Now it is easy to expand the size of the mirror when all its components
are replaced. Also add g_resize method to geom_mirror class. It will write
updated metadata to new last sector, when parent provider is resized.
Silence from: geom@
MFC after: 1 month
already valid metadata found at the new location. This should allow easy
transparent recovery if first resize was done by mistake.
While there, unify metadata write code and fix minor memory leak.
MFC after: 1 month
In "manual" mode just automatically resize provider in any direction.
In "automatic" mode allow only growth (with new metadata write); in case
of shrinking destroy the multipath device same as before since it may be
undesirable to write new metadata within old user area.
MFC after: 1 month
Without this change, in the worst but unlikely case scenario, certain
administrative operations, including change of configuration, set or
delete key from a GEOM ELI provider, may leave potentially sensitive
information in buffer allocated from kernel memory.
We believe that it is not possible to actively exploit these issues, nor
does it impact the security of normal usage of GEOM ELI providers when
these operations are not performed after system boot.
Security: possible sensitive information disclosure
Submitted by: Clement Lecigne <clecigne google com>
MFC after: 3 days
information.
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
When safety requirements are met, it allows to avoid passing I/O requests
to GEOM g_up/g_down thread, executing them directly in the caller context.
That allows to avoid CPU bottlenecks in g_up/g_down threads, plus avoid
several context switches per I/O.
The defined now safety requirements are:
- caller should not hold any locks and should be reenterable;
- callee should not depend on GEOM dual-threaded concurency semantics;
- on the way down, if request is unmapped while callee doesn't support it,
the context should be sleepable;
- kernel thread stack usage should be below 50%.
To keep compatibility with GEOM classes not meeting above requirements
new provider and consumer flags added:
- G_CF_DIRECT_SEND -- consumer code meets caller requirements (request);
- G_CF_DIRECT_RECEIVE -- consumer code meets callee requirements (done);
- G_PF_DIRECT_SEND -- provider code meets caller requirements (done);
- G_PF_DIRECT_RECEIVE -- provider code meets callee requirements (request).
Capable GEOM class can set them, allowing direct dispatch in cases where
it is safe. If any of requirements are not met, request is queued to
g_up or g_down thread same as before.
Such GEOM classes were reviewed and updated to support direct dispatch:
CONCAT, DEV, DISK, GATE, MD, MIRROR, MULTIPATH, NOP, PART, RAID, STRIPE,
VFS, ZERO, ZFS::VDEV, ZFS::ZVOL, all classes based on g_slice KPI (LABEL,
MAP, FLASHMAP, etc).
To declare direct completion capability disk(9) KPI got new flag equivalent
to G_PF_DIRECT_SEND -- DISKFLAG_DIRECT_COMPLETION. da(4) and ada(4) disk
drivers got it set now thanks to earlier CAM locking work.
This change more then twice increases peak block storage performance on
systems with manu CPUs, together with earlier CAM locking changes reaching
more then 1 million IOPS (512 byte raw reads from 16 SATA SSDs on 4 HBAs to
256 user-level threads).
Sponsored by: iXsystems, Inc.
MFC after: 2 months
would resize a partition, but label providers - e.g. /dev/gptid/XXX - would
stay the same size.
Reviewed by: mav
MFC after: 1 month
Sponsored by: FreeBSD Foundation
When parent provider has been resized, the scheme specific G_PART_RESIZE
method does an update of scheme's metadata. But all changes are not saved
to disk, until `gpart commit` will be called.
Discussed with: trasz
MFC after: 1 month
Introduce new function devstat_end_transaction_bio_bt(), adding new argument
to specify present time. Use this function to move binuptime() out of lock,
substantially reducing lock congestion when slow timecounter is used.
disable GEOM tasting to avoid the "bouncing GEOM" problem where, when
you shut down the consumer of a provider which can be viewed in multiple
ways (typically a mirror whose members are labeled partitions), GEOM
will immediately taste that provider's alter ego and reattach the
consumer.
Approved by: re (glebius)
always wait for provider close. Old algorithm was reported to cause NULL
dereference panic on attempt to close provider after softc destruction.
If not global workaroung in GEOM, that could even cause destruction with
requests still in flight.
The previous method was to set the D_UNMAPPED_IO flag in the cdevsw
for the driver. The problem with this is that in many cases (e.g.
sa(4)) there may be some instances of the driver that can handle
unmapped I/O and some that can't. The isp(4) driver can handle
unmapped I/O, but the esp(4) driver currently cannot. The cdevsw
is shared among all driver instances.
So instead of setting a flag on the cdevsw, set a flag on the cdev.
This allows drivers to indicate support for unmapped I/O on a
per-instance basis.
sys/conf.h: Remove the D_UNMAPPED_IO cdevsw flag and replace it
with an SI_UNMAPPED cdev flag.
kern_physio.c: Look at the cdev SI_UNMAPPED flag to determine
whether or not a particular driver can handle
unmapped I/O.
geom_dev.c: Set the SI_UNMAPPED flag for all GEOM cdevs.
Since GEOM will create a temporary mapping when
needed, setting SI_UNMAPPED unconditionally will
work.
Remove the D_UNMAPPED_IO flag.
nvme_ns.c: Set the SI_UNMAPPED flag on cdevs created here
if NVME_UNMAPPED_BIO_SUPPORT is enabled.
vfs_aio.c: In aio_qphysio(), check the SI_UNMAPPED flag on a
cdev instead of the D_UNMAPPED_IO flag on the cdevsw.
sys/param.h: Bump __FreeBSD_version to 1000045 for the switch from
setting the D_UNMAPPED_IO flag in the cdevsw to setting
SI_UNMAPPED in the cdev.
Reviewed by: kib, jimharris
MFC after: 1 week
Sponsored by: Spectra Logic
the GEOM_PART. Instead of just using number of entries from the GPT
header, calculate this limit based on the reserved space between
GPT header and first available LBA.
MFC after: 2 weeks
being defined in <sys/diskmbr.h>. Instead give the symbols here a
"PC98_" prefix. This way, both <sys/diskmbr.h> and <sys/diskpc98.h>
can be included in the same C source file.
The renaming is trivial. The only gotcha is that DOSBBSECTOR is
also redefined from 0 to 1. This because DOSBBSECTOR was always
used in conjunction with an addition of 1. The PC98_BBSECTOR symbol
is defined as 1 and the expression is simplified.
Note: it is not believed that ports are seriously impacted; or at
all for that matter.
Approved by: nyan@
vfs_busy(mp);
vfs_write_suspend(mp);
which are problematic if other thread starts unmount between two
calls. The unmount starts a write, while vfs_write_suspend() drain
writers. On the other hand, unmount drains busy references, causing
the deadlock.
Add a flag argument to vfs_write_suspend and require the callers of it
to specify VS_SKIP_UNMOUNT flag, when the call is performed not in the
mount path, i.e. the covered vnode is not locked. The suspension is
not attempted if VS_SKIP_UNMOUNT is specified and unmount is in
progress.
Reported and tested by: Andreas Longwitz <longwitz@incore.de>
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
Ensure that d_delmaxsize is always set, removing init to 0 which could cause
future issues if use cases change.
Allow kern.cam.da.X.delete_max (which maps to d_delmaxsize) to be increased
up to the calculated max after being reduced.
MFC after: 1 day
X-MFC-With: r249940
originally inspired by the Solaris vmem detailed in the proceedings
of usenix 2001. The NetBSD version was heavily refactored for bugs
and simplicity.
- Use this resource allocator to allocate the buffer and transient maps.
Buffer cache defrags are reduced by 25% when used by filesystems with
mixed block sizes. Ultimately this may permit dynamic buffer cache
sizing on low KVA machines.
Discussed with: alc, kib, attilio
Tested by: pho
Sponsored by: EMC / Isilon Storage Division
SPC-4 specification states that serial number may be property of device,
but not a specific logical unit. People reported about FC storages using
serial number in that way, making it unusable for purposes of LUN multipath
detection. SPC-4 states that designators associated with logical unit from
the VPD page 83h "Device Identification" should be used for that purpose.
Report first of them in the new attribute in such preference order: NAA,
EUI-64, T10 and SCSI name string.
While there, make GEOM DISK properly report GEOM::ident in XML output also
using d_getattr() method, if available. This fixes serial numbers reporting
for SCSI disks in `geom disk list` output and confxml.
Discussed with: gibbs, ken
Sponsored by: iXsystems, Inc.
MFC after: 2 weeks
This allows setting attributes on tables. One simply does not provide
an index in that case. Otherwise the entry corresponding the index has
the attribute set or unset.
Use this change to fix a relatively longstanding bug in our GPT scheme
that's the result of rev 198097 (relatively harmless) followed by rev
237057 (damaging). The damaging part being that our GPT scheme always
has the active flag set on the PMBR slice. This is in violation with
EFI. Existing EFI implementions for both x86 and ia64 reject the GPT.
As such, GPT disks created by us aren't usable under EFI because of
that.
After this change, GPT disks never have the active flag set on the PMBR
slice. In order to make the GPT disk bootable under some x86 BIOSes,
the reason of rev 198097, one must now set the active attribute on the
gpt table. The kernel will apply this to the PMBR slice For (S)ATA:
gpart set -a active ada0
To fix an existing GPT disk that has the active flag set in the PMBR,
and that does not need the flag, use (again for (S)ATA):
gpart unset -a active ada0
The EBR, MBR & PC98 schemes, which also impement at least 1 attribute,
now check to make sure the entry passed is valid. They do not have
attributes that apply to the table.
used previously caused probe failure on platforms where char is unsigned
(e.g. ARM), as mftrecsz can be negative.
Submitted by: Ilya Bakulin <ilya@bakulin.de>
MFC after: 2 weeks
requests.
sys/geom/geom_disk.h:
- Added d_delmaxsize which represents the maximum size of individual
device delete requests in bytes. This can be used by devices to
inform geom of their size limitations regarding delete operations
which are generally different from the read / write limits as data
is not usually transferred from the host to physical device.
sys/geom/geom_disk.c:
- Use new d_delmaxsize to calculate the size of chunks passed through to
the underlying strategy during deletes instead of using read / write
optimised values. This defaults to d_maxsize if unset (0).
- Moved d_maxsize default up so it can be used to default d_delmaxsize
sys/cam/ata/ata_da.c:
- Added d_delmaxsize calculations for TRIM and CFA
sys/cam/scsi/scsi_da.c:
- Added re-calculation of d_delmaxsize whenever delete_method is set.
- Added kern.cam.da.X.delete_max sysctl which allows the max size for
delete requests to be limited. This is useful in preventing timeouts
on devices who's delete methods are slow. It should be noted that
this limit is reset then the device delete method is changed and
that it can only be lowered not increased from the device max.
Reviewed by: mav
Approved by: pjd (mentor)
size of a delete request sent to the providing device performed by g_dev_ioctl.
This allows the kernel and apps via ioctl e.g. newfs -E to request large LBA
deletes which siginificantly improves performance.
Previously this was hard coded to 65536 sectors, the new default is 262144
which doubles the throughput of deletes on commonly available SSD's.
In tests on a Intel 520 120GB FW: 400i disk it improved the delete throughput
from 1.6GB/s to over 2.6GB/s on a full disk delete such as that done via
newfs -E
For some SSD's where delete time is pretty much constant, no matter what
the request, setting this to 0 will provide significantly better throughput
e.g. Samsung 840 240GB FW DXT07B0Q @ 262144 = 79G/s, @ 0 = 2259G/s
Reviewed by: mav
Approved by: pjd (mentor)
MFC after: 2 weeks
Pointy-hat to: me, for not realizing snprintf() is available in kernel.
Thanks to: jh, for bringing me the good news of snprintf(), Pawel Worach, for
noting that the panic can be provoked in i386 and not in amd64
Only look for FDT partitions if our potential parent is a DISK device.
Excluding direct recursion on the flashmap geoms was insufficient
because it did not prevent the underlying device from being retrieved if
flashmap geoms were further partitioned.
Reviewed by: imp
Sponsored by: DARPA, AFRL
implementation, error on the side of conservatism and only create labels
for GEOMs of classes DISK and MULTIPATH.
Discussed with: trasz
Approved by: silence from freebsd-geom@
In physio, check if device can handle unmapped IO and pass an
appropriately mapped buffer to the driver strategy routine. The
only driver in the tree that can handle unmapped buffers is one
exposed by GEOM, so mark it as such with the new flag in the
driver cdevsw structure.
This fixes insta-panics on hosts, running dconschat, as /dev/fwmem
is an example of the driver that makes use of physio routine, but
bypasses the g_down thread, where the buffer gets mapped normally.
Discussed with: kib (earlier version)
- Replace single done mutex with per-disk ones. On system with several
disks on several HBAs that removes small, but measurable lock congestion.
- Modify disk destruction process to not destroy the mutex prematurely.
- Remove some extra pointer derefences.
Use destroy_dev_sched_cb() to not wait for device destruction while holding
GEOM topology lock (that actually caused deadlock). Use request counting
protected by mutex to properly wait for outstanding requests completion in
cases of device closing and geom destruction. Unlike r227009, this code
does not block taskqueue thread for indefinite time, waiting for completion.
more topology change done that may require its attention. Add few missing
g_do_wither() calls in respective places to signal it.
This fixes potential infinite loop here when some provider is withered, but
still opened or connected for some reason and so can not be destroyed. For
example, see r227009 and r227510.
do not map the b_pages pages into buffer_map KVA. The use of the
unmapped buffers eliminate the need to perform TLB shootdown for
mapping on the buffer creation and reuse, greatly reducing the amount
of IPIs for shootdown on big-SMP machines and eliminating up to 25-30%
of the system time on i/o intensive workloads.
The unmapped buffer should be explicitely requested by the GB_UNMAPPED
flag by the consumer. For unmapped buffer, no KVA reservation is
performed at all. The consumer might request unmapped buffer which
does have a KVA reserve, to manually map it without recursing into
buffer cache and blocking, with the GB_KVAALLOC flag.
When the mapped buffer is requested and unmapped buffer already
exists, the cache performs an upgrade, possibly reusing the KVA
reservation.
Unmapped buffer is translated into unmapped bio in g_vfs_strategy().
Unmapped bio carry a pointer to the vm_page_t array, offset and length
instead of the data pointer. The provider which processes the bio
should explicitely specify a readiness to accept unmapped bio,
otherwise g_down geom thread performs the transient upgrade of the bio
request by mapping the pages into the new bio_transient_map KVA
submap.
The bio_transient_map submap claims up to 10% of the buffer map, and
the total buffer_map + bio_transient_map KVA usage stays the
same. Still, it could be manually tuned by kern.bio_transient_maxcnt
tunable, in the units of the transient mappings. Eventually, the
bio_transient_map could be removed after all geom classes and drivers
can accept unmapped i/o requests.
Unmapped support can be turned off by the vfs.unmapped_buf_allowed
tunable, disabling which makes the buffer (or cluster) creation
requests to ignore GB_UNMAPPED and GB_KVAALLOC flags. Unmapped
buffers are only enabled by default on the architectures where
pmap_copy_page() was implemented and tested.
In the rework, filesystem metadata is not the subject to maxbufspace
limit anymore. Since the metadata buffers are always mapped, the
buffers still have to fit into the buffer map, which provides a
reasonable (but practically unreachable) upper bound on it. The
non-metadata buffer allocations, both mapped and unmapped, is
accounted against maxbufspace, as before. Effectively, this means that
the maxbufspace is forced on mapped and unmapped buffers separately.
The pre-patch bufspace limiting code did not worked, because
buffer_map fragmentation does not allow the limit to be reached.
By Jeff Roberson request, the getnewbuf() function was split into
smaller single-purpose functions.
Sponsored by: The FreeBSD Foundation
Discussed with: jeff (previous version)
Tested by: pho, scottl (previous version), jhb, bf
MFC after: 2 weeks
of upgrading older machines using ataraid(4) to newer releases.
This optional parameter is controlled via kern.geom.raid.legacy_aliases
and will create a /dev/ar0 device that will point at /dev/raid/r0 for
example.
Tested on Dell SC 1425 DDF-1 format software raid controllers installing from
stable/7 and upgrading to stable/9 without having to adjust /etc/fstab
Reviewed by: mav
Obtained from: Yahoo!
MFC after: 2 Weeks
This will avoid a 0-byte read (in g_read_data()) leading to a panic, if
previously read data are erroneous.
Suggested by: John-Mark Gurney <jmg@funkthat.com>
Without this, read data is mis-interpreted. This could trigger a panic,
as was the case on one computer where computed "recsize" was zero,
leading to a call to g_read_page() asking for 0 bytes.
write is a disk write request that tells the disk that the buffer
being written must be committed to the media along with any writes
that preceeded it before any future blocks may be written to the drive.
Barrier writes are provided by adding the functions bbarrierwrite
(bwrite with barrier) and babarrierwrite (bawrite with barrier).
Following a bbarrierwrite the client knows that the requested buffer
is on the media. It does not ensure that buffers written before that
buffer are on the media. It only ensure that buffers written before
that buffer will get to the media before any buffers written after
that buffer. A flush command must be sent to the disk to ensure that
all earlier written buffers are on the media.
Reviewed by: kib
Tested by: Peter Holm
as clean on shutdown and move that action from shutdown_pre_sync stage to
shutdown_post_sync to avoid extra flapping.
ZFS tends to not close devices on shutdown, that doesn't allow GEOM RAID
to shutdown gracefully. To handle that, mark volume as clean just when
shutdown time comes and there are no active writes.
MFC after: 2 weeks
as clean on shutdown and move that action from shutdown_pre_sync stage to
shutdown_post_sync to avoid extra flapping.
ZFS tends to not close devices on shutdown, that doesn't allow GEOM RAID
to shutdown gracefully. To handle that, mark volume as clean just when
shutdown time comes and there are no active writes.
PR: kern/113957
MFC after: 2 weeks
unsupported metadata types like Intel Smart Response to not corrupt them.
- Improve setting of these things during metadata writing to protect from
incapable BIOS'es and other implementations.
disks should be rebuilt. Our rebuild code is same time disk-centric. To
handle this situation properly check all disks for RBLD flags, and if no
disk specified try rebuild/resync all of them except newly inserted.
Windows driver uses such migration when it creates new arrays. While GEOM
RAID has no mechanism to implement migration in general case, this specifc
case still can be handled easily via degraded RAID1 creation followed by
regular rebuild.
It is alike to RAID1, but with dedicating master and recovery disks and
providing manual control over synchronization. It allows to use recovery
disk as snapshot of the master disk from the time of the last sync.
This implementation is not functionaly complete comparing to Windows,
but it is better then silent conversion to RAID1 on first boot.
'"'. Mangling is only done for label names read from file system
metadata. Encoding resembles URL encoding. For example, the space
character becomes %20.
Help by: kib
Discussed with: imp, kib, pjd
extended using growfs(8). The problem here is that geom_label checks if
the filesystem size recorded in UFS superblock is equal to the provider
(i.e. device) size. This check cannot be removed due to backward
compatibility. On the other hand, in most cases growfs(8) cannot set
fs_size in the superblock to match the provider size, because, differently
from newfs(8), it cannot recompute cylinder group sizes.
To fix this problem, add another superblock field, fs_providersize, used
only for this purpose. The geom_label(4) will attach if either fs_size
(filesystem created with newfs(8)) or fs_providersize (filesystem expanded
using growfs(8)) matches the device size.
PR: kern/165962
Reviewed by: mckusick
Sponsored by: FreeBSD Foundation
Alike to BIO_WRITE, report success if at least one subdisk succeeded with
BIO_DELETE. But unlike BIO_WRITE don't fail disk on BIO_DELETE error.
Sponsored by: iXsystems, Inc.
MFC after: 1 month
If at least one subdisk in the volume supports it, BIO_DELETE requests
will be propagated down. Unfortunatelly, for RAID levels with redundancy
unmapped blocks will be mapped back during first rebuild/resync process.
Sponsored by: iXsystems, Inc.
MFC after: 1 month
and move that action from shutdown_pre_sync to shutdown_post_sync stage
to avoid extra flapping.
ZFS tends to not close devices on shutdown, that doesn't allow GEOM RAID
to shutdown gracefully. To handle that, mark volume as clean just when
shutdown time comes and there are no active writes.
MFC after: 2 weeks
In particular, do not lock Giant conditionally when calling into the
filesystem module, remove the VFS_LOCK_GIANT() and related
macros. Stop handling buffers belonging to non-mpsafe filesystems.
The VFS_VERSION is bumped to indicate the interface change which does
not result in the interface signatures changes.
Conducted and reviewed by: attilio
Tested by: pho
GIANT from VFS. This code is particulary broken and fragile and other
in-kernel implementations around, found in other operating systems,
don't really seem clean and solid enough to be imported at all.
If someone wants to reconsider in-kernel NTFS implementation for
inclusion again, a fair effort for completely fixing and cleaning it
up is expected.
In the while NTFS regular users can use FUSE interface and ntfs-3g
port to work with their NTFS partitions.
This is not targeted for MFC.
provider name to be specified instead of geom name (first argument in all
subcommands except label). In most cases there is only one array used
any way, so it is not really useful to make user type ugly geom names like
Intel-f0bdf223 or SiI-732c2b9448cf. Though they can be used in some cases.
Sponsored by: iXsystems, Inc.
MFC after: 1 month
mutexes held and the topology lock is an sx lock.
The topology lock was there to protect traversing through the list of providers
of disk's geom, but it seems that disk's geom has always exactly one provider.
Change the code to call g_wither_provider() for this one provider, which is
safe to do without holding the topology lock and assert that there is indeed
only one provider.
Discussed with: ken
MFC after: 1 week
It is possible that provider is destroyed while we are iterating over the
list.
Reported by: Brian Parkison <parkison@panzura.com>
Discussed with: phk
MFC after: 1 week
bytes syncronized.
The rationale behind this is the following: for large disks the
percent synchronisation counter ticks too seldom, and monitoring
software (as well as human operator) can't tell whether
synchronisation goes on or one of disks got stuck. On an idle
server one can look into gstat and see whether synchronisation goes
on or not, but on a busy server that won't work. Also, new value
monitored can be differentiated obtaining the synchronisation speed
quite precisely.
Submitted by: Konstantin Kukushkin <dark ramtel.ru>
Reviewed by: pjd
If GELI provider was created on FreeBSD HEAD r238116 or later (but before this
change), it is using very weak keys and the data is not protected.
The bug was introduced on 4th July 2012.
One can verify if its provider was created with weak keys by running:
# geli dump <provider> | grep version
If the version is 7 and the system didn't include this fix when provider was
initialized, then the data has to be backed up, underlying provider overwritten
with random data, system upgraded and provider recreated.
Reported by: Fabian Keil <fk@fabiankeil.de>
Tested by: Fabian Keil <fk@fabiankeil.de>
Discussed with: so
MFC after: 3 days
This fixes "Negative sc_ref" panic possible when sysctl_kern_geom_confxml()
is run simultaneously with destroying GATE device.
Reviewed by: pjd
MFC after: 3 days
This change triggered interesting foot shooting condition in GEOM when
RW access to root partition by fsck spoils VFS geom there, which has it
opened RO at the same time. Seems spoiling concept needs some rework.
It includes three parts:
1) Modifications to CAM to detect media media changes and report them to
disk(9) layer. For modern SATA (and potentially UAS) devices it utilizes
Asynchronous Notification mechanism to receive events from hardware.
Active polling with TEST UNIT READY commands with 3 seconds period is used
for incapable hardware. After that both CD and DA drivers work the same way,
detecting two conditions: "NOT READY: Medium not present" after medium was
detected previously, and "UNIT ATTENTION: Not ready to ready change, medium
may have changed". First one reported to disk(9) as media removal, second
as media insert/change. To reliably receive second event new
AC_UNIT_ATTENTION async added to make UAs broadcasted to all periphs by
generic error handling code in cam_periph_error().
2) Modifications to GEOM core to handle media remove and change events.
Media removal handled by spoiling all consumers attached to the provider.
Media change event also schedules provider retaste after spoiling to probe
new media. New flag G_CF_ORPHAN was added to consumers to reflect that
consumer is in process of destruction. It allows retaste to create new
geom instance of the same class, while previous one is still dying.
3) Modifications to some GEOM classes: DEV -- to report media change
events to devd; VFS -- to handle spoiling same as orphan to prevent
accessing replaced media. PART class already handles spoiling alike to
orphan.
Reviewed by: silence on geom@ and scsi@
Tested by: avg
Sponsored by: iXsystems, Inc. / PC-BSD
MFC after: 2 months
is an error set on the provider. With GEOM resizing, class can become
orphaned when it doesn't implement resize() method and the provider size
decreases.
Reviewed by: mav
Sponsored by: FreeBSD Foundation
This will allow HAST to read directly from the local component without
even communicating userland daemon.
Sponsored by: Panzura, http://www.panzura.com
MFC after: 1 month
Before this change the IV-Key was used to generate encryption keys,
which was incorrect, but safe - for the XTS mode this key was unused
anyway and for CBC mode it was used differently to generate IV
vectors, so there is no risk that IV vector collides with encryption
key somehow.
Bump version number and keep compatibility for older versions.
MFC after: 2 weeks
we need to pass BIO_DELETE requests down to providers that support
it. Also, we need to announce our support for BIO_DELETE to upper
consumer. This requires:
- In g_mirror_start() return true for "GEOM::candelete" request.
- In g_mirror_init_disk() probe below provider for "GEOM::candelete"
attribute, and mark disk with a flag if it does support BIO_DELETE.
- In g_mirror_register_request() distribute BIO_DELETE requests only
to those disks, that do support it.
Note that we announce "GEOM::candelete" as true unconditionally of
whether we have TRIM-capable media down below or not. This is made
intentionally, because upper consumer (usually UFS) requests the
attribite only once at mount time. And if user ever migrates his
mirror from HDDs to SSDs, then he/she would get TRIM working without
remounting filesystem.
Reviewed by: pjd
a da(4) instance going away while GEOM is still probing it.
In this case, the GEOM disk class instance has been created by
disk_create(), and the taste of the disk is queued in the GEOM
event queue.
While that event is queued, the da(4) instance goes away. When the
open call comes into the da(4) driver, it dereferences the freed
(but non-NULL) peripheral pointer provided by GEOM, which results
in a panic.
The solution is to add a callback to the GEOM disk code that is
called when all of its resources are cleaned up. This is
implemented inside GEOM by adding an optional callback that is
called when all consumers have detached from a provider, and the
provider is about to be deleted.
scsi_cd.c,
scsi_da.c: In the register routine for the cd(4) and da(4)
routines, acquire a reference to the CAM peripheral
instance just before we call disk_create().
Use the new GEOM disk d_gone() callback to register
a callback (dadiskgonecb()/cddiskgonecb()) that
decrements the peripheral reference count once GEOM
has finished cleaning up its resources.
In the cd(4) driver, clean up open and close
behavior slightly. GEOM makes sure we only get one
open() and one close call, so there is no need to
set an open flag and decrement the reference count
if we are not the first open.
In the cd(4) driver, use cam_periph_release_locked()
in a couple of error scenarios to avoid extra mutex
calls.
geom.h: Add a new, optional, providergone callback that
is called when a provider is about to be deleted.
geom_disk.h: Add a new d_gone() callback to the GEOM disk
interface.
Bump the DISK_VERSION to version 2. This probably
should have been done after a couple of previous
changes, especially the addition of the d_getattr()
callback.
geom_disk.c: Add a providergone callback for the disk class,
g_disk_providergone(), that calls the user's
d_gone() callback if it exists.
Bump the DISK_VERSION to 2.
geom_subr.c: In g_destroy_provider(), call the providergone
callback if it has been provided.
In g_new_geomf(), propagate the class's
providergone callback to the new geom instance.
blkfront.c: Callers of disk_create() are supposed to pass in
DISK_VERSION, not an explicit disk API version
number. Update the blkfront driver to do that.
disk.9: Update the disk(9) man page to include information
on the new d_gone() callback, as well as the
previously added d_getattr() callback, d_descr
field, and HBA PCI ID fields.
MFC after: 5 days