The runtime kernel loader, linker_load_file, unloads kernel files that
failed to load all of their modules. For consistency, treat preloaded
(loader.conf loaded) kernel files in the same way.
Reviewed by: kib
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8200
rounddown2 tends to produce longer lines than the original code
and when the code has a high indentation level it was not really
advantageous to do the replacement.
This tries to strike a balance between readability using the macros
and flexibility of having the expressions, so not everything is
converted.
certain kernel structures for use by debuggers. This mostly aids
in examining cores from a kernel without debug symbols as a debugger
can infer these values if debug symbols are available.
One set of variables describes the layout of 'struct linker_file' to
walk the list of loaded kernel modules.
A second set of variables describes the layout of 'struct proc' and
'struct thread' to walk the list of processes in the kernel and the
threads in each process.
The 'pcb_size' variable is used to index into the stoppcbs[] array.
The 'vm_maxuser_address' is used to distinguish kernel virtual addresses
from user addresses. This doesn't have to be perfect, and
'vm_maxuser_address' is a cheap and simple way to differentiate kernel
pointers from simple values like TIDs and PIDs.
While here, annotate the fields in struct pcb used by kgdb on amd64
and i386 to note that their ABI should be preserved. Annotations for
other platforms will be added in the future.
Reviewed by: kib
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D3773
Right now there is a chance that sysctl unregister will cause reader to
block on the sx lock associated with sysctl rmlock, in which case kernels
with debug enabled will panic.
crowded as we now are at about 70k. Bump the limit to 1MB instead
which is still quite a reasonable limit and allows for future growth
of this file and possible future expansion to additional data.
MFC After: 2 weeks
This involves:
1. Have the loader pass the start and size of the .ctors section to the
kernel in 2 new metadata elements.
2. Have the linker backends look for and record the start and size of
the .ctors section in dynamically loaded modules.
3. Have the linker backends call the constructors as part of the final
work of initializing preloaded or dynamically loaded modules.
Note that LLVM appends the priority of the constructors to the name of
the .ctors section. Not so when compiling with GCC. The code currently
works for GCC and not for LLVM.
Submitted by: Dmitry Mikulin <dmitrym@juniper.net>
Obtained from: Juniper Networks, Inc.
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
linker_unload_file() rather than kern_kldload() and kern_kldunload(). This
ensures that the handlers are invoked for files that are loaded/unloaded
automatically as dependencies. Previously, they were only invoked for files
loaded by a user.
As a side effect, the kld_load and kld_unload handlers are now invoked with
the kernel linker lock exclusively held.
Reported by: avg
Reviewed by: jhb
MFC after: 2 weeks
kld_unload event handler which gets invoked after a linker file has been
successfully unloaded. The kld_unload and kld_load event handlers are now
invoked with the shared linker lock held, while kld_unload_try is invoked
with the lock exclusively held.
Convert hwpmc(4) to use these event handlers instead of having
kern_kldload() and kern_kldunload() invoke hwpmc(4) hooks whenever files are
loaded or unloaded. This has no functional effect, but simplifes the linker
code somewhat.
Reviewed by: jhb
linker_init_kernel_modules() and linker_preload() in order to remove most
of the checks for !cold before asserting that the kld lock is held. These
routines are invoked by SYSINIT(9), so there's no harm in them taking the
kld lock.
probes declared in a kernel module when that module is unloaded. In
particular,
* Unloading a module with active SDT probes will cause a panic. [1]
* A module's (FBT/SDT) probes aren't destroyed when the module is unloaded;
trying to use them after the fact will generally cause a panic.
This change fixes both problems by porting the DTrace module load/unload
handlers from illumos and registering them with the corresponding
EVENTHANDLER(9) handlers. This allows the DTrace framework to destroy all
probes defined in a module when that module is unloaded, and to prevent a
module unload from proceeding if some of its probes are active. The latter
problem has already been fixed for FBT probes by checking lf->nenabled in
kern_kldunload(), but moving the check into the DTrace framework generalizes
it to all kernel providers and also fixes a race in the current
implementation (since a probe may be activated between the check and the
call to linker_file_unload()).
Additionally, the SDT implementation has been reworked to define SDT
providers/probes/argtypes in linker sets rather than using SYSINIT/SYSUNINIT
to create and destroy SDT probes when a module is loaded or unloaded. This
simplifies things quite a bit since it means that pretty much all of the SDT
code can live in sdt.ko, and since it becomes easier to integrate SDT with
the DTrace framework. Furthermore, this allows FreeBSD to be quite flexible
in that SDT providers spanning multiple modules can be created on the fly
when a module is loaded; at the moment it looks like illumos' SDT
implementation requires all SDT probes to be statically defined in a single
kernel table.
PR: 166927, 166926, 166928
Reported by: davide [1]
Reviewed by: avg, trociny (earlier version)
MFC after: 1 month
called after the module has been loaded, and the unload handlers are called
before the module is unloaded. Moreover, the module unload handlers may
return an error to prevent the unload from proceeding.
Reviewed by: avg
MFC after: 2 weeks
In particular, do not lock Giant conditionally when calling into the
filesystem module, remove the VFS_LOCK_GIANT() and related
macros. Stop handling buffers belonging to non-mpsafe filesystems.
The VFS_VERSION is bumped to indicate the interface change which does
not result in the interface signatures changes.
Conducted and reviewed by: attilio
Tested by: pho
fail to load (the MOD_LOAD event fails) during a kldload(2), unload the
linker file and fail the kldload(2) with ENOEXEC.
Reported by: gcooper
MFC after: 1 week
Add the sysctl debug.iosize_max_clamp, enabled by default. Setting the
sysctl to zero allows to perform the SSIZE_MAX-sized i/o requests from
the usermode.
Discussed with: bde, das (previous versions)
MFC after: 1 month
It seems strchr() and strrchr() are used more often than index() and
rindex(). Therefore, simply migrate all kernel code to use it.
For the XFS code, remove an empty line to make the code identical to
the code in the Linux kernel.
patch modifies makesyscalls.sh to prefix all of the non-compatibility
calls (e.g. not linux_, freebsd32_) with sys_ and updates the kernel
entry points and all places in the code that use them. It also
fixes an additional name space collision between the kernel function
psignal and the libc function of the same name by renaming the kernel
psignal kern_psignal(). By introducing this change now we will ease future
MFCs that change syscalls.
Reviewed by: rwatson
Approved by: re (bz)
sampling mode PMC is allocated, hwpmc calls linker_hwpmc_list_objects()
while already holding an exclusive lock on pmc-sx lock. list_objects()
tries to acquire an exclusive lock on the kld_sx lock. When a KLD module
is loaded or unloaded successfully, kern_kld(un)load calls into the pmc
hook while already holding an exclusive lock on the kld_sx lock. Calling
the pmc hook requires acquiring a shared lock on the pmc-sx lock.
Fix this by only acquiring a shared lock on the kld_sx lock in
linker_hwpmc_list_objects(), and also downgrading to a shared lock on the
kld_sx lock in kern_kld(un)load before calling into the pmc hook. In
kern_kldload this required moving some modifications of the linker_file_t
to happen before calling into the pmc hook.
This fixes the deadlock by ensuring that the hwpmc -> list_objects() case
is always able to proceed. Without this patch, I was able to deadlock a
multicore system within minutes by constantly loading and unloading an KLD
module while I simultaneously started a sampling mode PMC in a loop.
MFC after: 1 month
the dependency of which was preloaded, but failed to initialize. Previously,
kernel dereferenced NULL pointer returned by modlist_lookup2(); now, when this
happens, we unload the dependent module. Since the depended_files list is
sorted in dependency order, this properly propagates, unloading modules that
depend on failed ones.
From the user point of view, this prevents the kernel from panicing when
trying to boot kernel compiled without KDTRACE_HOOKS with dtraceall_load="YES"
in /boot/loader.conf.
Reviewed by: kib
This is a followup to r212964.
stack_print call chain obtains linker sx lock and thus potentially may
lead to a deadlock depending on a kind of a panic.
stack_print_ddb doesn't acquire any locks and it doesn't use any
facilities of ddb backend.
Using stack_print_ddb outside of DDB ifdef required taking a number of
helper functions from under it as well.
It is a good idea to rename linker_ddb_* and stack_*_ddb functions to
have 'unlocked' component in their name instead of 'ddb', because those
functions do not use any DDB services, but instead they provide unlocked
access to linker symbol information. The latter was previously needed
only for DDB, hence the 'ddb' name component.
Alternative is to ditch unlocked versions altogether after implementing
proper panic handling:
1. stop other cpus upon a panic
2. make all non-spinlock lock operations (mutex, sx, rwlock) be a no-op
when panicstr != NULL
Suggested by: mdf
Discussed with: attilio
MFC after: 2 weeks