While ctld(8) still does not allow multiple portal groups per target
to be configured, kernel should now be able to handle it.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Replace iSCSI-specific LUN mapping mechanism with new one, working for any
ports. By default all ports are created without LUN mapping, exposing all
CTL LUNs as before. But, if needed, LUN mapping can be manually set on
per-port basis via ctladm. For its iSCSI ports ctld does it via ioctl(2).
The next step will be to teach ctld to work with FibreChannel ports also.
Respecting additional flexibility of the new mechanism, ctl.conf now allows
alternative syntax for LUN definition. LUNs can now be defined in global
context, and then referenced from targets by unique name, as needed. It
allows same LUN to be exposed several times via multiple targets.
While there, increase limit for LUNs per target in ctld from 256 to 1024.
Some initiators do not support LUNs above 255, but that is not our problem.
Discussed with: trasz
MFC after: 2 weeks
Relnotes: yes
Sponsored by: iXsystems, Inc.
sys/cam/scsi/scsi_all.h:
In struct scsi_extended_inquiry_data:
- Increase the length field to 2 bytes, as it is 2 bytes in SPC-4.
- Add bit definitions for the various Activiate Microcode actions.
- Add the Sequential Access Logical Block Protection support bit,
since we need that in the sa(4) driver. (For modifications
that will come later.)
- Add definitions for the various Multi I_T Nexus Microcode
Download modes.
sys/cam/ctl/ctl.c:
As of SPC-4, a single report of "REPORTED LUNS DATA HAS CHANGED"
is to be given per I_T nexus. Once it is reported, the unit
attention condition should be cleared for all LUNS attached to
an I_T nexus.
Previously that only happened when a REPORT LUNS command was
processed.
This behavior may be different (according to SAM-5) when the
UA_INTLCK_CTRL bits are non-zero in the control mode page but
CTL does not currently support that.
So, in view of the spec, whenever we report a LUN inventory
change unit attention, clear it on all LUNs for that
particular I_T nexus.
Add a new function, ctl_clear_ua() that will clear a unit
attention on all LUNs for the given I_T nexus.
One field in the extended inquiry data that we could potentially
report at some point is the maximum supported sense data length.
To do that, we would the SIM to report (via path inquiry
perhaps) how much sense data it is able to send.
Add comments to explain some of the bits that are set in the
Extended Inquiry VPD page.
Add a few comments to make it more clear which functions handle
various VPD pages.
Sponsored by: Spectra Logic
MFC after: 1 week
This could cause data corruption due to accessing wrong LUN in case of
retries on write errors. Failed writes were retried to read LUN.
MFC after: 3 days
If we aggregated status sending with data move and got error, allow status
to be updated and resent again separately. Without this command may stuck
without status sent at all.
MFC after: 2 weeks
While in most cases CTL should correctly fetch those values from backing
storages, there are some initiators (like MS SQL), that may not like large
physical block sizes, even if they are true. For such cases allow override
fetched values with supported ones (like 4K).
MFC after: 1 week
While we don't support MCS, hole in received sequence numbers may mean
only PDU loss. While we don't support lost PDU recovery, terminate the
connection to avoid stuck commands.
While there, improve handling of sequence numbers wrap after 2^32 PDUs.
MFC after: 2 weeks
Technically read requests can be executed in any order or simultaneously
since they are not changing any data. But ZFS prefetcher goes crasy when
it receives consecutive requests from different threads. Since prefetcher
works on level of separate blocks, instead of two consecutive 128K requests
it may receive 32 8K requests in mixed order.
This patch is more workaround then a real fix, and it does not fix all of
prefetcher problems, but it improves sequential read speed by 3-4x times
in some configurations. On the other side it may hurt performance if
some backing store has no prefetch, that is why it is disabled by default
for raw devices.
MFC after: 2 weeks
While without UNMAP support there is not much initiator can do about it,
the administrator still better be notified about the storage overflow.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Previously it was supported only for ZVOL-backed LUNs, but now should work
for file-backed LUNs too. Used value in this case is a space occupied by
the backing file, while available value is an available space on file
system. Pool thresholds are still not implemented in this case.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
It is implemented for LUNs backed by ZVOLs in "dev" mode and files.
GEOM has no such API, so for LUNs backed by raw devices all LBAs will
be reported as mapped/unknown.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
After recent optimizations this change is no longer blocked by CTL memory
consumption. Those limits are still not free, but much cheaper now.
MFC after: 1 week
Relnotes: yes
Sponsored by: iXsystems, Inc.
Abusing ability of major UAs cover minor ones we may not account UAs for
inactive ports. Allocate UAs storage for port and start accounting only
after some initiator from that port fetched its first POWER ON OCCURRED.
This reduces per-LUN CTL memory usage from >1MB to less then 100K.
MFC after: 1 month
In configurations with many ports, like iSCSI, each LUN is typically
accessed only by limited subset of ports. Allocating that memory on
demand allows to reduce CTL memory usage from 5.3MB/LUN to 1.3MB/LUN.
MFC after: 1 month
Make CTL core and block backend set success status before initiating last
data move for read commands. Make CAM target and iSCSI frontends detect
such condition and send command status together with data. New I/O flag
allows to skip duplicate status sending on later fe_done() call.
For Fibre Channel this change saves one of three interrupts per read command,
increasing performance from 126K to 160K IOPS. For iSCSI this change saves
one of three PDUs per read command, increasing performance from 1M to 1.2M
IOPS.
MFC after: 1 month
Sponsored by: iXsystems, Inc.
Old allocator created significant lock congestion protecting its lists
of preallocated I/Os, while UMA provides much better SMP scalability.
The downside of UMA is lack of reliable preallocation, that could guarantee
successful allocation in non-sleepable environments. But careful code
review shown, that only CAM target frontend really has that requirement.
Fix that making that frontend preallocate and statically bind CTL I/O for
every ATIO/INOT it preallocates any way. That allows to avoid allocations
in hot I/O path. Other frontends either may sleep in allocation context
or can properly handle allocation errors.
On 40-core server with 6 ZVOL-backed LUNs and 7 iSCSI client connections
this change increases peak performance from ~700K to >1M IOPS! Yay! :)
MFC after: 1 month
Sponsored by: iXsystems, Inc.
In this mode one head is in Active state, supporting all commands, while
another is in Standby state, supporting only minimal LUN discovery subset.
It is still incomplete since Standby state requires reservation support,
which is impossible to do right without having interlink between heads.
But it allows to run some basic experiments.
With command serialization used in CTL, there are no other commands to abort
when PREEMPT AND ABORT gets to run, so it is practically equal to PREEMPT.
MFC after: 1 week
For ZVOL-backed LUNs this allows to inform initiators if storage's used or
available spaces get above/below the configured thresholds.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
This makes VMWare VAAI Thin Provisioning Stun primitive activate, pausing
the virtual machine, when backing storage (ZFS pool) is getting overflowed.
MFC after: 1 week
Sponsored by: iXsystems, Inc.
This includes support for:
- Read-Write Error Recovery mode page;
- Informational Exceptions Control mode page;
- Logical Block Provisioning mode page;
- LOG SENSE command.
No real Informational Exceptions features yet. This is only a placeholder.
Sponsored by: iXsystems, Inc.
SPC-4 r2 allows to return empty defect list if the list is not supported.
We don't reallu support defect data lists, but this suppresses some errors.
MFC after: 1 week
Make this subcommand less FC-specific, reporting target and port addresses
in more generic way. Also make it report list of connected initiators in
unified way, working for both FC and iSCSI, and potentially others.
MFC after: 1 week
Queued async events handling in CAM opened race, that may lead to duplicate
AC_PATH_REGISTERED events delivery during boot. That was not happening
before r272935 because the driver was initialized later. After that change
it started create duplicate ports in CTL.
Target mode operation does not depend on the initiator mode scan process.
This change allows the target driver to attach earlier and receive some
async events (like AC_CONTRACT) that could be lost otherwise.
MFC after: 1 week
Such LUNs will be visible to initiators, but return "not ready" status
on media access commands. If backing storage become available later,
`ctladm modify ...` or `service ctld reload` can trigger its reopen.
It allows to push out some final data from the send queue to the socket
before its close. In particular, it increases chances for logout response
to be delivered to the initiator.
Before this change target could send R2T request for write transfer of any
size, that could violate iSCSI RFC, which allows initiator to limit maximum
R2T size by negotiating MaxBurstLength connection parameter.
Also report an error in case of write underflow, when initiator provides
less data than initiator expects. Previously in such case our target
sent R2T request for non-existing data, violating the RFC, and confusing
some initiators. SCSI specs don't explicitly define how write underflows
should be handled and there are different oppinions, but reporting error
is hopefully better then violating iSCSI RFC with unpredictable results.
MFC after: 2 weeks
or I_T NEXUS LOSS, clear all minor UAs for the LUN, redundant in this case.
All SAM specifications tell that target MAY do it, but libiscsi initiator
seems require it to be done, terminating connection with error if some more
UAs happen to be reported during iSCSI connection.
MFC after: 3 days
Using pointer from the cdev directly is dangerous since we have no reference
on it, and it may change any time. That caused panic if device has gone.
While there, report capacity change only if it really changed.
MFC after: 3 days
Without clustering support we any way have only one group of permanently
active ports, but that gives us one more supported VMWare feature. ;)
Solaris' Comstar also reports it even when only one port is present.
It allows to bypass range checks between UNMAP and READ/WRITE commands,
which may introduce additional delays while waiting for UNMAP parameters.
READ and WRITE commands are always processed in safe order since their
range checks are almost free.
Before this change UNMAP completely blocked other I/Os while running.
Now it blocks only colliding ones, slowing down others only due to ZFS
locks collisions.
Sponsored by: iXsystems, Inc.
kern.cam.ctl.iscsi.ping_timeout to 0. This fixes interoperability with
some initiators that don't properly support NOP-Ins, namely iPXE/gPXE.
Submitted by: Chen Wen <pokkys@gmail.com>
MFC after: 1 week
Sponsored by: The FreeBSD Foundation
At this moment it works only for files and ZVOLs in device mode since BIOs
have no respective respective cache control flags (DPO/FUA).
MFC after: 1 month
Sponsored by: iXsystems, Inc.
sizeof(struct scsi_inquiry_data) of 256 bytes combined with off-by-one
error in the changed code gave total INQUIRY data length above 255 bytes,
that was maximal INQUIRY length in SPC-2. While SPC-3 increased the
maximal length to 64K, at least sg3_utils are still confused by that.
MFC after: 1 week
This allows to avoid extra network traffic when copying files on NTFS iSCSI
disks within one storage host by drag'n'dropping them in Windows Explorer
of Windows 8/2012. It should also accelerate Hyper-V VM operations, etc.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Unlike disk devices ZVOLs process all requests synchronously. That makes
impossible sending multiple requests to them from single thread. From the
other side ZVOLs have real d_read/d_write methods, which unlike d_strategy
can handle uio scatter/gather and have no strict I/O size limitations.
So, if ZVOL in "dev" mode is detected, use of d_read/d_write methods instead
of d_strategy allows to avoid pointless splitting of large requests into
MAXPHYS (128K) sized chunks.
MFC after: 1 week
link_elf_obj: symbol icl_pdu_new_bhs undefined
PR: 192031
Submitted by: Nils Beyer (earlier version)
MFC after: 3 days
Sponsored by: FreeBSD Foundation
After I gave each iSCSI target its own port, the old limit appeared to be
not so big. This change almost proportionally increases per-LUN memory
use, but it is still three times better then it was before r268807.
MFC after: 2 weeks
CTL never had use for CA support code since SPI has gone, and there is no
even frontends supporting that. But it still was reserving 256 bytes of
memory per LUN per every possible initiator on every possible port.
Wrap unused code with ifdef's in case somebody even need it.
MFC after: 2 weeks
This allows to clone VMs and move them between LUNs inside one storage
host without generating extra network traffic to the initiator and back,
and without being limited by network bandwidth.
LUNs participating in copy operation should have UNIQUE NAA or EUI IDs set.
For LUNs without these IDs VMWare will use traditional copy operations.
Beware: the above LUN IDs explicitly set to values non-unique from the VM
cluster point of view may cause data corruption if wrong LUN is addressed!
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
That should make operation more kind to multi-initiator environment.
Without this, other initiators may find out that something bad happened
to their commands only via command timeout.
Testing shown that both original queued design with separate task queue,
and recent direct execution design had significant flaw: If abort request
arrives just after the victim, the last one may not be in the ooa_queue
yet, and so invisible for the task management function.
Unlike original queued implementation, use same queue for all SCSI and
TASK requests from the same initiator. That avoids races between them:
task functions are always executed in proper time, relatively to other
requests.
If port passed negative IID value, the function will try to allocate IID
from the pool of unused, based on passed wwpn or name arguments. It does
all its best to make IID unique and persistent across reconnects.
This makes persistent reservation properly work for iSCSI. Previously,
in case of reconnects, reservation could be unexpectedly lost, or even
migrate between intiators.
teardown, and new port creation during `service ctld restart`.
Close it by returning iSCSI port internal state, that allows to identify
dying ports, which should not be counted as existing, from really alive.
Instead make ports provide wanted port and target IDs, and LUNs provide
wanted LUN IDs. After that core Device ID VPD code only had to link all
of them together and add relative port and port group numbers.
LUN ID for iSCSI LUNs no longer created by CTL, but by ctld, and passed
to CTL as "scsiname" LUN option. This makes LUNs to report the same set
of IDs, independently from the port through which it is accessed, as
required by SCSI specifications.
Having single port for all iSCSI connections makes problematic implementing
some more advanced SCSI functionality in CTL, that require proper ports
enumeration and identification.
This change extends CTL iSCSI API, making ctld daemon to control list of
iSCSI ports in CTL. When new target is defined in config fine, ctld will
create respective port in CTL. When target is removed -- port will be
also removed after all active commands through that port properly aborted.
This change require ctld to be rebuilt to match the kernel.
As a minor side effect, this allows to have iSCSI targets without LUNs.
While that may look odd and not very useful, that is not incorrect.
Before iSCSI implementation CTL had no knowledge about frontend drivers,
it had only frontends, which really were ports (alike to LUNs, if comparing
to backends). But iSCSI added there ioctl() method, which does not belong
to frontend as a port, but belongs to a frontend driver.
For every supported command define CDB length and mask of bits that are
allowed to be set. This allows to remove bunch of checks through the code
and still make the validation more strict. To properly do it for commands
supporting multiple service actions, formalize their parsing by adding
subtables for each of such commands.
As visible effect, this change allows to add support for REPORT SUPPORTED
OPERATION CODES command, reporting to client all the data about supported
SCSI commands, except timeouts.
MFC after: 2 weeks
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
Instead of trying to guess size of disk I/O operations (it just won't work
that way for newly added commands, and is equal to data move size for old
ones), account data move traffic. If disk I/Os are that interesting, then
backends have to account and provide that information.
Block backend already exports the information about disk I/Os via devstat,
so having it here too is excessive.
MFC after: 2 weeks
This gives some use to 512KB per-LUN buffers, allocated for Copan-specific
processor code and not used. It allows, for example, to test transport
performance and/or correctness without accessing the media, as supported
by Linux version of sg3_utils.
MFC after: 2 weeks
Split global ctl_lock, historically protecting most of CTL context:
- remaining ctl_lock now protects lists of fronends and backends;
- per-LUN lun_lock(s) protect LUN-specific information;
- per-thread queue_lock(s) protect request queues.
This allows to radically reduce congestion on ctl_lock.
Create multiple worker threads, depending on number of CPUs, and assign
each LUN to one of them. This allows to spread load between multiple CPUs,
still avoiging congestion on queues and LUNs locks.
On 40-core server, exporting 5 LUNs, each backed by gstripe of SATA SSDs,
accessed via 6 iSCSI connections, this change improves peak request rate
from 250K to 680K IOPS.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
While for FreeBSD client that is only a minor optimization, VMWare client
doesn't support additional data requests after all data being sent once as
immediate.
MFC after: 1 week
Sponsored by: iXsystems, Inc.
From one side it allows to remove CTL_FLAG_TASK_PENDING flag, handling of
which significantly complicates fine-grained locking. From the other side
it reduces task management requests latency even below then that flag could.
As downside, it denies task management code to sleep, but that is not needed
any way now.
Discussed with: ken
This should allow to abort commands doing mostly disk I/O, such as VERIFY
or WRITE SAME. Before this change CTL_FLAG_ABORT was only checked around
data moves, which for these commands may not happen for a very long time.
MFC after: 2 weeks
SPC-4 recommends T10 vendor ID based LUN ID was created by concatenating
product name and serial number (and istgt follows that). But product name
is 16 bytes long by itself, so 16 bytes total length is clearly not enough
to fit both.
To keep compatibility with existing configurations, pad short device IDs
to old length of 16, same as before.
This change probably breaks CTL user-level ABI, so control tools should
be rebuilt after this change.
MFC after: 2 weeks
for any outstanding commands to be properly aborted by CTL.
Without it, in some cases (such as files backing the LUNs
stored on failing disk drives), terminating a busy session
would result in panic.
Reviewed by: mav@ (earlier version)
Sponsored by: The FreeBSD Foundation
Make data_submit backends method support not only read and write requests,
but also two new ones: verify and compare. Verify just checks readability
of the data in specified location without transferring them outside.
Compare reads the specified data and compares them to received data,
returning error if they are different.
VERIFY(10/12/16) commands request either verify or compare from backend,
depending on BYTCHK CDB field. COMPARE AND WRITE command executed in two
stages: first it requests compare, and then, if succeesed, requests write.
Atomicity of operation is guarantied by CTL request ordering code.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.