Don't pass the same name to multiple mutexes while using unique types
for WITNESS. Just use the unique types as the mutex names.
Reviewed by: markj
MFC after: 1 week
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D32740
This is useful for WireGuard which uses a nonce of 8 bytes rather
than the 12 bytes used for IPsec and TLS.
Note that this also fixes a (should be) harmless bug in ossl(4) where
the counter was incorrectly treated as a 64-bit counter instead of a
32-bit counter in terms of wrapping when using a 12 byte nonce.
However, this required a single message (TLS record) longer than 64 *
(2^32 - 1) bytes (about 256 GB) to trigger.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D32122
Permit nonces of lengths 7 through 13 in the OCF framework and the
cryptosoft driver. A helper function (ccm_max_payload_length) can be
used in OCF drivers to reject CCM requests which are too large for the
specified nonce length.
Reviewed by: sef
Sponsored by: Chelsio Communications, The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D32111
This is intended for use in KTLS transmit where each TLS record is
described by a single mbuf that is itself queued in the socket buffer.
Using the existing CRYPTO_BUF_MBUF would result in
bus_dmamap_load_crp() walking additional mbufs in the socket buffer
that are not relevant, but generating a S/G list that potentially
exceeds the limit of the tag (while also wasting CPU cycles).
Reviewed by: markj
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D30136
There haven't been any non-obscure drivers that supported this
functionality and it has been impossible to test to ensure that it
still works. The only known consumer of this interface was the engine
in OpenSSL < 1.1. Modern OpenSSL versions do not include support for
this interface as it was not well-documented.
Reviewed by: cem
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D29736
Note that this algorithm implements the mode defined in RFC 8439.
Reviewed by: cem
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D27836
Currently, OpenCrypto consumers can request asynchronous dispatch by
setting a flag in the cryptop. (Currently only IPSec may do this.) I
think this is a bit confusing: we (conditionally) set cryptop flags to
request async dispatch, and then crypto_dispatch() immediately examines
those flags to see if the consumer wants async dispatch. The flag names
are also confusing since they don't specify what "async" applies to:
dispatch or completion.
Add a new KPI, crypto_dispatch_async(), rather than encoding the
requested dispatch type in each cryptop. crypto_dispatch_async() falls
back to crypto_dispatch() if the session's driver provides asynchronous
dispatch. Get rid of CRYPTOP_ASYNC() and CRYPTOP_ASYNC_KEEPORDER().
Similarly, add crypto_dispatch_batch() to request processing of a tailq
of cryptops, rather than encoding the scheduling policy using cryptop
flags. Convert GELI, the only user of this interface (disabled by
default) to use the new interface.
Add CRYPTO_SESS_SYNC(), which can be used by consumers to determine
whether crypto requests will be dispatched synchronously. This is just
a helper macro. Use it instead of looking at cap flags directly.
Fix style in crypto_done(). Also get rid of CRYPTO_RETW_EMPTY() and
just check the relevant queues directly. This could result in some
unnecessary wakeups but I think it's very uncommon to be using more than
one queue per worker in a given workload, so checking all three queues
is a waste of cycles.
Reviewed by: jhb
Sponsored by: Ampere Computing
Submitted by: Klara, Inc.
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D28194
Since r336439 we simply take the session pointer value mod the number of
worker threads (ncpu by default). On small systems this ends up
funneling all completion work through a single thread, which becomes a
bottleneck when processing IPSec traffic using hardware crypto drivers.
(Software drivers such as aesni(4) are unaffected since they invoke
completion handlers synchonously.)
Instead, maintain an incrementing counter with a unique value per
session, and use that to distribute work to completion threads.
Reviewed by: cem, jhb
MFC after: 2 weeks
Sponsored by: Rubicon Communications, LLC ("Netgate")
Differential Revision: https://reviews.freebsd.org/D28159
Store the driver softc below the fields owned by opencrypto. This is
a bit simpler and saves a pointer dereference when fetching the driver
softc when processing a request.
Get rid of the crypto session UMA zone. Session allocations are
frequent or performance-critical enough to warrant a dedicated zone.
No functional change intended.
Reviewed by: cem, jhb
Sponsored by: Rubicon Communications, LLC ("Netgate")
Differential Revision: https://reviews.freebsd.org/D28158
This makes them friendlier to drivers that try to use const pointers
whenever possible in their internal structures.
Reviewed by: jhb
Sponsored by: Rubicon Communications, LLC (Netgate)
Differential Revision: https://reviews.freebsd.org/D26901
- Check for null pointers in the crypto_drivers[] array when checking
for empty slots in crypto_select_kdriver().
- Handle the case where crypto_kdone() is invoked on a request where
krq_cap is NULL due to not finding a matching driver.
Reviewed by: markj
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D26811
Only one MIPS-specific driver implements support for one of the
asymmetric operations. There are no in-kernel users besides
/dev/crypto. The only known user of the /dev/crypto interface was the
engine in OpenSSL releases before 1.1.0. 1.1.0 includes a rewritten
engine that does not use the asymmetric operations due to lack of
documentation.
Reviewed by: cem, markj
MFC after: 1 week
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D26810
This permits requests (netipsec ESP and AH protocol) to provide the
IPsec ESN (Extended Sequence Numbers) in a separate buffer.
As with separate output buffer and separate AAD buffer not all drivers
support this feature. Consumer must request use of this feature via new
session flag.
Submitted by: Grzegorz Jaszczyk <jaz@semihalf.com>
Patryk Duda <pdk@semihalf.com>
Reviewed by: jhb
Differential revision: https://reviews.freebsd.org/D24838
Obtained from: Semihalf
Sponsored by: Stormshield
crypto(9) functions can now be used on buffers composed of an array of
vm_page_t structures, such as those stored in an unmapped struct bio. It
requires the running to kernel to support the direct memory map, so not all
architectures can use it.
Reviewed by: markj, kib, jhb, mjg, mat, bcr (manpages)
MFC after: 1 week
Sponsored by: Axcient
Differential Revision: https://reviews.freebsd.org/D25671
The function is called from a KLD load handler, so it may sleep.
- Stop checking for errors from uma_zcreate(), they don't happen.
- Convert M_NOWAIT allocations to M_WAITOK.
- Remove error handling for existing M_WAITOK allocations.
- Fix style.
Reviewed by: cem, delphij, jhb
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D25696
These routines are similar to crypto_getreq() and crypto_freereq() but
operate on caller-supplied storage instead of allocating crypto
requests from a UMA zone.
Reviewed by: markj
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D25691
The global counters were not SMP-friendly. Use per-CPU counters
instead.
Reviewed by: jhb
Sponsored by: Rubicon Communications, LLC (Netgate)
Differential Revision: https://reviews.freebsd.org/D25466
It was added a very long time ago. It is single-threaded, so only
really useful for basic measurements, and in the meantime we've gotten
some more sophisticated profiling tools.
Reviewed by: cem, delphij, jhb
Sponsored by: Rubicon Communications, LLC (Netgate)
Differential Revision: https://reviews.freebsd.org/D25464
In addition to reducing lines of code, this also ensures that the full
allocation is always zeroed avoiding possible bugs with incorrect
lengths passed to explicit_bzero().
Suggested by: cem
Reviewed by: cem, delphij
Approved by: csprng (cem)
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D25435
This permits requests to provide the AAD in a separate side buffer
instead of as a region in the crypto request input buffer. This is
useful when the main data buffer might not contain the full AAD
(e.g. for TLS or IPsec with ESN).
Unlike separate IVs which are constrained in size and stored in an
array in struct cryptop, separate AAD is provided by the caller
setting a new crp_aad pointer to the buffer. The caller must ensure
the pointer remains valid and the buffer contents static until the
request is completed (e.g. when the callback routine is invoked).
As with separate output buffers, not all drivers support this feature.
Consumers must request use of this feature via a new session flag.
To aid in driver testing, kern.crypto.cryptodev_separate_aad can be
set to force /dev/crypto requests to use a separate AAD buffer.
Discussed with: cem
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D25288
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
There are no in-kernel consumers.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24775
It no longer has any in-kernel consumers via OCF. smbfs still uses
single DES directly, so sys/crypto/des remains for that use case.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24773
It no longer has any in-kernel consumers.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24772
There are no longer any in-kernel consumers. The software
implementation was also a non-functional stub.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24771
They no longer have any in-tree consumers. Note that these are a
different from MD5-HMAC and SHA1-HMAC and were only used with IPsec.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24770
This was removed from IPsec in r286100 and no longer has any in-tree
consumers.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24769
It no longer has any in-tree consumers.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24768
Although a few drivers supported this algorithm, there were never any
in-kernel consumers. cryptosoft and cryptodev never supported it,
and there was not a software xform auth_hash for it.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24767
This makes it easier to maintain these functions as algorithms are
added or removed.
Reviewed by: cem
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24668
The sole in-tree user of this flag has been retired, so remove this
complexity from all drivers. While here, add a helper routine drivers
can use to read the current request's IV into a local buffer. Use
this routine to replace duplicated code in nearly all drivers.
Reviewed by: cem
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24450
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
The timespecadd(3) family of macros were imported from NetBSD back in
r35029. However, they were initially guarded by #ifdef _KERNEL. In the
meantime, we have grown at least 28 syscalls that use timespecs in some
way, leading many programs both inside and outside of the base system to
redefine those macros. It's better just to make the definitions public.
Our kernel currently defines two-argument versions of timespecadd and
timespecsub. NetBSD, OpenBSD, and FreeDesktop.org's libbsd, however, define
three-argument versions. Solaris also defines a three-argument version, but
only in its kernel. This revision changes our definition to match the
common three-argument version.
Bump _FreeBSD_version due to the breaking KPI change.
Discussed with: cem, jilles, ian, bde
Differential Revision: https://reviews.freebsd.org/D14725
Track session objects in the framework, and pass handles between the
framework (OCF), consumers, and drivers. Avoid redundancy and complexity in
individual drivers by allocating session memory in the framework and
providing it to drivers in ::newsession().
Session handles are no longer integers with information encoded in various
high bits. Use of the CRYPTO_SESID2FOO() macros should be replaced with the
appropriate crypto_ses2foo() function on the opaque session handle.
Convert OCF drivers (in particular, cryptosoft, as well as myriad others) to
the opaque handle interface. Discard existing session tracking as much as
possible (quick pass). There may be additional code ripe for deletion.
Convert OCF consumers (ipsec, geom_eli, krb5, cryptodev) to handle-style
interface. The conversion is largely mechnical.
The change is documented in crypto.9.
Inspired by
https://lists.freebsd.org/pipermail/freebsd-arch/2018-January/018835.html .
No objection from: ae (ipsec portion)
Reported by: jhb
This reduces noise when kernel is compiled by newer GCC versions,
such as one used by external toolchain ports.
Reviewed by: kib, andrew(sys/arm and sys/arm64), emaste(partial), erj(partial)
Reviewed by: jhb (sys/dev/pci/* sys/kern/vfs_aio.c and sys/kern/kern_synch.c)
Differential Revision: https://reviews.freebsd.org/D10385
fine when a lot of different flows to be ciphered/deciphered are involved.
However, when a software crypto driver is used, there are
situations where we could benefit from making crypto(9) multi threaded:
- a single flow is to be ciphered: only one thread is used to cipher it,
- a single ESP flow is to be deciphered: only one thread is used to
decipher it.
The idea here is to call crypto(9) using a new mode (CRYPTO_F_ASYNC) to
dispatch the crypto jobs on multiple threads, if the underlying crypto
driver is working in synchronous mode.
Another flag is added (CRYPTO_F_ASYNC_KEEPORDER) to make crypto(9)
dispatch the crypto jobs in the order they are received (an additional
queue/thread is used), so that the packets are reinjected in the network
using the same order they were posted.
A new sysctl net.inet.ipsec.async_crypto can be used to activate
this new behavior (disabled by default).
Submitted by: Emeric Poupon <emeric.poupon@stormshield.eu>
Reviewed by: ae, jmg, jhb
Differential Revision: https://reviews.freebsd.org/D10680
Sponsored by: Stormshield
When crypto_newsession() is given a request for an unsupported capability,
raise a more specific error than EINVAL.
This allows cryptotest.py to skip some HMAC tests that a driver does not
support.
Reviewed by: jhb, rlibby
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D12451