work is not just mine, but it is also the works of Peter Lei
and Michael Tuexen. They both are my two key other developers
working on the project.. and they need ata-boy's too:
****
peterlei@cisco.comtuexen@fh-muenster.de
****
I did do a make sysent which updated the
syscall's and sysproto.. I hope that is correct... without
it you don't build since we have new syscalls for SCTP :-0
So go out and look at the NOTES, add
option SCTP (make sure inet and inet6 are present too)
and play with SCTP.
I will see about comitting some test tools I have after I
figure out where I should place them. I also have a
lib (libsctp.a) that adds some of the missing socketapi
functions that I need to put into lib's.. I will talk
to George about this :-)
There may still be some 64 bit issues in here, none of
us have a 64 bit processor to test with yet.. Michael
may have a MAC but thats another beast too..
If you have a mac and want to use SCTP contact Michael
he maintains a web site with a loadable module with
this code :-)
Reviewed by: gnn
Approved by: gnn
mutex structure is added as following:
struct umutex {
__lwpid_t m_owner;
uint32_t m_flags;
uint32_t m_ceilings[2];
uint32_t m_spare[4];
};
The m_owner represents owner thread, it is a thread id, in non-contested
case, userland can simply use atomic_cmpset_int to lock the mutex, if the
mutex is contested, high order bit will be set, and userland should do locking
and unlocking via kernel syscall. Flag UMUTEX_PRIO_INHERIT represents
pthread's PTHREAD_PRIO_INHERIT mutex, which when contention happens, kernel
should do priority propagating. Flag UMUTEX_PRIO_PROTECT indicates it is
pthread's PTHREAD_PRIO_PROTECT mutex, userland should initialize m_owner
to contested state UMUTEX_CONTESTED, then atomic_cmpset_int will be failure
and kernel syscall should be invoked to do locking, this becauses
for such a mutex, kernel should always boost the thread's priority before
it can lock the mutex, m_ceilings is used by PTHREAD_PRIO_PROTECT mutex,
the first element is used to boost thread's priority when it locked the mutex,
second element is used when the mutex is unlocked, the PTHREAD_PRIO_PROTECT
mutex's link list is kept in userland, the m_ceiling[1] is managed by thread
library so kernel needn't allocate memory to keep the link list, when such
a mutex is unlocked, kernel reset m_owner to UMUTEX_CONTESTED.
Flag USYNC_PROCESS_SHARED indicate if the synchronization object is process
shared, if the flag is not set, it saves a vm_map_lookup() call.
The umtx chain is still used as a sleep queue, when a thread is blocked on
PTHREAD_PRIO_INHERIT mutex, a umtx_pi is allocated to support priority
propagating, it is dynamically allocated and reference count is used,
it is not optimized but works well in my tests, while the umtx chain has
its own locking protocol, the priority propagating protocol are all protected
by sched_lock because priority propagating function is called with sched_lock
held from scheduler.
No visible performance degradation is found which these changes. Some parameter
names in _umtx_op syscall are renamed.
has in its procfs (do a readlink of /proc/self/fd/<nn> to find the pathname
that corresponds to a given file descriptor). Valgrind-3.x needs this
functionality. This is a placeholder only at this time.
mark system calls as being MPSAFE:
- Stop conditionally acquiring Giant around system call invocations.
- Remove all of the 'M' prefixes from the master system call files.
- Remove support for the 'M' prefix from the script that generates the
syscall-related files from the master system call files.
- Don't explicitly set SYF_MPSAFE when registering nfssvc.
these syscalls are designed to set thread's scheduling parameters and
policy, because each syscall contains a size parameter, it is possible
to support future scheduling option, e.g SCHED_SPORADIC, this option
needs other fields in structure sched_param, current they are not
avaiblable.
ibcs2_getdents(), ibcs2_read(), ogetdirentries(), svr4_sys_getdents(),
and svr4_sys_getdents64() similar to that in getdirentries().
- Mark ibcs2_getdents(), ibcs2_read(), linux_getdents(), linux_getdents64(),
linux_readdir(), ogetdirentries(), svr4_sys_getdents(), and
svr4_sys_getdents64() MPSAFE.
from going away. mount(2) is now MPSAFE.
- Expand the scope of Giant some in unmount(2) to protect the mp structure
(or rather, to handle concurrent unmount races) from going away.
umount(2) is now MPSAFE, as well as linux_umount() and linux_oldumount().
- nmount(2) and linux_mount() were already MPSAFE.
arguments. The first one is never used (all callers pass in 0); the
second is sometimes used to pass in a struct timespec * which is used as
a timeout and never modified. Constify that argument so callers can pass
a const struct timespec * without jumping through hoops.
over from the Darwin implementation.
When we implement a system call as a wrapper to sysctl(), audit it as
AUE_SYSCTL. This leads to greater compatibility with Solaris audit
trails as sysctl() argument tokens are not the same as the ones for
the originaly system calls (i.e., setdomainname()).
Replace references to AUE_ events that are equivilent to AUE_NULL with
AUE_NULL. In the case of process signal configuration, this is
because these events do not require auditing.
Move from the Darwin spelling of getsockopt() to the FreeBSD/Solaris
one.
Audit nmount().
Obtained from: TrustedBSD Project
clock are supported. I have plan to merge XSI timer ITIMER_REAL and other
two CPU timers into the new code, current three slots are available for
the XSI timers.
The SIGEV_THREAD notification type is not supported yet because our
sigevent struct lacks of two member fields:
sigev_notify_function
sigev_notify_attributes
I have found the sigevent is used in AIO, so I won't add the two members
unless the AIO code is adjusted.
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
and writev() except that they take an additional offset argument and do
not change the current file position. In SAT speak:
preadv:readv::pread:read and pwritev:writev::pwrite:write.
- Try to reduce code duplication some by merging most of the old
kern_foov() and dofilefoo() functions into new dofilefoo() functions
that are called by kern_foov() and kern_pfoov(). The non-v functions
now all generate a simple uio on the stack from the passed in arguments
and then call kern_foov(). For example, read() now just builds a uio and
calls kern_readv() and pwrite() just builds a uio and calls kern_pwritev().
PR: kern/80362
Submitted by: Marc Olzheim marcolz at stack dot nl (1)
Approved by: re (scottl)
MFC after: 1 week
audit event identifier associated with each system call, which will
be stored by makesyscalls.sh in the sy_auevent field of struct sysent.
For now, default the audit identifier on all system calls to AUE_NULL,
but in the near future, other BSM event identifiers will be used. The
mapping of system calls to event identifiers is many:one due to
multiple system calls that map to the same end functionality across
compatibility wrappers, ABI wrappers, etc.
Submitted by: wsalamon
Obtained from: TrustedBSD Project
on the their simply wrapping MPSAFE implementations of existing MPSAFE
system calls:
getfsstat()
lseek()
stat()
lstat()
truncate()
ftruncate()
statfs()
fstatfs()
Note that ogetdirentries() is not marked MPSAFE because it does not share
the MPSAFE implementation used for getdirentries(), and requires separate
locking to be implemented.
inherit signal mask from parent thread, setup TLS and stack, and
user entry address.
Also support POSIX thread's PTHREAD_SCOPE_PROCESS and PTHREAD_SCOPE_SYSTEM,
sysctl is also provided to control the scheduler scope.