4 Commits

Author SHA1 Message Date
Romain Dolbeau
62a65a654e Add parity generation/rebuild using 128-bits NEON for Aarch64
This re-use the framework established for SSE2, SSSE3 and
AVX2. However, GCC is using FP registers on Aarch64, so
unlike SSE/AVX2 we can't rely on the registers being left alone
between ASM statements. So instead, the NEON code uses
C variables and GCC extended ASM syntax. Note that since
the kernel explicitly disable vector registers, they
have to be locally re-enabled explicitly.

As we use the variable's number to define the symbolic
name, and GCC won't allow duplicate symbolic names,
numbers have to be unique. Even when the code is not
going to be used (e.g. the case for 4 registers when
using the macro with only 2). Only the actually used
variables should be declared, otherwise the build
will fails in debug mode.

This requires the replacement of the XOR(X,X) syntax
by a new ZERO(X) macro, which does the same thing but
without repeating the argument. And perhaps someday
there will be a machine where there is a more efficient
way to zero a register than XOR with itself. This affects
scalar, SSE2, SSSE3 and AVX2 as they need the new macro.

It's possible to write faster implementations (different
scheduling, different unrolling, interleaving NEON and
scalar, ...) for various cores, but this one has the
advantage of fitting in the current state of the code,
and thus is likely easier to review/check/merge.

The only difference between aarch64-neon and aarch64-neonx2
is that aarch64-neonx2 unroll some functions some more.

Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes #4801
2016-10-03 09:44:00 -07:00
Gvozden Neskovic
c9187d867f Fixes and enhancements of SIMD raidz parity
- Implementation lock replaced with atomic variable

- Trailing whitespace is removed from user specified parameter, to enhance
experience when using commands that add newline, e.g. `echo`

- raidz_test: remove dependency on `getrusage()` and RUSAGE_THREAD, Issue #4813

- silence `cppcheck` in vdev_raidz, partial solution of Issue #1392

- Minor fixes and cleanups

- Enable use of original parity methods in [fastest] configuration.
New opaque original ops structure, representing native methods, is added
to supported raidz methods. Original parity methods are executed if selected
implementation has NULL fn pointer.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4813
Issue #1392
2016-07-19 16:43:07 -07:00
Gvozden Neskovic
590c9a0994 Allow building with CFLAGS="-O0"
If compiled with -O0, gcc doesn't do any stack frame coalescing
and -Wframe-larger-than=1024 is triggered in debug mode.
Starting with gcc 4.8, new opt level -Og is introduced for debugging, which
does not trigger this warning.

Fix bench zio size, using SPA_OLD_MAXBLOCKSHIFT

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4799
2016-07-11 16:53:02 -07:00
Gvozden Neskovic
ab9f4b0b82 SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.

Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite

New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
  module load, the parameter will only accept first 3 options, and
  the other implementations can be set once module is finished
  loading. Possible values for this option are:
    "fastest" - use the fastest math available
    "original" - use the original raidz code
    "scalar" - new scalar impl
    "sse" - new SSE impl if available
    "avx2" - new AVX2 impl if available

See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-06-21 09:27:26 -07:00