compiling errors where gcc would run out of registers.
- Add "cc" to the list of clobbers for micro-ops where we perform
instructions that alter %eflags.
- Use xchgl instead of cmpxchgl to release a spin lock. This could allow
for more efficient register allocation as we no longer mandate that %eax
be used.
- Reenable the optimized mutex micro-ops in the non-i386 case.
the witness code is compiled in. Without this, the witness code doesn't
notice that sched_lock is released by fork_trampoline() and thus gets all
confused about spin lock order later on.
calling the C functions mtx_enter_hard() and mtx_exit_hard() clobbers them.
Note that %eax is also not call safe, but it is already clobbered due to
cmpxchg. However, now we are back to not compiling again, so these macros
are still left disabled for now.
that of MTX_EXIT. Don't assume that the reg parameter to MTX_ENTER
holds curproc, load it explicitly. Put semi-colons at the end of
the macros to be more consistent and so its harder to forget them
when these change.
MPLOCKED macro
(2) Use decimal 12 rather than hex 0xc in an addl
(3) Implement MTX_ENTER for the I386_CPU case
(4) Use semi-colons between instructions to allow MTX_ENTER
and MTX_ENTER_WITH_RECURSION to be assembled
(5) Use incl instead of incw to increment the recusion count
(6) 10 is not a valid label, use 7, 8 and 9 rather than 8, 9 and 10
(7) Sort numeric labels
Submitted by: bde (2, 4, and 5)
reducues the maintenance load for the mutex code. The only MD portions
of the mutex code are in machine/mutex.h now, which include the assembly
macros for handling mutexes as well as optionally overriding the mutex
micro-operations. For example, we use optimized micro-ops on the x86
platform #ifndef I386_CPU.
- Change the behavior of the SMP_DEBUG kernel option. In the new code,
mtx_assert() only depends on INVARIANTS, allowing other kernel developers
to have working mutex assertiions without having to include all of the
mutex debugging code. The SMP_DEBUG kernel option has been renamed to
MUTEX_DEBUG and now just controls extra mutex debugging code.
- Abolish the ugly mtx_f hack. Instead, we dynamically allocate
seperate mtx_debug structures on the fly in mtx_init, except for mutexes
that are initiated very early in the boot process. These mutexes
are declared using a special MUTEX_DECLARE() macro, and use a new
flag MTX_COLD when calling mtx_init. This is still somewhat hackish,
but it is less evil than the mtx_f filler struct, and the mtx struct is
now the same size with and without mutex debugging code.
- Add some micro-micro-operation macros for doing the actual atomic
operations on the mutex mtx_lock field to make it easier for other archs
to override/optimize mutex ops if needed. These new tiny ops also clean
up the code in some places by replacing long atomic operation function
calls that spanned 2-3 lines with a short 1-line macro call.
- Don't call mi_switch() from mtx_enter_hard() when we block while trying
to obtain a sleep mutex. Calling mi_switch() would bogusly release
Giant before switching to the next process. Instead, inline most of the
code from mi_switch() in the mtx_enter_hard() function. Note that when
we finally kill Giant we can back this out and go back to calling
mi_switch().
return through doreti to handle ast's. This is necessary for the
clock interrupts to work properly.
- Change the clock interrupts on the x86 to be fast instead of threaded.
This is needed because both hardclock() and statclock() need to run in
the context of the current process, not in a separate thread context.
- Kill the prevproc hack as it is no longer needed.
- We really need Giant when we call psignal(), but we don't want to block
during the clock interrupt. Instead, use two p_flag's in the proc struct
to mark the current process as having a pending SIGVTALRM or a SIGPROF
and let them be delivered during ast() when hardclock() has finished
running.
- Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was
broken on the x86 if it was turned on since cpl is gone. It's only use
was to bogusly run softclock() directly during hardclock() rather than
scheduling an SWI.
- Remove the COM_LOCK simplelock and replace it with a clock_lock spin
mutex. Since the spin mutex already handles disabling/restoring
interrupts appropriately, this also lets us axe all the *_intr() fu.
- Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use
temporary fast interrupts for the APIC trial.
- Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending
signals in hardclock() that are to be delivered in ast().
Submitted by: jakeb (making statclock safe in a fast interrupt)
Submitted by: cp (concept of delaying signals until ast())
macros that expand to pass filename and line number information. This is
necessary since we're using inline functions instead of macros now.
Add const to the filename pointers passed througout the mtx and witness
code.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh