just discard the received frame and reuse the old mbuf.
This should prevent the connection from stalling after high network traffic.
MFC after: 2 weeks
from the printer and discarding the data even if the ulpt device
was opened for reading. This resulted in crashes because two
conconcurrent read transfers were using the same transfer structure.
PR: usb/88886
Reported By: Alex Pivovarov
MFC after: 1 week
rather than in ifindex_table[]; all (except one) accesses are
through ifp anyway. IF_LLADDR() works faster, and all (except
one) ifaddr_byindex() users were converted to use ifp->if_addr.
- Stop storing a (pointer to) Ethernet address in "struct arpcom",
and drop the IFP2ENADDR() macro; all users have been converted
to use IF_LLADDR() instead.
---snip---
FYI this bit isn't needed for FreeBSD - I think it came from either
OpenBSD or NetBSD where arc4random() wasn't available during cold
boot.
---snip---
Explained by: iedowse
Synchronise with NetBSD upto rev 1.19:
- Allow 32 chars in the saved vendor string.
- Some NetBSD-only changes.
- Some missing parts (define, variable).
ehci_pci.c:
Add vendor ids for ATI and Philips.
Add identification strings for the following:
o ALi's M5239
o AMD 8111
o ATI SB200, SB400
o Intel 6300ESB, ICH4, ICH5, ICH7
o NVIDIA nForce 2, nForce 3, nForce 4
o Philips ISP156x
ehcireg.h:
We're at the same level as rev 1.18 from NetBSD.
usb_port.h:
NetBSD/OpenBSD specific things
Obtained from: NetBSD via DragonFly
No comment from: usb@
so that devd can match on it. This field was already available to
usbd and is used by a number of usbd.conf entries, so now it is
possible to transfer those entries to devd.conf.
Submitted by: Anish Mistry
o add ic_curchan and use it uniformly for specifying the current
channel instead of overloading ic->ic_bss->ni_chan (or in some
drivers ic_ibss_chan)
o add ieee80211_scanparams structure to encapsulate scanning-related
state captured for rx frames
o move rx beacon+probe response frame handling into separate routines
o change beacon+probe response handling to treat the scan table
more like a scan cache--look for an existing entry before adding
a new one; this combined with ic_curchan use corrects handling of
stations that were previously found at a different channel
o move adhoc neighbor discovery by beacon+probe response frames to
a new ieee80211_add_neighbor routine
Reviewed by: avatar
Tested by: avatar, Michal Mertl
MFC after: 2 weeks
IFF_DRV_RUNNING, as well as the move from ifnet.if_flags to
ifnet.if_drv_flags. Device drivers are now responsible for
synchronizing access to these flags, as they are in if_drv_flags. This
helps prevent races between the network stack and device driver in
maintaining the interface flags field.
Many __FreeBSD__ and __FreeBSD_version checks maintained and continued;
some less so.
Reviewed by: pjd, bz
MFC after: 7 days
when using mice containing a tilt movement: there was a missing
usb_callout_init() for the UMS_SPUR_BUT_UP quirk code, and UMS_T
was defined to the same flag value as UMS_SPUR_BUT_UP.
Reported by: flz
MFC after: 3 days
over iteration of their multicast address lists when synchronizing the
hardware address filter with the network stack-maintained list.
Problem reported by: Ed Maste (emaste at phaedrus dot sandvine dot ca>
MFC after: 1 week
through umass(4), in order to make cdcontrol(1) to issue commands to
a USB CD driver.
The command IDs were obtained from the CAM subsystem. This was tested
on half dozen of USB CD drivers from different vendors.
Suggested by: "intron" <intron at intron dot ac>
PR: usb/83439
Reviewed by: sanpei
MFC After: 1 week
succeed. There are many printers that return status over the read
channel, and if we wait for the status to become ready, then we can't
find the status automatically. Linux doesn't wait, nor does it ever
seem to really check the status in any meaningful way... If there
really is a problem, the writes to the bulk out endpoint will still
fail (like they would if the printer was ready and then ran out of
paper or became unready).
In addition, there are a number of printers being made that emulate
the 'status' byte by returning '0' always rather than '0x18'. This
fixes the EBUSY on open timeouts on those printer as well.
Reviewed by: the defining silence on usb@
o Indent usb ids properly
o Check the return value of if_alloc()
o Call if_free() in ural_detach()
Reviewed by: silby (mentor)
Approved by: re (scottl)
struct ifnet or the layer 2 common structure it was embedded in have
been replaced with a struct ifnet pointer to be filled by a call to the
new function, if_alloc(). The layer 2 common structure is also allocated
via if_alloc() based on the interface type. It is hung off the new
struct ifnet member, if_l2com.
This change removes the size of these structures from the kernel ABI and
will allow us to better manage them as interfaces come and go.
Other changes of note:
- Struct arpcom is no longer referenced in normal interface code.
Instead the Ethernet address is accessed via the IFP2ENADDR() macro.
To enforce this ac_enaddr has been renamed to _ac_enaddr.
- The second argument to ether_ifattach is now always the mac address
from driver private storage rather than sometimes being ac_enaddr.
Reviewed by: sobomax, sam
are used onboard in most of the newer PCI-based sun4u machines
(cosmetic change as they were also already probed as generic OHCI
without this). Detect whether their intpin register is valid and
correct it if necessary, i.e. set the respective IVAR to the right
value for allocating the IRQ resource, as some of them come up
having it set to 0 (mainly those used in Blade 100 and the first
one on AX1105 boards). This fixes attaching affected controllers.
Correcting the intpin value might be better off in the PCI code
via a quirk table but on the other hand gem(4) and hem(4) also
correct it themselves and at least for the USB controller part
the intpin register is truely hardwired to 0 and can't be changed.
This means that we would have to hook up the quirk information
in a lot of places in the PCI code (i.e. whenever the value of the
intpin register is read from or written to the pci_devinfo of the
respective device) in order to do it the right way.
MFC after: 1 month
whether or not the receive pipe is stopped. This ensures that we
do not attempt to start the same transfer twice, and it allows
ucomstop() to skip the restarting of the read pipe if it was not
originally running, such as when called indirectly from ucomreadcb().
PR: kern/79420
MFC after: 1 day
This ensures that we explore EHCI busses before their companion
controllers' busses, so that ports connected to full/low speed
devices will be properly routed to the companion controllers by the
time the OHCI/UHCI exploration occurs.
found it guilty in putting the card into unusable state after UP->DOWN->UP
media status change.
Looks like some of register writes in this functions mess up PHY interface.
No visible regressions has been found after commenting this code out -
the card properly handles forceful local mode changes and auto-detects changes
made remotely (tested with Auto, 10HD, 10FD, 100HD, 100FD).
Sponsored by: PBXpress Inc.
MFC after: 3 days
with the wrong language parameter when retrieving the device serial
number. This invalid request caused some devices not to work at
all.
PR: usb/79190
Submitted by: Hans Petter Selasky <hselasky@c2i.net>
FreeBSD based on aue(4) it was picked by OpenBSD, then from OpenBSD ported
to NetBSD and finally NetBSD version merged with original one goes into
FreeBSD.
Obtained from: http://www.gank.org/freebsd/cdce/
NetBSD
OpenBSD
configure_final(), assert that "cold" is true in usb_cold_explore()
when there are busses to explore. When USB is kldloaded after boot,
usb_cold_explore() will still get invoked but the list of busses
to explore in that case should always be empty.
transfer, which lead to panics or page faults. For example if a
transfer timed out, another thread could come along and attempt to
abort the same transfer while the timeout task was sleeping in
the *_abort_xfer() function.
Add an "aborting" flag to the private transfer state in each host
controller driver and use this to ensure that the abort is only
executed once. Also prioritise normal abort requests over timeouts
so that the callback is always given a status of USB_CANCELLED even
if the timeout-initiated abort began first.
The crashes caused by this bug were mainly reported in connection
with lpd printing to a USB printer.
PR: usb/78208, usb/78986
system have been attached, but no later. This ensures that we do
not explore ohci or uhci busses before the companion echi controller
has been initialised, so it should fix the problem of multi-speed
USB devices getting attached as USB 1 devices first and then
re-attached as USB 2.
Some further changes are needed on architectures that do not currently
allow hooks to be inserted before configure_final() - alpha, ia64,
powerpc and sparc64. On these architectures the exploration will
now be delayed until the usb kthread runs.
cleared if the host controller retries the transfer and is successful,
but we were interpreting these bits as indicating a fatal error.
Ignore these error bits, and instead use the HALTED bit to determine
if the transfer failed. Also update the USBD_STALLED detection to
ignore these bits.
Obtained from: OpenBSD
between passes over a QH. Previously the accesses to a QH were
bunched together in time, so the interval was often much longer
than intended. This now appears to match the diagrams in the EHCI
spec, so remove the XXX comment.
ever working correctly: the code was linking the QHs together but
then immediately overwriting the "next" pointers. Oops. Also
initialise qh_endphub, since the EHCI spec says that we should
always set the pipe multiplier field to something sensible.
This appears to make basic split transactions work, so enable split
transactions for control, bulk and interrupt pipes (split isochronous
transfers are not yet implemented). It should now be possible to
use USB1 devices even when they are connected through a USB2 hub.
o usb_subr.c, add delta 1.119:
Move usb_get_string() and make it public.
o usbdi.c, bring on par with 1.106, this includes:
- Make an iterator abstraction for looping through all descriptors.
- Whine about not being able to figure out default language if we are debugging.
- Move usb_get_string() and make it public.
o usbdi.h, bring on par with 1.64, this includes:
- Make an iterator abstraction for looping through all descriptors.
- Move usb_get_string() and make it public.
o usbdi_util.c, bring on par with 1.42, this includes:
- Add usbd_get_protocol().
- Use NULL instead of 0.
- Fix (mostly harmless) typo.
- Move utility routine from uirda.c to usbdi_util.c.
o usbdi_util.h, bring on par with 1.31, this includes:
- Add usbd_get_protocol().
- Move utility routine from uirda.c to usbdi_util.c.
MFC after: 3 days
base transfer speed to CAM. The actual value used (40MB/s) is fairly
arbitrary, but assumes the same 33% overhead as was implied by the
1MB/s figure we used for USB1 devices.
1/ doesn't matter on most of our architectures
2/ will never happen unless we start queueing multiple trasactions
to a single endpoint at one time (which we do not allow yet).
If anyone has a big_endian machine with EHCI they might check this
if they are having problems with EHCI but it's unlikely even there..
Submitted by: Hans Petter Selasky <hselasky@c2i.net>
MFC after: 3 days
to remove a transaction from the async schedule. The previous method didn't
work well and led to the hardware writing to free'd buffers etc, as
it didn't always know that the transaction had been aborted.
Written after consultation with David Brownell who wrote the Linux
EHCI driver.
As part of this give the sqh structure a "previous" pointer.
MFC after: 1 week
rather than a softc pointer (with the bus structure at the start).
This is a non-functional change. It just helps when reading the code to
know that the ehci, ohci and uhci drivers share the bus structure, not the
entire softc.
ADVANCELOGIC->AVANCELOGIC (nothing in the tree uses it, so safe to do)
sort HAGIWARA vendor entry
sort ACTIONTAR vendor entry
Minor change to SYSTEMTALKS vendor entry.
Add $NetBSD$ in a comment at the top
Update copyright dates
Update header comment
Add some of the entries not present in FreeBSD's usbdevs file
Harmonize some descriptions with NetBSD where NetBSD's were shorter
More work needs to happen here, as there's many conflicting vendor
names. There's also more harmonization that can happen before that
problem is tackled.
This was inspired by recent discussions, but none of the patches
posted were consulted to produce this commit. Other, similar ones
will follow.
This is part of an ongoing cycle of commits on all the BSDs to
merge the USB vendor and device defintions..
A merge from OpenBSD is still pending.
Submitted by: barry bouwsma (freebsd-misuser@NOSPAM.dyndns.dk)
Obtained from: NetBSD
MFC after: 1 week
to better keep track of the total amoutn transferred during a
transfer. Seems similar to some code in the NetBSD version.
I notice they have incorporated matches from him so I don't know which
direction it went.
Submitted by: damien.bergamini@free.fr
Obtained from: patches to make the ueagle driver work
MFC after: 1 week
Now only things that are different between us and NetBSD show up.
Means that these files are more of NetBSD style in some places but
since thay are NetBSD files, um, that's ok.
Obtained from: NetBSD
MFC after: 1 week
backed out commits were trying to address: when cancelling the timeout
callout, also cancel the abort_task event, since it is possible that
the timeout has already fired and set up an abort_task.
reports of problems. The bug is probably that there are cases where
`xfer->timeout && !sc->sc_bus.use_polling' is not a suitable test
for an active timeout callout, so an explicit flag will be necessary.
Apologies for the breakage.
transfer timeouts that typically cause a transfer to be completed
twice, resulting in panics and page faults:
o A transfer completion interrupt could arrive while an abort_task
event was set up, so the transfer would be aborted after it had
completed. This is very easy to reproduce. Fix this by setting
the transfer status to USBD_TIMEOUT before scheduling the
abort_task so that the transfer completion code will ignore it.
o The transfer completion code could execute concurrently with the
timeout callout, leaving the callout blocked (e.g. waiting for
Giant) while the transfer completion code runs. In this case,
callout_stop() does not prevent the callout from running, so
again the timeout code would run after the transfer was complete.
Handle this case by checking the return value from callout_stop(),
and ignoring the transfer if the callout could not be removed.
o Finally, protect against a timeout callout occurring while a
transfer is being aborted by another process. Here we arrange
for the timeout processing to ignore the transfer, and use
callout_drain() to ensure that the callout has really gone before
completing the transfer.
This was tested by repeatedly performing USB transfers with a timeout
set to approximately the same as the normal transfer completion
time. In the PR below, apparently this occurred by accident with a
particular printer and the default timeout.
PR: kern/71491
just a convenience function to be called from debuggers that gets
compiled in when EHCI_DEBUG is defined. Move its declaration to
make this more obvious.
o Reduce the interrupt delay to 2 microframes.
o Follow the spec more closely when updating the overlay qTD in the QH.
o No need to generate an interrupt at the data part of a control
transfer, it's generated by the status transfer.
o Make sure to update the data toggle on short transfers.
o Turn the printf about needing toggle update into a DPRINTF.
o Keep track of what high speed port (if any) a device belongs to
so we can set the transaction translator fields for the transfer.
o Verbosely refuse to open low/full speed pipes that depend on
unimplemented split transaction support.
o Fix various typos in comments.
Obtained from: NetBSD
asynchronous. I realize that this means the custom application will
not work as written, but it is not okay to break most users of ugen(4).
The major problem is that a bulk read transfer is not an interrupt
saying that X bytes are available -- it is a request to be able to
receive up to X bytes, with T timeout, and S short-transfer-okayness.
The timeout is a software mechanism that ugen(4) provides and cannot
be implemented using asynchronous reads -- the timeout must start at
the time a read is done.
The status of up to how many bytes can be received in this transfer
and whether a short transfer returns data or error is also encoded
at least in ohci(4)'s requests to the controller. Trying to detect
the "maximum width" results in using a single buffer of far too
small when an application requests a large read.
Even if you combat this by replacing all buffers again with the
maximal sized read buffer (1kb) that ugen(4) would allow you to
use before, you don't get the right semantics -- you have to
throw data away or make all the timeouts invalid or make the
short-transfer settings invalid.
There is no way to do this right without extending the ugen(4) API
much further -- it breaks the USB camera interfaces used because
they need a chain of many maximal-width transfers, for example, and
it makes cross-platform support for all the BSDs gratuitously hard.
Instead of trying to do select(2) on a bulk read pipe -- which has
neither the information on desired transfer length nor ability to
implement timeout -- an application can simply use a kernel thread
and pipe to turn that endpoint into something poll-able.
It is unfortunate that bulk endpoints cannot provide the same semantics
that interrupt and isochronous endpoints can, but it is possible to just
use ioctl(USB_GET_ENDPOINT_DESC) to find out when different semantics
must be used without preventing the normal users of the ugen(4) device
from working.
New devicename is ttyy{unit}{port}
No callout devices created as there is no modemcontrol on these ports.
Add data structure to represent each port to avoid excessive array use.
from within umass_ufi_transform(). This includes the 12-byte commands
FORMAT_UNIT, WRITE_AND_VERIFY, VERIFY, and READ_FORMAT_CAPACITIES
(sorted in numerical order).
Reviewed by: ken, scottl
MFC after: 2 weeks
data endpoints. The control endpoint doesn't need read/write/poll
operations, and more importantly, the thread counts should be
separate so that the control endpoint can properly reference itself
while deleting and recreating the data endpoints.
* Add some macros that handle referencing/releasing devices, and use them
for sleeping/woken-up and open/close operations as apppropriate.
* Use d_purge for FreeBSD, and a loop testing the open status for all
the endpoints for NetBSD and OpenBSD, so that when the device is
detached, the right thing always happens.
restart the current waiting transfer. If this isn't done, the device's
next transfer (that we would like to do a short read on) is going to
return an error -- for short transfer.
* For bulk transfer endpoints, restore the maximum transfer length each
time a transfer is done, or the first short transfer will make all the
rest that size or smaller.
* Remove impossibilities (malloc(M_WAITOK) == NULL, &var == NULL).
to make sure the pipe is ready. Some devices apparently don't support
the clear stall command however. So what happens when you issue such
devices a clear stall command? Typically, the command just times out.
This, at least, is the behavior I've observed with two devices that
I own: a Rio600 mp3 player and a T-Mobile Sidekick II.
It used to be that after the timeout expired, the pipe open operation
would conclude and you could still access the device, with the only
negative effect being a long delay on open. But in the recent past,
someone added code to make the timeout a fatal error, thereby breaking
the ability to communicate with these devices in any way.
I don't know exactly what the right solution is for this problem:
presumeably there is some way to determine whether or not a device
supports the 'clear stall' command beyond just issuing one and waiting
to see if it times out, but I don't know what that is. So for now,
I've added a special case to the error checking code so that the
timeout is once again non-fatal, thereby letting me use my two
devices again.
This changes the naming of USB serial devices to: /dev/ttyU%d and
/dev/cuaU%d for call-in and call-out devices respectively. (Please
notice: capital 'U')
Please also note that we now have .init and .lock devices for USB
serial ports. These are not persistent across device removal. devd(8)
can be used to configure them on attachment time.
These changes also improve the chances of the system surviving if
the USB device is unplugged at an inconvenient time. At least we
do not rip things apart while there are any threads in the device
driver anymore.
Remove cdevsw, rely on the tty generic one.
Don't make_dev(), use ttycreate() which does all the magic.
In detach, do close procesing if we ripped things apart
while the device was open. Call ttyfree() once we're done
cleaning up.
select(2), and discovered to my horror that ugen(4)'s bulk in/out support
is horribly lobotomized. Bulk transfers are done using the synchronous
API instead of the asynchronous one. This causes the following broken
behavior to occur:
- You open the bulk in/out ugen device and get a descriptor
- You create some other descriptor (socket, other device, etc...)
- You select on both the descriptors waiting until either one has
data ready to read
- Because of ugen's brokenness, you block in usb_bulk_transfer() inside
ugen_do_read() instead of blocking in select()
- The non-USB descriptor becomes ready for reading, but you remain blocked
on select()
- The USB descriptor becomes ready for reading
- Only now are you woken up so that you can ready data from either
descriptor.
The result is select() can only wake up when there's USB data pending. If
any other descriptor becomes ready, you lose: until the USB descriptor
becomes ready, you stay asleep.
The correct approach is to use async bulk transfers, so I changed
the read code to use the async bulk transfer API. I left the write
side alone for now since it's less of an issue.
Note that the uscanner driver has the same brokenness in it.
panic on hub detach bugs that have been reported. This work around
detaches the device before deleting it. This changes the detach order
from in-order to pre-order. This avoids uhub's deleting the children
after its subdevs has been deleted.
This is only a workaround. This leads to a strange condition in the
device tree where attached devices are children of detached ones. I
really don't know what that's supposed to mean, but does violate my
sense of POLA. Fortunately, the violation is short lived, which is
why I'm going ahead and committing the work around.
# We really need to consider life w/o the multiple nested layers of
# compatibility macros. They make finding bugs like this *MUCH*
# harder.
Patch by: iadowse
MT5 before: next_release(5.3-BETA5) (unless someting better comes along)
redundant at this point and should be retired). Don't free subdevs if
we don't attach any devices. This was leaving stale device_t's
around. Don't touch the device if it isn't attached since the name
isn't meaningful then. Switch from strncpy (properly used) to
strlcpy.
From a patch submitted by Peter Pentchev
device_t instances when no driver attaches. They are left around, and
we need to remember them.
# The usbd_device_handle->subdevs[] array likely is completely bogus
# at this point, but one change at a time, since its removal will need
# to have similar code replace it extracted from newbus.
Part of the patch submitted by Peter Pentchev after an excellent
analysis of the underlying problems.
MFC After: 1 week
produced better results for a test program I had here, it didn't
substantially change the number of crashes that I saw. Both the old
code and the new code seemed to produce the same crashes from the usb
layer. Since the new code also solves a close() crash, go with it
until the underlying issues wrt devices going away can be addressed.
The reference counts are there to block detach until the sleepers in
read/write/ioctl have gotten out, not to prevent the open device from
going away. Restore the old behavior so that we have a chance to wake
up sleepers when the usb device goes away, so they can properly return
EIO back to the caller when this happens.
Otherwise, we have a guarnateed panic waiting to happen when a device
detaches with an active read channel.
This should be merged to 5 asap.
to RS232 bridges, such as the one found in the DeLorme Earthmate USB GPS
receiver (which is the only device currently supported by this driver).
While other USB to serial drivers in the tree rely heavily on ucom, this
one is self-contained. The reason for that is that ucom assumes that
the bridge uses bulk pipes for I/O, while the Cypress parts actually
register as human interface devices and use HID reports for configuration
and I/O.
The driver is not entirely complete: there is no support yet for flow
control, and output doesn't seem to work, though I don't know if that is
because of a bug in the code, or simply because the Earthmate is a read-
only device.