with the sendsig code in the MD area. It is not safe to assume that all
the register conventions will be the same. Also, the way of producing
32 bit code (.code32 directives) in this file is amd64 specific.
The split-up code is derived from the ia64 code originally.
Note that I have only compile-tested this, not actually run-tested it.
The ia64 side of the force is missing some significant chunks of signal
delivery code.
is highly MD in an emulation environment since it operates on the host
environment. Although the setregs functions are really for exec support
rather than signals, they deal with the same sorts of context and include
files. So I put it there rather than create yet another file.
structures come out the right size.
Fix the ones that broke. stat32 had some missing fields from the end
and statfs32 was broken due to the strange definition of MNAMELEN
(which is dependent on sizeof(long))
I'm not sure if this fixes any actual problems or not.
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
from the ia32 specific stuff. Some of this still needs to move to the MI
freebsd32 area, and some needs to move to the MD area. This is still
work-in-progress.
having their stack at the 512GB mark. Give 4GB of user VM space for 32
bit apps. Note that this is significantly more than on i386 which gives
only about 2.9GB of user VM to a process (1GB for kernel, plus page
table pages which eat user VM space).
Approved by: re (blanket)
load_gs() calls into a single place that is less likely to go wrong.
Eliminate the per-process context switching of MSR_GSBASE, because it
should be constant for a single cpu. Instead, save/restore it during
the loading of the new %gs selector for the new process.
Approved by: re (amd64/* blanket)
stolen from the ia64/ia32 code (indeed there was a repocopy), but I've
redone the MD parts and added and fixed a few essential syscalls. It
is sufficient to run i386 binaries like /bin/ls, /usr/bin/id (dynamic)
and p4. The ia64 code has not implemented signal delivery, so I had
to do that.
Before you say it, yes, this does need to go in a common place. But
we're in a freeze at the moment and I didn't want to risk breaking ia64.
I will sort this out after the freeze so that the common code is in a
common place.
On the AMD64 side, this required adding segment selector context switch
support and some other support infrastructure. The %fs/%gs etc code
is hairy because loading %gs will clobber the kernel's current MSR_GSBASE
setting. The segment selectors are not used by the kernel, so they're only
changed at context switch time or when changing modes. This still needs
to be optimized.
Approved by: re (amd64/* blanket)
sysentvec. Initialized all fields of all sysentvecs, which will allow
them to be used instead of constants in more places. Provided stack
fixup routines for emulations that previously used the default.
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).