o ATA is now fully newbus'd and split into modules.
This means that on a modern system you just load "atapci and ata"
to get the base support, and then one or more of the device
subdrivers "atadisk atapicd atapifd atapist ataraid".
All can be loaded/unloaded anytime, but for obvious reasons you
dont want to unload atadisk when you have mounted filesystems.
o The device identify part of the probe has been rewritten to fix
the problems with odd devices the old had, and to try to remove
so of the long delays some HW could provoke. Also probing is done
without the need for interrupts, making earlier probing possible.
o SATA devices can be hot inserted/removed and devices will be created/
removed in /dev accordingly.
NOTE: only supported on controllers that has this feature:
Promise and Silicon Image for now.
On other controllers the usual atacontrol detach/attach dance is
still needed.
o Support for "atomic" composite ATA requests used for RAID.
o ATA RAID support has been rewritten and and now supports these
metadata formats:
"Adaptec HostRAID"
"Highpoint V2 RocketRAID"
"Highpoint V3 RocketRAID"
"Intel MatrixRAID"
"Integrated Technology Express"
"LSILogic V2 MegaRAID"
"LSILogic V3 MegaRAID"
"Promise FastTrak"
"Silicon Image Medley"
"FreeBSD PseudoRAID"
o Update the ioctl API to match new RAID levels etc.
o Update atacontrol to know about the new RAID levels etc
NOTE: you need to recompile atacontrol with the new sys/ata.h,
make world will take care of that.
NOTE2: that rebuild is done differently from the old system as
the rebuild is now done piggybacked on read requests to the
array, so atacontrol simply starts a background "dd" to rebuild
the array.
o The reinit code has been worked over to be much more robust.
o The timeout code has been overhauled for races.
o Support of new chipsets.
o Lots of fixes for bugs found while doing the modulerization and
reviewing the old code.
Missing or changed features from current ATA:
o atapi-cd no longer has support for ATAPI changers. Todays its
much cheaper and alot faster to copy those CD images to disk
and serve them from there. Besides they dont seem to be made
anymore, maybe for that exact reason.
o ATA RAID can only read metadata from all the above metadata formats,
not write all of them (Promise and Highpoint V2 so far). This means
that arrays can be picked up from the BIOS, but they cannot be
created from FreeBSD. There is more to it than just the missing
write metadata support, those formats are not unique to a given
controller like Promise and Highpoint formats, instead they exist
for several types, and even worse, some controllers can have
different formats and its impossible to tell which one.
The outcome is that we cannot reliably create the metadata of those
formats and be sure the controller BIOS will understand it.
However write support is needed to update/fail/rebuild the arrays
properly so it sits fairly high on the TODO list.
o So far atapicam is not supported with these changes. When/if this
will change is up to the maintainer of atapi-cam so go there for
questions.
HW donated by: Webveveriet AS
HW donated by: Frode Nordahl
HW donated by: Yahoo!
HW donated by: Sentex
Patience by: Vife and my boys (and even the cats)
FreeBSD based on aue(4) it was picked by OpenBSD, then from OpenBSD ported
to NetBSD and finally NetBSD version merged with original one goes into
FreeBSD.
Obtained from: http://www.gank.org/freebsd/cdce/
NetBSD
OpenBSD
to get from (mount + inode) to vnode. These tables are mostly
copy&pasted from UFS, sized based on desiredvnodes and therefore
quite large (128K-512K). Several filesystems are buggy enough that
they allocate the hash table even before they know if they will
ever be used or not.
Add "vfs_hash", a system wide hash table, which will replace all
the per-filesystem hash-tables.
The fields we add to struct vnode will more or less be saved in
the respective filesystems inodes.
Having one central implementation will save code and will allow us
to justify the complexity of code to dynamically (re)size the hash
at a later point.
uart(4) to support the Zilog 8530 SCCs which hang off of a FireHose
bus on Sun E4000/E5000 class machines.
Beside the fact that a puc_fhc.c would just be a copy of puc_sbus.c
with s,sbus,fhc,g the reason why the declaration for fhc(4) was
sticked into puc_sbus.c is that both of these front-ends for puc(4)
will go away once there is a scc(4).
Discussed with: marcel
Tested by: hrs, kris
MFC after: 3 days
hosts to share an IP address, providing high availability and load
balancing.
Original work on CARP done by Michael Shalayeff, with many
additions by Marco Pfatschbacher and Ryan McBride.
FreeBSD port done solely by Max Laier.
Patch by: mlaier
Obtained from: OpenBSD (mickey, mcbride)
and wd80x3 support. Make the obscure ISA cards optional, and add
those options to NOTES on i386 (note: the ifdef around the whole code
is for module building). Tweak pc98 ed support to include wd80x3 too.
Add goo for alpha too.
The affected cards are the 3Com 3C503, HP LAN+ and SIC (whatever that
is). I couldn't find any of these for sale on ebay, so they are
untested. If you have one of these cards, and send it to me, I'll
ensure that you have no future problems with it...
Minor cleanups as well by using functions rather than cut and paste
code for some probing operations (where the function call overhead is
lost in the noise).
Remove use of kvtop, since they aren't required anymore. This driver
needs to get its memory mapped act together, however, and use bus
space. It doesn't right now.
This reduces the size of if_ed.ko from about 51k to 33k on my laptop.
- Add buffer size limitations (overflow will not be possible anymore).
- Add 'visible' option, which will allow for passphrase reading in the
future.
- Remove special treatment of '@' and '#', those two are only confusing.
Discussed with: rwatson
MFC after: 2 weeks
This driver implements "unaddressed listen only mode", which is what
printers and plotters commonly do on GP-IB busses.
This means that you can capture print/plot like output from your
instruments by configuring them as necessary (good luck!) and
cat -u /dev/gpib0l > /tmp/somefile
Since there is no way to know when no more output is comming you
will have to ctrl-C the cat process when it is done (that is why
the -u is important).
designed to help detect tamper-after-free scenarios, a problem more
and more common and likely with multithreaded kernels where race
conditions are more prevalent.
Currently MemGuard can only take over malloc()/realloc()/free() for
particular (a) malloc type(s) and the code brought in with this
change manually instruments it to take over M_SUBPROC allocations
as an example. If you are planning to use it, for now you must:
1) Put "options DEBUG_MEMGUARD" in your kernel config.
2) Edit src/sys/kern/kern_malloc.c manually, look for
"XXX CHANGEME" and replace the M_SUBPROC comparison with
the appropriate malloc type (this might require additional
but small/simple code modification if, say, the malloc type
is declared out of scope).
3) Build and install your kernel. Tune vm.memguard_divisor
boot-time tunable which is used to scale how much of kmem_map
you want to allott for MemGuard's use. The default is 10,
so kmem_size/10.
ToDo:
1) Bring in a memguard(9) man page.
2) Better instrumentation (e.g., boot-time) of MemGuard taking
over malloc types.
3) Teach UMA about MemGuard to allow MemGuard to override zone
allocations too.
4) Improve MemGuard if necessary.
This work is partly based on some old patches from Ian Dowse.
Silence on: net@, current@, hackers@.
No objections: joerg
Requested by: by many (mostly Cronyx) users for a long long time.
MFC after: 10 days
PR: kern/21771, kern/66348
zero-copy receive of jumbo frames. This eliminates the need for the
jumbo frame allocator implemented in kern/uipc_jumbo.c and sys/jumbo.h.
Remove it.
Note: Zero-copy receive of jumbo frames did not work without these changes;
I believe there was insufficient locking on the jumbo vm object.
Tested by: ken@
Discussed with: gallatin@
without ever being changed to actually work with an i8251. Nobody is
working on this either at the moment, so it's not about to change
soon.
When the code necessary to support the i8251 is committed, this can
be reverted again.
respective NetBSD driver for use with the genclock interface.
It's first use will be on sparc64 but it was also tested on alpha with
a preliminary patch to switch alpha to use the genclock code together
with this driver instead of the respective code in alpha/alpha/clock.c
and the rather MD mcclock(4). Using it on i386 and amd64 won't be that
hard but some changes/extensions to improve the genclock code in general
should be done first, e.g. add locking and make it easier to access the
NVRAM usually coupled with RTCs.
i386 to dev/acpi_support. In theory, these devices could be found
other than in i386 machines only as amd64 becomes more popular. These
drivers don't appear to do anything i386 specific, so move them to
dev/acpi_support. Move config lines to files so that those
architectures that don't support kernel modules can build them into
the kernel. At the same time, rename acpi_snc to acpi_sony to follow
the lead of all the other specialty devices.
the tree. Small tweaks were made by myself to eliminate unnecessary
includes and some other minor issues. Last time I asked takawata-san
about this driver, he suggested I commit it.
Submitted by: takawata