CFLAGS having '-g' in it, clang outputs several assembly directives that
are too new for our version of binutils.
Therefore, assemble the resulting .s files with clang instead. A more
general solution can be implemented when a GNU as-compatible driver for
clang's integrated assembler appears.
Reported by: dougb
boot2 calls back into boot1 to perform disk reads. The ZFS MBR boot blocks
do not have the same space constraints, so remove this hack for ZFS.
While here, remove commented out code to support C/H/S addressing from
zfsldr. The ZFS and GPT bootstraps always just use EDD LBA addressing.
MFC after: 2 weeks
This modifies CFLAGS and tweaks sio.S to use the new calling convention.
The sio_init() and sio_putc() prototypes are modified so that other
users of this code know the correct calling convention.
This makes the code smaller when compiled with clang.
Reviewed by: jhb
Tested by: me and Freddie Cash <fjwcash gmail com>
o bunch of variables are turned into uint8_t
o initial setting of namep[] in lookup() is removed
as it's only overwritten a few lines down
o kname is explicitly initialized in main() as BSS
in boot2 is not zeroed
o the setting and reading of "fmt" in load() is removed
o buf in printf() is made static to save space
Reviewed by: jhb
Tested by: me and Fabian Keil <freebsd-listen fabiankeil de>
o It switches kname to be just a pointer instead of an array
thus avoiding a couple of memcpy()s.
o It changes ioctl to unsigned from uint8_t.
o It changes the second keyhit limit to 3 seconds from 5
so that constant propagation can take place.
o It changes the ticks overflow computation as suggested by bde@.
o It removes bi_basemem/bi_extmem/bi_memsizes_valid setting from
bootinfo as it is unused.
Reviewed by: jhb
on space for clang and a.out support is only needed for /boot/loader,
they are excess bytes that serve no useful purpose other than to
support really old kernels (FreeBSD < 3.2 or so). Prefer clang
support over support for these old kernels and remove this code. We
gain about 100 bytes of space this way.
Reviewed by: rdivacky@
little further. This gets us further on the way to be able to build it
successfully with clang. Using in-tree gcc, this shrinks boot2.bin with
60 bytes, the in-tree clang shaves off 72 bytes, and ToT clang 84 bytes.
Submitted by: rdivacky
Reviewed by: imp
This is the same change that was made in rev 1.33 of boot/i386/btx/btx/btx.S
PR: i386/91871
Submitted by: Bjorn Konig <bkoenig at cs.tu-berlin.de>
MFC after: 1 week
and sys/boot/pc98/boot2, do not simply assign 'gcc' to CC, since compile
flags are sometimes passed via this variable, for example during the
build32 stage on amd64. This caused the 32-bit libobjc build on amd64
to fail.
Instead, only replace the first instance of clang (if any, including
optional path) with gcc, and leave the arguments alone.
Approved-by: rpaulo (mentor)
gnu/lib/libobjc and sys/boot/i386/boot2, so it also works when using
absolute paths and/or options, as in CC="/absolute/path/clang -foo".
Approved by: rpaulo (mentor)
problems compiling it, but it just gets too big at the moment, even
with -Os. This is not applicable to gptboot, though.
Submitted by: Dimitry Andric <dimitry at andric.com>
the disklabel in the 2nd sector for boot code. Even with both UFS1
and UFS2 supported, there's enough bytes left that we don't have to
nibble from the disklabel.
Thus, the entire 2nd sector is now reserved for the disklabel, which
makes the bootcode compatible again with disklabels that have more
than 8 partitions -- such as those created and supported by gpart.
i386: 135 bytes available
amd64: 151 bytes available
Ok'd by: jhb
set the %eflags used during a BIOS call via BTX to 0x202. Previously
the flags field was uninitialized garbage, and thus it was "random" if
interrupts were enabled or not during BIOS calls.
- Use constants from <machine/psl.h> for fields in %eflags.
MFC after: 3 days
weren't displayed on the new console. However, the config string has been
altered as part of being parsed so we only display the first option. Fix
this by saving a copy of /boot.config before parsing it and displaying the
saved copy after parsing.
MFC after: 1 week
PR: i386/103972
Submitted by: Alexandre Belloni alexandre.belloni of netasq.com
defined. This lets each boot program choose which version of cgbase() it
wants to use rather than forcing ufsread.c to have that knowledge.
MFC after: 1 week
Discussed with: imp
macros to treat the 'slice' field as a real part of the bootdev instead
of as hack that spans two other fields (adaptor (sic) and controller)
that are not used in any modern FreeBSD boot code.
MFC after: 1 week
to get the physical address doesn't work for all values of KVA_PAGES,
while masking 8 MSBs works for all values of KVA_PAGES that are
multiple of 4 for non-PAE and 8 for PAE. (This leaves us limited
with 12MB for non-PAE kernels and 14MB for PAE kernels.)
To get things right, we'd need to subtract the KERNBASE from the
virtual address (but KERNBASE is not easy to figure out from here),
or have physical addresses set properly in the ELF headers.
Discussed with: jhb
are no longer limited to a virtual address space of 16 megabytes,
only mask high two bits of a virtual address. This allows to load
larger kernels (up to 1 gigabyte). Not masking addresses at all
was a bad idea on machines with less than >3G of memory -- kernels
are linked at 0xc0xxxxxx, and that would attempt to load a kernel
at above 3G. By masking only two highest bits we stay within the
safe limits while still allowing to boot larger kernels.
(This is a safer reimplmentation of sys/boot/i386/boot2/boot.2.c
rev. 1.71.)
Prodded by: jhb
Tested by: nyan (pc98)
/boot.config or on the "boot:" prompt line via a "-S<speed>" flag,
e.g. "-h -S19200". This adds about 50 bytes to the size of boot2
and required a few other small changes to limit the size impact.
This changes only affects boot2; there are further loader changes
to follow.
I think all we really need is -fno-sse2.
I really don't like cluttering up the compiler invocation,
but this bigger hammer will fix reported problems for now.
to 4.0 and RELENG_3), the BTX mini-kernel used paging rather than flat
mode and clients were limited to a virtual address space of 16 megabytes.
Because of this limitation, boot2 silently masked all physical addresses
in any binaries it loaded so that they were always loaded into the first
16 Meg. Since BTX no longer has this limitation (and hasn't for a long
time), remove the masking from boot2. This allows boot2 to load kernels
larger than about 12 to 14 meg (12 for non-PAE, 14 for PAE).
Submitted by: Sergey Lyubka devnull at uptsoft dot com
MFC after: 1 month
the flag, fall back to the old INT13/AH=02 function if that fails.
This way of operation is less likely to fail with modern BIOSes and
large disks of strange geometries.
PR: i386/70241
Submitted by: Valentin Nechayev <netch <@> netch.kiev.ua> (inital version)
Discussed with: jhb (by Valentin Nechayev)
Tested on: bochs (with EDD turned on or off by patching the BIOS), PCs
have clear idea on boot2 BSS size and leaves portion of it not zeroed out.
btxcsu.s is in much better position for this job.
Obtained from: DragonflyBSD (with minor adjustments)