernel thread
in every process.
Reviewed by: deischen, dfr