the Davicom DM9100 and DM9102 chipsets, including the Jaton Corporation
XPressNet. Datasheet is available from www.davicom8.com.
The DM910x chips are still more tulip clones. The API is reproduced
pretty faithfully, unfortunately the performance is pretty bad. The
transmitter seems to have a lot of problems DMAing multi-fragment
packets. The only way to make it work reliably is to coalesce transmitted
packets into a single contiguous buffer. The Linux driver (written by
Davicom) actually does something similar to this. I can't recomment this
NIC as anything more than a "connectivity solution."
This driver uses newbus and miibus and is supported on both i386
and alpha platforms.
SiS 900 and SiS 7016 PCI fast ethernet chipsets. Full manuals for the
SiS chips can be found at www.sis.com.tw.
This is a fairly simple chipset. The receiver uses a 128-bit multicast
hash table and single perfect entry for the station address. Transmit and
receive DMA and FIFO thresholds are easily tuneable. Documentation is
pretty decent and performance is not bad, even on my crufty 486. This
driver uses newbus and miibus and is supported on both the i386 and
alpha architectures.
a quick think and discussion among various people some form of some of
these changes will probably be recommitted.
The reversion requested was requested by dg while discussions proceed.
PHK has indicated that he can live with this, and it has been agreed
that some form of some of these changes may return shortly after further
discussion.
the highly non-recommended option ALLOW_BDEV_ACCESS is used.
(bdev access is evil because you don't get write errors reported.)
Kill si_bsize_best before it kills Matt :-)
Use the specfs routines rather having cloned copies in devfs.
UMAPFS_DIAGNOSTIC and UNION_DIAGNOSTIC. Uncommented NULLFS_DIAGNOSTIC.
It is as bogus as the above three but since it is already a new-style
option it is easier to use it than to fix it.
PCI fast ethernet controller. Currently, the only card I know that uses
this chip is the D-Link DFE-550TX. (Don't ask me where to buy these: the
only cards I have are samples sent to me by D-Link.)
This driver is the first to make use of the miibus code once I'm sure
it all works together nicely, I'll start converting the other drivers.
The Sundance chip is a clone of the 3Com 3c90x Etherlink XL design
only with its own register layout. Support is provided for ifmedia,
hardware multicast filtering, bridging and promiscuous mode.
MII-compliant PHY drivers. Many 10/100 ethernet NICs available today
either use an MII transceiver or have built-in transceivers that can
be programmed using an MII interface. It makes sense then to separate
this support out into common code instead of duplicating it in all
of the NIC drivers. The mii code also handles all of the media
detection, selection and reporting via the ifmedia interface.
This is basically the same code from NetBSD's /sys/dev/mii, except
it's been adapted to FreeBSD's bus architecture. The advantage to this
is that it automatically allows everything to be turned into a
loadable module. There are some common functions for use in drivers
once an miibus has been attached (mii_mediachg(), mii_pollstat(),
mii_tick()) as well as individual PHY drivers. There is also a
generic driver for all PHYs that aren't handled by a specific driver.
It's possible to do this because all 10/100 PHYs implement the same
general register set in addition to their vendor-specific register
sets, so for the most part you can use one driver for pretty much
any PHY. There are a couple of oddball exceptions though, hence
the need to have specific drivers.
There are two layers: the generic "miibus" layer and the PHY driver
layer. The drivers are child devices of "miibus" and the "miibus" is
a child of a given NIC driver. The "miibus" code and the PHY drivers
can actually be compiled and kldoaded as completely separate modules
or compiled together into one module. For the moment I'm using the
latter approach since the code is relatively small.
Currently there are only three PHY drivers here: the generic driver,
the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding
others later as I convert various NIC drivers to use this code.
I realize that I'm cvs adding this stuff instead of importing it
onto a separate vendor branch, but in my opinion the import approach
doesn't really offer any significant advantage: I'm going to be
maintaining this stuff and writing my own PHY drivers one way or
the other.
- increase the default timeout from 10 seconds to 60 seconds
- add a new kernel option, SCSI_PT_DEFAULT_TIMEOUT, that lets users specify
the default timeout for the pt driver to use
- add two new ioctls, one to get the timeout for a given pt device, the
other to set the timeout for a given pt device. The idea is that
userland applications using the device can set the timeout to suit their
purposes. The ioctls are defined in a new header file, sys/ptio.h
PR: 10266
Reviewed by: gibbs, joerg
we create the pty on the fly when it is first opened.
If you run out of ptys now, just MAKEDEV some more.
This also demonstrate the use of dev_t->si_tty_tty and dev_t->si_drv1
in a device driver.
macros) to the signal handler, for old-style BSD signal handlers as
the second (int) argument, for SA_SIGINFO signal handlers as
siginfo_t->si_code. This is source-compatible with Solaris, except
that we have no <siginfo.h> (which isn't even mentioned in POSIX
1003.1b).
An rather complete example program is at
http://www3.cons.org/cracauer/freebsd-signal.c
This will be added to the regression tests in src/.
This commit also adds code to disable the (hardware) FPU from
userconfig, so that you can use a software FP emulator on a machine
that has hardware floating point. See LINT.
ethernet controllers based on the AIC-6915 "Starfire" controller chip.
There are single port, dual port and quad port cards, plus one 100baseFX
card. All are 64-bit PCI devices, except one single port model.
The Starfire would be a very nice chip were it not for the fact that
receive buffers have to be longword aligned. This requires buffer
copying in order to achieve proper payload alignment on the alpha.
Payload alignment is enforced on both the alpha and x86 platforms.
The Starfire has several different DMA descriptor formats and transfer
mechanisms. This driver uses frame descriptors for transmission which
can address up to 14 packet fragments, and a single fragment descriptor
for receive. It also uses the producer/consumer model and completion
queues for both transmit and receive. The transmit ring has 128
descriptors and the receive ring has 256.
This driver supports both FreeBSD/i386 and FreeBSD/alpha, and uses newbus
so that it can be compiled as a loadable kernel module. Support for BPF
and hardware multicast filtering is included.
gigabit ethernet adapters. This includes two single port cards
(single mode and multimode fiber) and two dual port cards (also single
mode and multimode fiber). SysKonnect is currently the only
vendor with a dual port gigabit ethernet NIC.
The ports on dual port adapters are treated as separate network
interfaces. Thus, if you have an SK-9844 dual port SX card, you
should have both sk0 and sk1 interfaces attached. Dual port cards
are implemented using two XMAC II chips connected to a single
SysKonnect GEnesis controller. Hence, dual port cards are really
one PCI device, as opposed to two separate PCI devices connected
through a PCI to PCI bridge. Note that SysKonnect's drivers use
the two ports for failover purposes rather that as two separate
interfaces, plus they don't support jumbo frames. This applies to
their Linux driver too. :)
Support is provided for hardware multicast filtering, BPF and
jumbo frames. The SysKonnect cards support TCP checksum offload
however this feature is not currently enabled (hopefully it will
be once we get checksum offload support).
There are still a few things that need to be implemeted, like
the ability to communicate with the on-board LM80 voltage/temperature
monitor, but I wanted to get the driver under CVS control and into
-current so people could bang on it.
A big thanks for SysKonnect for making all their programming info
for these cards (and for their FDDI and token ring cards) available
without NDA (see www.syskonnect.com).
- Split syscons source code into manageable chunks and reorganize
some of complicated functions.
- Many static variables are moved to the softc structure.
- Added a new key function, PREV. When this key is pressed, the vty
immediately before the current vty will become foreground. Analogue
to PREV, which is usually assigned to the PrntScrn key.
PR: kern/10113
Submitted by: Christian Weisgerber <naddy@mips.rhein-neckar.de>
- Modified the kernel console input function sccngetc() so that it
handles function keys properly.
- Reorganized the screen update routine.
- VT switching code is reorganized. It now should be slightly more
robust than before.
- Added the DEVICE_RESUME function so that syscons no longer hooks the
APM resume event directly.
- New kernel configuration options: SC_NO_CUTPASTE, SC_NO_FONT_LOADING,
SC_NO_HISTORY and SC_NO_SYSMOUSE.
Various parts of syscons can be omitted so that the kernel size is
reduced.
SC_PIXEL_MODE
Made the VESA 800x600 mode an option, rather than a standard part of
syscons.
SC_DISABLE_DDBKEY
Disables the `debug' key combination.
SC_ALT_MOUSE_IMAGE
Inverse the character cell at the mouse cursor position in the text
console, rather than drawing an arrow on the screen.
Submitted by: Nick Hibma (n_hibma@FreeBSD.ORG)
SC_DFLT_FONT
makeoptions "SC_DFLT_FONT=_font_name_"
Include the named font as the default font of syscons. 16-line,
14-line and 8-line font data will be compiled in. This option replaces
the existing STD8X16FONT option, which loads 16-line font data only.
- The VGA driver is split into /sys/dev/fb/vga.c and /sys/isa/vga_isa.c.
- The video driver provides a set of ioctl commands to manipulate the
frame buffer.
- New kernel configuration option: VGA_WIDTH90
Enables 90 column modes: 90x25, 90x30, 90x43, 90x50, 90x60. These
modes are mot always supported by the video card.
PR: i386/7510
Submitted by: kbyanc@freedomnet.com and alexv@sui.gda.itesm.mx.
- The header file machine/console.h is reorganized; its contents is now
split into sys/fbio.h, sys/kbio.h (a new file) and sys/consio.h
(another new file). machine/console.h is still maintained for
compatibility reasons.
- Kernel console selection/installation routines are fixed and
slightly rebumped so that it should now be possible to switch between
the interanl kernel console (sc or vt) and a remote kernel console
(sio) again, as it was in 2.x, 3.0 and 3.1.
- Screen savers and splash screen decoders
Because of the header file reorganization described above, screen
savers and splash screen decoders are slightly modified. After this
update, /sys/modules/syscons/saver.h is no longer necessary and is
removed.
ADMtek AL981 "Comet" chipset. The AL981 is yet another DEC tulip clone,
except with simpler receive filter options. The AL981 has a built-in
transceiver, power management support, wake on LAN and flow control.
This chip performs extremely well; it's on par with the ASIX chipset
in terms of speed, which is pretty good (it can do 11.5MB/sec with TCP
easily).
I would have committed this driver sooner, except I ran into one problem
with the AL981 that required a workaround. When the chip is transmitting
at full speed, it will sometimes wedge if you queue a series of packets
that wrap from the end of the transmit descriptor list back to the
beginning. I can't explain why this happens, and none of the other tulip
clones behave this way. The workaround this is to just watch for the end
of the transmit ring and make sure that al_start() breaks out of its
packet queuing loop and waiting until the current batch of transmissions
completes before wrapping back to the start of the ring. Fortunately, this
does not significantly impact transmit performance.
This is one of those things that takes weeks of analysis just to come
up with two or three lines of code changes.
Implement priorities.
GENERIC, LINT, files:
Remove remarks about ordering of device names.
GENERIC, LINT:
Sort the devices alphabetically in LINT and GENERIC.
config kernel mumble mumble
line has been obsoleted and removed and with it went all knowledge of
devices on the part of config.
You can still configure a root device (which is used if you give
the "-r" flag) but now with an option:
options ROOTDEVNAME=\"da0s2e\"
The string is parsed by the same code as at the "boot -a" prompt.
At the same time, make the "boot -a" prompt both more able and more
informative.
ALPHA/PC98 people: You will have to adapt a few simple changes
(defining rootdev and dumpdev somewhere else) before config works
for you again, sorry, but it's all in the name of progress.