dropped after the call to lockmgr() so just revert this approach using
something similar to the precedent one:
BUF_LOCKWAITERS() just checks if there are waiters (not the actual number
of them) and it is based on newly introduced lockmgr_waiters() which
returns if the lockmgr has waiters or not. The name has been choosen
differently by old lockwaiters() in order to not confuse them.
KPI results enriched by this commit so __FreeBSD_version bumping and
manpage update will be happening soon.
'struct buf' also changes, so kernel ABI is disturbed.
Bug found by: jeff
Approved by: jeff, kib
BO_LOCK/UNLOCK/MTX when manipulating the bufobj.
- Create a new lock in the bufobj to lock bufobj fields independently.
This leaves the vnode interlock as an 'identity' lock while the bufobj
is an io lock. The bufobj lock is ordered before the vnode interlock
and also before the mnt ilock.
- Exploit this new lock order to simplify softdep_check_suspend().
- A few sync related functions are marked with a new XXX to note that
we may not properly interlock against a non-zero bv_cnt when
attempting to sync all vnodes on a mountlist. I do not believe this
race is important. If I'm wrong this will make these locations easier
to find.
Reviewed by: kib (earlier diff)
Tested by: kris, pho (earlier diff)
around the check for the BV_BKGRDINPROG in the brelse() and bqrelse().
See the comment for the explanation why it is safe.
Tested by: pho
Submitted by: jeff
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
than rely on the lockmgr support [1]:
* bump the waiters only if the interlock is held
* let brelvp() return the waiters count
* rely on brelvp() instead than BUF_LOCKWAITERS() in order to check
for the waiters number
- Remove a namespace pollution introduced recently with lockmgr.h
including lock.h by including lock.h directly in the consumers and
making it mandatory for using lockmgr.
- Modify flags accepted by lockinit():
* introduce LK_NOPROFILE which disables lock profiling for the
specified lockmgr
* introduce LK_QUIET which disables ktr tracing for the specified
lockmgr [2]
* disallow LK_SLEEPFAIL and LK_NOWAIT to be passed there so that it
can only be used on a per-instance basis
- Remove BUF_LOCKWAITERS() and lockwaiters() as they are no longer
used
This patch breaks KPI so __FreBSD_version will be bumped and manpages
updated by further commits. Additively, 'struct buf' changes results in
a disturbed ABI also.
[2] Really, currently there is no ktr tracing in the lockmgr, but it
will be added soon.
[1] Submitted by: kib
Tested by: pho, Andrea Barberio <insomniac at slackware dot it>
A couple of notes for this:
* WITNESS support, when enabled, is only used for shared locks in order
to avoid problems with the "disowned" locks
* KA_HELD and KA_UNHELD only exists in the lockmgr namespace in order
to assert for a generic thread (not curthread) owning or not the
lock. Really, this kind of check is bogus but it seems very
widespread in the consumers code. So, for the moment, we cater this
untrusted behaviour, until the consumers are not fixed and the
options could be removed (hopefully during 8.0-CURRENT lifecycle)
* Implementing KA_HELD and KA_UNHELD (not surported natively by
WITNESS) made necessary the introduction of LA_MASKASSERT which
specifies the range for default lock assertion flags
* About other aspects, lockmgr_assert() follows exactly what other
locking primitives offer about this operation.
- Build real assertions for buffer cache locks on the top of
lockmgr_assert(). They can be used with the BUF_ASSERT_*(bp)
paradigm.
- Add checks at lock destruction time and use a cookie for verifying
lock integrity at any operation.
- Redefine BUF_LOCKFREE() in order to not use a direct assert but
let it rely on the aforementioned destruction time check.
KPI results evidently broken, so __FreeBSD_version bumping and
manpage update result necessary and will be committed soon.
Side note: lockmgr_assert() will be used soon in order to implement
real assertions in the vnode namespace replacing the legacy and still
bogus "VOP_ISLOCKED()" way.
Tested by: kris (earlier version)
Reviewed by: jhb
lockmgr lkp, when held in exclusive mode, is recursed
- Introduce the function BUF_RECURSED() which does the same for bufobj
locks based on the top of lockmgr_recursed()
- Introduce the function BUF_ISLOCKED() which works like the counterpart
VOP_ISLOCKED(9), showing the state of lockmgr linked with the bufobj
BUF_RECURSED() and BUF_ISLOCKED() entirely replace the usage of bogus
BUF_REFCNT() in a more explicative and SMP-compliant way.
This allows us to axe out BUF_REFCNT() and leaving the function
lockcount() totally unused in our stock kernel. Further commits will
axe lockcount() as well as part of lockmgr() cleanup.
KPI results, obviously, broken so further commits will update manpages
and freebsd version.
Tested by: kris (on UFS and NFS)
conjuction with 'thread' argument passing which is always curthread.
Remove the unuseful extra-argument and pass explicitly curthread to lower
layer functions, when necessary.
KPI results broken by this change, which should affect several ports, so
version bumping and manpage update will be further committed.
Tested by: kris, pho, Diego Sardina <siarodx at gmail dot com>
Remove this argument and pass curthread directly to underlying
VOP_LOCK1() VFS method. This modify makes the code cleaner and in
particular remove an annoying dependence helping next lockmgr() cleanup.
KPI results, obviously, changed.
Manpage and FreeBSD_version will be updated through further commits.
As a side note, would be valuable to say that next commits will address
a similar cleanup about VFS methods, in particular vop_lock1 and
vop_unlock.
Tested by: Diego Sardina <siarodx at gmail dot com>,
Andrea Di Pasquale <whyx dot it at gmail dot com>
mounted FS' problems. These are more along the lines of 'avoiding an
avoidable panic' than a complete solution to removable devices. We
now close the barn door after the horse has gotten lose and has been
hit by a truck, as it were. The barn no longer catches fire in this
case, but the horse is still dead :-).
The vfs_bio.c fix causes us not to put a failed write back into the
dirty pool if the error returned was ENXIO. In that case, the buffer
is treated like any other clean buffer that's being retured. ENXIO
means the device isn't there anymore and will never be there again in
the future, so retrying is futile.
The vfs_mount.c fix treats 'ENXIO' as success for unmounting a file
system. If the device is gone, retrying later won't help and we'll
never be able to unmount the device.
These two are part of a larger patch set submitted by the author. The
other patches will be forth coming. I added comments to these two
patches.
Submitted by: Henrik Gulbrandsen
Reviewed by: phk@
PR: usb/46176 (partial)
to kproc_xxx as they actually make whole processes.
Thos makes way for us to add REAL kthread_create() and friends
that actually make theads. it turns out that most of these
calls actually end up being moved back to the thread version
when it's added. but we need to make this cosmetic change first.
I'd LOVE to do this rename in 7.0 so that we can eventually MFC the
new kthread_xxx() calls.
ways:
(1) Cached pages are no longer kept in the object's resident page
splay tree and memq. Instead, they are kept in a separate per-object
splay tree of cached pages. However, access to this new per-object
splay tree is synchronized by the _free_ page queues lock, not to be
confused with the heavily contended page queues lock. Consequently, a
cached page can be reclaimed by vm_page_alloc(9) without acquiring the
object's lock or the page queues lock.
This solves a problem independently reported by tegge@ and Isilon.
Specifically, they observed the page daemon consuming a great deal of
CPU time because of pages bouncing back and forth between the cache
queue (PQ_CACHE) and the inactive queue (PQ_INACTIVE). The source of
this problem turned out to be a deadlock avoidance strategy employed
when selecting a cached page to reclaim in vm_page_select_cache().
However, the root cause was really that reclaiming a cached page
required the acquisition of an object lock while the page queues lock
was already held. Thus, this change addresses the problem at its
root, by eliminating the need to acquire the object's lock.
Moreover, keeping cached pages in the object's primary splay tree and
memq was, in effect, optimizing for the uncommon case. Cached pages
are reclaimed far, far more often than they are reactivated. Instead,
this change makes reclamation cheaper, especially in terms of
synchronization overhead, and reactivation more expensive, because
reactivated pages will have to be reentered into the object's primary
splay tree and memq.
(2) Cached pages are now stored alongside free pages in the physical
memory allocator's buddy queues, increasing the likelihood that large
allocations of contiguous physical memory (i.e., superpages) will
succeed.
Finally, as a result of this change long-standing restrictions on when
and where a cached page can be reclaimed and returned by
vm_page_alloc(9) are eliminated. Specifically, calls to
vm_page_alloc(9) specifying VM_ALLOC_INTERRUPT can now reclaim and
return a formerly cached page. Consequently, a call to malloc(9)
specifying M_NOWAIT is less likely to fail.
Discussed with: many over the course of the summer, including jeff@,
Justin Husted @ Isilon, peter@, tegge@
Tested by: an earlier version by kris@
Approved by: re (kensmith)
td_ru. This removes the requirement for per-process synchronization in
statclock() and mi_switch(). This was previously supported by
sched_lock which is going away. All modifications to rusage are now
done in the context of the owning thread. reads proceed without locks.
- Aggregate exiting threads rusage in thread_exit() such that the exiting
thread's rusage is not lost.
- Provide a new routine, rufetch() to fetch an aggregate of all rusage
structures from all threads in a process. This routine must be used
in any place requiring a rusage from a process prior to it's exit. The
exited process's rusage is still available via p_ru.
- Aggregate tick statistics only on demand via rufetch() or when a thread
exits. Tick statistics are kept in the thread and protected by sched_lock
until it exits.
Initial patch by: attilio
Reviewed by: attilio, bde (some objections), arch (mostly silent)
Probabilly, a general approach is not the better solution here, so we should
solve the sched_lock protection problems separately.
Requested by: alc
Approved by: jeff (mentor)
vmcnts. This can be used to abstract away pcpu details but also changes
to use atomics for all counters now. This means sched lock is no longer
responsible for protecting counts in the switch routines.
Contributed by: Attilio Rao <attilio@FreeBSD.org>
a thread is an idle thread, just see if it has the IDLETD
flag set. That flag will probably move to the pflags word
as it's permenent and never chenges for the life of the
system so it doesn't need locking.
file are after snaplock, while other ffs device buffers are before
snaplock in global lock order. By itself, this could cause deadlock
when bdwrite() tries to flush dirty buffers on snapshotted ffs. If,
during the flush, COW activity for snapshot needs to allocate block
and ffs_alloccg() selects the cylinder group that is being written
by bdwrite(), then kernel would panic due to recursive buffer lock
acquision.
Avoid dealing with buffers in bdwrite() that are from other side of
snaplock divisor in the lock order then the buffer being written. Add
new BOP, bop_bdwrite(), to do dirty buffer flushing for same vnode in
the bdwrite(). Default implementation, bufbdflush(), refactors the code
from bdwrite(). For ffs device buffers, specialized implementation is
used.
Reviewed by: tegge, jeff, Russell Cattelan (cattelan xfs org, xfs changes)
Tested by: Peter Holm
X-MFC after: 3 weeks (if ever: it changes ABI)
vnode v_flag. For cluster buffers this would result in dereferencing NULL
b_vp. To prevent the panic, cache relevant vnode flag before calling
bstrategy.
Reported by: Peter Holm, kris
Tested by: Peter Holm
Reviewed by: tegge
Pointy hat to: kib
by vnode. Allow for md thread and the thread that owns lock on vnode
backing the md device to do the write even when runningbufspace is
exhausted.
Tested by: Peter Holm
Reviewed by: tegge
MFC after: 2 weeks
Call vfs_setdirty_locked_object() from vfs_busy_pages() instead of
vfs_setdirty(), thereby eliminating a second acquisition and release
of the same vm object lock.
queues lock to BIO_READ operations. Recent changes to the implementation
of the per-page flags have eliminated the need for the page queues lock
in the other cases.
synchronized by the lock on the object containing the page.
Transition PG_WANTED and PG_SWAPINPROG to use the new field,
eliminating the need for holding the page queues lock when setting
or clearing these flags. Rename PG_WANTED and PG_SWAPINPROG to
VPO_WANTED and VPO_SWAPINPROG, respectively.
Eliminate the assertion that the page queues lock is held in
vm_page_io_finish().
Eliminate the acquisition and release of the page queues lock
around calls to vm_page_io_finish() in kern_sendfile() and
vfs_unbusy_pages().
requires Giant. It is set in bgetvp and cleared in brelvp.
- Create QUEUE_DIRTY_GIANT for dirty buffers that require giant.
- In the buf daemon, only grab giant when processing QUEUE_DIRTY_GIANT and
only if we think there are buffers in that queue.
Sponsored by: Isilon Systems, Inc.
the system when brelse() was called with B_RELBUF set on the buffer. This
could be a problem when the system was low on memory, had many buffers on
QUEUE_EMPTYKVA and started to traverse directories. For each getnewbuf(),
pages were allocated from the system, driving the free reserve downwards.
For each brelse(), the system put the buffer on QUEUE_CLEAN, with B_INVAL
set.
This commit changes the semantics of B_RELBUF to also free pages from
non-VMIO buffers.
Reviewed by: alc
- provide an interface (macros) to the page coloring part of the VM system,
this allows to try different coloring algorithms without the need to
touch every file [1]
- make the page queue tuning values readable: sysctl vm.stats.pagequeue
- autotuning of the page coloring values based upon the cache size instead
of options in the kernel config (disabling of the page coloring as a
kernel option is still possible)
MD changes:
- detection of the cache size: only IA32 and AMD64 (untested) contains
cache size detection code, every other arch just comes with a dummy
function (this results in the use of default values like it was the
case without the autotuning of the page coloring)
- print some more info on Intel CPU's (like we do on AMD and Transmeta
CPU's)
Note to AMD owners (IA32 and AMD64): please run "sysctl vm.stats.pagequeue"
and report if the cache* values are zero (= bug in the cache detection code)
or not.
Based upon work by: Chad David <davidc@acns.ab.ca> [1]
Reviewed by: alc, arch (in 2004)
Discussed with: alc, Chad David, arch (in 2004)
- Prefer '_' to ' ', as it results in more easily parsed results in
memory monitoring tools such as vmstat.
- Remove punctuation that is incompatible with using memory type names
as file names, such as '/' characters.
- Disambiguate some collisions by adding subsystem prefixes to some
memory types.
- Generally prefer lower case to upper case.
- If the same type is defined in multiple architecture directories,
attempt to use the same name in additional cases.
Not all instances were caught in this change, so more work is required to
finish this conversion. Similar changes are required for UMA zone names.
Add a new private thread flag to indicate that the thread should
not sleep if runningbufspace is too large.
Set this flag on the bufdaemon and syncer threads so that they skip
the waitrunningbufspace() call in bufwrite() rather than than
checking the proc pointer vs. the known proc pointers for these two
threads. A way of preventing these threads from being starved for
I/O but still placing limits on their outstanding I/O would be
desirable.
Set this flag in ffs_copyonwrite() to prevent bufwrite() calls from
blocking on the runningbufspace check while holding snaplk. This
prevents snaplk from being held for an arbitrarily long period of
time if runningbufspace is high and greatly reduces the contention
for snaplk. The disadvantage is that ffs_copyonwrite() can start
a large amount of I/O if there are a large number of snapshots,
which could cause a deadlock in other parts of the code.
Call runningbufwakeup() in ffs_copyonwrite() to decrement runningbufspace
before attempting to grab snaplk so that I/O requests waiting on
snaplk are not counted in runningbufspace as being in-progress.
Increment runningbufspace again before actually launching the
original I/O request.
Prior to the above two changes, the system could deadlock if enough
I/O requests were blocked by snaplk to prevent runningbufspace from
falling below lorunningspace and one of the bawrite() calls in
ffs_copyonwrite() blocked in waitrunningbufspace() while holding
snaplk.
See <http://www.holm.cc/stress/log/cons143.html>
bio may have been freed and reassigned by the wakeup before being
tested after releasing the bdonelock.
There's a non-zero chance this is the cause of a few of the crashes
knocking around with biodone() sitting in the stack backtrace.
Reviewed By: phk@