format modules, which are currently only used on the amd64 platform.
This initial implementation just parses enough of the module to
allow it to extract dependencies and load all the bits into the
right place in memory, so the kernel must still do the full relocation
and linking. The details of the loaded sections are passed to the
kernel by supplying a copy of the ELF section header table as module
metadata with the MODINFOMD_SHDR tag.
better relocation support for the amd64 and i386 platforms. This
should not result in any change in functionality, but moves a step
towards supporting the relocatable object file modules on amd64.
The same hack/trick as load_elf*.c uses is used here to simultaneously
support both elf32 and elf64 on amd64 and i386.
will prepend the current kernel booting... This prevents a problem of
loading /boot/kernel's modules when a different kernel has no modules,
but you left your module_load="YES" in loader.conf...
Reviewed by: dcs (minus the help part)
bootp -> BOOTP
bootp.nfsroot -> BOOTP_NFSROOT
bootp.nfsv3 -> BOOTP_NFSV3
bootp.compat -> BOOTP_COMPAT
bootp.wired_to -> BOOTP_WIRED_TO
- i.e. back out the previous commit. It's already possible to
pxeboot(8) with a GENERIC kernel.
Pointed out by: dwmalone
BOOTP -> bootp
BOOTP_NFSROOT -> bootp.nfsroot
BOOTP_NFSV3 -> bootp.nfsv3
BOOTP_COMPAT -> bootp.compat
BOOTP_WIRED_TO -> bootp.wired_to
This lets you PXE boot with a GENERIC kernel by putting this sort of thing
in loader.conf:
bootp="YES"
bootp.nfsroot="YES"
bootp.nfsv3="YES"
bootp.wired_to="bge1"
or even setting the variables manually from the OK prompt.
assure backward compatibility (conditional on !BURN_BRIDGES), look it up
by its old name first, and log a warning (but accept the setting) if it
was found. If both the old and new name are defined, the new name takes
precedence.
Also export vm.kmem_size as a read-only sysctl variable; I find it hard to
tune a parameter when I don't know its default value, especially when that
default value is computed at boot time.
the root path. This is reported to make non-PXE netbooting, such as
is used on sparc64 systems, work correctly when the TFTP server is
not the same as the root server.
PR: kern/57328
Submitted by: Per Kristian Hove <Per.Hove@math.ntnu.no>
common code, the non-trivial part is #ifdef'ed and only executes when
loading amd64 kernels. The rest is trivial but needed for the the amd64
case. (Two variables changed from char ** to Elf_Addr).
Approved by: re (amd64 "low-risk" stuff)
things over floppy size limits, I can exclude it for release builds or
something like that. Most of the changes are to get the load_elf.c file
into a seperate elf32_ or elf64_ namespace so that you can have two
ELF loaders present at once. Note that for 64 bit kernels, it actually
starts up the kernel already in 64 bit mode with paging enabled. This
is really easy because we have a known minimum feature set.
Of note is that for amd64, we have to pass in the bios int 15 0xe821
memory map because once in long mode, you absolutely cannot make VM86
calls. amd64 does not use 'struct bootinfo' at all. It is a pure loader
metadata startup, just like sparc64 and powerpc. Much of the
infrastructure to support this was adapted from sparc64.
Move the remaining bits of <sys/diskslice.h> to <i386/include/bootinfo.h>
Move i386/pc98 specific bits from <sys/reboot.h> to
<i386/include/bootinfo.h> as well.
Adjust includes in sys/boot accordingly.
the old 8-bit fs_old_flags to the new location the first time that the
filesystem is mounted by a new kernel. One of the unused flags in
fs_old_flags is used to indicate that the flags have been moved.
Leave the fs_old_flags word intact so that it will work properly if
used on an old kernel.
Change the fs_sblockloc superblock location field to be in units
of bytes instead of in units of filesystem fragments. The old units
did not work properly when the fragment size exceeeded the superblock
size (8192). Update old fs_sblockloc values at the same time that
the flags are moved.
Suggested by: BOUWSMA Barry <freebsd-misuser@netscum.dyndns.dk>
Sponsored by: DARPA & NAI Labs.
divide/remainder calls. For reasons not resolved, compiling the
relevant routines from libkern into boot2 results in stack corruption.
Do the simple thing: Don't use 64bit divide/remainder operations.
Sponsored by: DARPA & NAI Labs