a regular IPI vector, but this vector is blocked when interrupts are disabled.
With "options KDB_STOP_NMI" and debug.kdb.stop_cpus_with_nmi set, KDB will
send an NMI to each CPU instead. The code also has a context-stuffing
feature which helps ddb extract the state of processes running on the
stopped CPUs.
KDB_STOP_NMI is only useful with SMP and complains if SMP is not defined.
This feature only applies to i386 and amd64 at the moment, but could be
used on other architectures with the appropriate MD bits.
Submitted by: ups
when using an APIC. This simplifies the APIC code somewhat and also allows
us to be pedantically more compliant with ACPI which mandates no use of
mixed mode.
logical CPUs on a system to be used as a dedicated watchdog to cause a
drop to the debugger and/or generate an NMI to the boot processor if
the kernel ceases to respond. A sysctl enables the watchdog running
out of the processor's idle thread; a callout is launched to reset a
timer in the watchdog. If the callout fails to reset the timer for ten
seconds, the watchdog will fire. The sysctl allows you to select which
CPU will run the watchdog.
A sample "debug.leak_schedlock" is included, which causes a sysctl to
spin holding sched_lock in order to trigger the watchdog. On my Xeons,
the watchdog is able to detect this failure mode and break into the
debugger, which cannot otherwise be done without an NMI button.
This option does not currently work with sched_ule due to ule's push
notion of scheduling, similar to machdep.hlt_logical_cpus failing to
work with that scheduler.
On face value, this might seem somewhat inefficient, but there are a
lot of dual-processor Xeons with HTT around, so using one as a watchdog
for testing is not as inefficient as one might fear.
Only cy, bs and wd in the tree still use it. I have a replacement for
cy that I need to test on ISA and PCI cards. bs and wd are pc98 only
drivers that appear to no longer be necessary. I'll be removing them
when I hear back from the pc98 people.
own file and make it opt-in, not mandatory, depending on CPU_ENABLE_LONGRUN
config(8) option.
PR:
Submitted by:
Reviewed by:
Approved by:
Obtained from:
Discussed with: nate
MFC after: 2 weeks
CPU_ENABLE_TCC enables Thermal Control Circuitry (TCC) found in some
Pentium(tm) 4 and (possibly) later CPUs. When enabled and detected,
TCC allows to restrict power consumption by using machdep.cpuperf*
sysctls. This operates independently of SpeedStep and is useful on
systems where other mechanisms such as apm(4) or acpi(4) don't work.
Given the fact that many, even modern, notebooks don't work properly
with Intel ACPI, this is indeed very useful option for notebook owners.
Obtained from: OpenBSD
MFC after: 2 weeks
Update notes to reflect that cx is no longer a counted device
Update options for new cx option
# commented out ELAN_PPS and ELAN_XTAL since they produced errors
Submitted by: rik@cronyx.ru
Approved by: re@ <scottl>
should only be used if they are enabled in the BIOS. Now that we support
enumerating CPUs using the ACPI MADT, any HTT machine using ACPI should
respect the BIOS setting. For HTT machines with ACPI disabled in the
kernel, the MPTABLE_FORCE_HTT kernel option can be used to try to probe HTT
CPUs like have done in the past for the MP Table case. This option should
only be enabled if HTT is enabled in the BIOS.
Removed banal comments about ELAN*. Complain about ELAN* being misnamed
instead (so that these options are not obviously related to a CPU and
don't sort with CPU_ELAN).
Complain about CPU_DISABLE_CMPXCHG being in the wrong namespace.
as it could be and can do with some more cleanup. Currently its under
options LAZY_SWITCH. What this does is avoid %cr3 reloads for short
context switches that do not involve another user process. ie: we can
take an interrupt, switch to a kthread and return to the user without
explicitly flushing the tlb. However, this isn't as exciting as it could
be, the interrupt overhead is still high and too much blocks on Giant
still. There are some debug sysctls, for stats and for an on/off switch.
The main problem with doing this has been "what if the process that you're
running on exits while we're borrowing its address space?" - in this case
we use an IPI to give it a kick when we're about to reclaim the pmap.
Its not compiled in unless you add the LAZY_SWITCH option. I want to fix a
few more things and get some more feedback before turning it on by default.
This is NOT a replacement for Bosko's lazy interrupt stuff. This was more
meant for the kthread case, while his was for interrupts. Mine helps a
little for interrupts, but his helps a lot more.
The stats are enabled with options SWTCH_OPTIM_STATS - this has been a
pseudo-option for years, I just added a bunch of stuff to it.
One non-trivial change was to select a new thread before calling
cpu_switch() in the first place. This allows us to catch the silly
case of doing a cpu_switch() to the current process. This happens
uncomfortably often. This simplifies a bit of the asm code in cpu_switch
(no longer have to call choosethread() in the middle). This has been
implemented on i386 and (thanks to jake) sparc64. The others will come
soon. This is actually seperate to the lazy switch stuff.
Glanced at by: jake, jhb
kernel opition 'options PAE'. This will only work with device drivers which
either use busdma, or are able to handle 64 bit physical addresses.
Thanks to Lanny Baron from FreeBSD Systems for the loan of a test machine
with 6 gigs of ram.
Sponsored by: DARPA, Network Associates Laboratories, FreeBSD Systems
This keeps the logical cpu's halted in the idle loop. By default
the logical cpu's are halted at startup. It is also possible to
halt any cpu in the idle loop now using machdep.hlt_cpus.
Examples of how to use this:
machdep.hlt_cpus=1 halt cpu0
machdep.hlt_cpus=2 halt cpu1
machdep.hlt_cpus=4 halt cpu2
machdep.hlt_cpus=3 halt cpu0,cpu1
Reviewed by: jhb, peter
frequency in Hz. The default is still 33.333 MHz. Please notice
that the number is round to a multiple of four internally so it may
not read back exactly the same as written.
Add compile time ELAN_XTAL option to override the 33.333 MHz default.
Add compile time ELAN_PPS option to enable code for high precision
(250 nanoseconds) timestamping of external signals.
This is most beneficial for vmware client os installs.
Reviewed by: jmallet, iedowse, tlambert2@mindspring.com
MFC After: never, -STABLE does not currently use this instruction
support this, we do have MI code that references it and is otherwise
unaware of an override. The alternative is to put knowledge in these
MI files about which platforms have the opt_kstack_pages.h option file.
It is more likely that other platforms will gain the ability to tune the
kstack size.
if compiling with I686_CPU as a target. CPU_DISABLE_SSE will prevent
this from happening and will guarantee the code is not compiled in.
I am still not happy with this, but gcc is now generating code that uses
these instructions if you set CPUTYPE to p3/p4 or athlon-4/mp/xp or higher.