to get the physical address doesn't work for all values of KVA_PAGES,
while masking 8 MSBs works for all values of KVA_PAGES that are
multiple of 4 for non-PAE and 8 for PAE. (This leaves us limited
with 12MB for non-PAE kernels and 14MB for PAE kernels.)
To get things right, we'd need to subtract the KERNBASE from the
virtual address (but KERNBASE is not easy to figure out from here),
or have physical addresses set properly in the ELF headers.
Discussed with: jhb
device (kind) specific unit field to the common field. This change
allows a future version of libefi to work without requiring anything
more than what is defined in struct devdesc and as such makes it
possible to compile said version of libefi for different platforms
without requiring that those platforms have identical derivatives
of struct devdesc.
are no longer limited to a virtual address space of 16 megabytes,
only mask high two bits of a virtual address. This allows to load
larger kernels (up to 1 gigabyte). Not masking addresses at all
was a bad idea on machines with less than >3G of memory -- kernels
are linked at 0xc0xxxxxx, and that would attempt to load a kernel
at above 3G. By masking only two highest bits we stay within the
safe limits while still allowing to boot larger kernels.
(This is a safer reimplmentation of sys/boot/i386/boot2/boot.2.c
rev. 1.71.)
Prodded by: jhb
Tested by: nyan (pc98)
when checking whether it's greater than a struct stat st_size in order
to also catch the case when st_size is -1. Previously this check didn't
trigger on sparc64 when st_size is -1 (as it's the case for a file on
a bzipfs, TFTP server etc.), causing the content of the linker hints
file to be copied to memory referenced by a null-pointer.
PR: 91231
MFC after: 1 week
means:
o Remove Elf64_Quarter,
o Redefine Elf64_Half to be 16-bit,
o Redefine Elf64_Word to be 32-bit,
o Add Elf64_Xword and Elf64_Sxword for 64-bit entities,
o Use Elf_Size in MI code to abstract the difference between
Elf32_Word and Elf64_Word.
o Add Elf_Ssize as the signed counterpart of Elf_Size.
MFC after: 2 weeks
the serial console speed (i386 and amd64 only). If the previous
stage boot loader requested a serial console (RB_SERIAL or RB_MULTIPLE)
then the default speed is determined from the current serial port
speed. Otherwise it is set to 9600 or the value of BOOT_COMCONSOLE_SPEED
at compile time.
This makes it possible to set the serial port speed once in
/boot.config and the setting will propagate to boot2, loader and
the kernel serial console.
- Teach the i386 and pc98 loaders to honor multiple console requests from
their respective boot2 binaries so that the same console(s) are used in
both boot2 and the loader.
- Since the kernel doesn't support multiple consoles, whichever console is
listed first is treated as the "primary" console and is passed to the
kernel in the boot_howto flags.
PR: kern/66425
Submitted by: Gavin Atkinson gavin at ury dot york dot ac dot uk
MFC after: 1 week
user to interrupt autoboot process at all. Currently, even when
`autoboot_delay' is set to 0, loader(8) still allows autoboot process to be
interrupted by pressing any key on the console when the loader reads kernel
and modules from the disk. In some cases (i.e. untrusted environment) such
behaviour is highly indesirable and user should not be allowed to interfere
with the autoboot process at all.
Sponsored by: PBXpress Inc.
MFC after: 3 days
format modules, which are currently only used on the amd64 platform.
This initial implementation just parses enough of the module to
allow it to extract dependencies and load all the bits into the
right place in memory, so the kernel must still do the full relocation
and linking. The details of the loaded sections are passed to the
kernel by supplying a copy of the ELF section header table as module
metadata with the MODINFOMD_SHDR tag.
better relocation support for the amd64 and i386 platforms. This
should not result in any change in functionality, but moves a step
towards supporting the relocatable object file modules on amd64.
The same hack/trick as load_elf*.c uses is used here to simultaneously
support both elf32 and elf64 on amd64 and i386.