flags so that we can call malloc with M_NOWAIT if necessary, avoiding
potential sleeps while holding mutexes in the TCP syncache code.
Similar to the existing support for mbuf label allocation: if we can't
allocate all the necessary label store in each policy, we back out
the label allocation and fail the socket creation. Sync from MAC tree.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
- Change mpo_init_foo(obj, label) and mpo_destroy_foo(obj, label) policy
entry points to mpo_init_foo_label(label) and
mpo_destroy_foo_label(label). This will permit the use of the same
entry points for holding temporary type-specific label during
internalization and externalization, as well as for caching purposes.
- Because of this, break out mpo_{init,destroy}_socket() and
mpo_{init,destroy}_mount() into seperate entry points for socket
main/peer labels and mount main/fs labels.
- Since the prototype for label initialization is the same across almost
all entry points, implement these entry points using common
implementations for Biba, MLS, and Test, reducing the number of
almost identical looking functions.
This simplifies policy implementation, as well as preparing us for the
merge of the new flexible userland API for managing labels on objects.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
TrustedBSD MAC Perforce tree. Remove unused functions
mac_biba_equal_range and mac_mls_equal_range, which determined if the
ranges in two range-enabled labels were equal.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
module and is not linked into the base system, two KASSERT's rotted.
Fix them by fixing variable names. It would be really nice if
opt_global.h was used when building modules as part of a buildkernel.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
for mac_check_vnode_{poll,read,stat,write}(). Pass in fp->f_cred
when calling these checks with a struct file available. Otherwise,
pass NOCRED. All currently MAC policies use active_cred, but
could now offer the cached credential semantic used for the base
system security model.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
mac_check_pipe_poll(), mac_check_pipe_read(), mac_check_pipe_stat(),
and mac_check_pipe_write(). This is improves consistency with other
access control entry points and permits security modules to only
control the object methods that they are interested in, avoiding
switch statements.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
mac_check_vnode_poll(), mac_check_vnode_read(), mac_check_vnode_write().
This improves the consistency with other existing vnode checks, and
allows policies to avoid implementing switch statements to determine
what operations they do and do not want to authorize.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
we can use the names _receive() and _send() for the receive() and send()
checks. Rename related constants, policy implementations, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs