sockets into machine-dependent files. The rationale for this
migration is illustrated by the modified amd64 allocator. It uses the
amd64's direct map to avoid emphemeral mappings in the kernel's
address space. On an SMP, the emphemeral mappings result in an IPI
for TLB shootdown for each transmitted page. Yuck.
Maintainers of other 64-bit platforms with direct maps should be able
to use the amd64 allocator as a reference implementation.
created not only with UMA_ZONE_VM but also with UMA_ZONE_NOFREE. In
the i386 case in particular, the pmap code would hook a special
page allocation routine that allocated from kernel_map and not kmem_map,
and so when/if the pageout daemon drained the zones, it could actually
push out slabs from the PV ENTRY zone but call UMA's default page_free,
which resulted in pages allocated from kernel_map being freed to
kmem_map; bad. kmem_free() ignores the return value of the
vm_map_delete and just returns. I'm not sure what the exact
repercussions could be, but it doesn't look good.
In the PAE case on i386, we also set-up a zone in pmap, so be
conservative for now and make that zone also ZONE_NOFREE and
ZONE_VM. Do this for the pmap zones for the other archs too,
although in some cases it may not be entirely necessarily. We'd
rather be safe than sorry at this point.
Perhaps all UMA_ZONE_VM zones should by default be also
UMA_ZONE_NOFREE?
May fix some of silby's crashes on the PV ENTRY zone.
order to avoid the overhead of later page faults. In general, it
implements two cases: one for vnode-backed objects and one for
device-backed objects. Only the device-backed case is really
machine-dependent, belonging in the pmap.
This commit moves the vnode-backed case into the (relatively) new
function vm_map_pmap_enter(). On amd64 and i386, this commit only
amounts to code rearrangement. On alpha and ia64, the new machine
independent (MI) implementation of the vnode case is smaller and more
efficient than their pmap-based implementations. (The MI
implementation takes advantage of the fact that objects in -CURRENT
are ordered collections of pages.) On sparc64, pmap_object_init_pt()
hadn't (yet) been implemented.
implementation of a largely MI pmap_object_init_pt() for vnode-backed
objects. pmap_enter_quick() is implemented via pmap_enter() on sparc64
and powerpc.
- Correct a mismatch between pmap_object_init_pt()'s prototype and its
various implementations. (I plan to keep pmap_object_init_pt() as
the MD hook for device-backed objects on i386 and amd64.)
- Correct an error in ia64's pmap_enter_quick() and adjust its interface
to match the other versions. Discussed with: marcel
to the machine-independent parts of the VM. At the same time, this
introduces vm object locking for the non-i386 platforms.
Two details:
1. KSTACK_GUARD has been removed in favor of KSTACK_GUARD_PAGES. The
different machine-dependent implementations used various combinations
of KSTACK_GUARD and KSTACK_GUARD_PAGES. To disable guard page, set
KSTACK_GUARD_PAGES to 0.
2. Remove the (unnecessary) clearing of PG_ZERO in vm_thread_new. In
5.x, (but not 4.x,) PG_ZERO can only be set if VM_ALLOC_ZERO is passed
to vm_page_alloc() or vm_page_grab().
we were passing in a void* representing the PCB of the parent thread.
Now we pass a pointer to the parent thread itself.
The prime reason for this change is to allow cpu_set_upcall() to copy
(parts of) the trapframe instead of having it done in MI code in each
caller of cpu_set_upcall(). Copying the trapframe cannot always be
done with a simply bcopy() or may not always be optimal that way. On
ia64 specifically the trapframe contains information that is specific
to an entry into the kernel and can only be used by the corresponding
exit from the kernel. A trapframe copied verbatim from another frame
is in most cases useless without some additional normalization.
Note that this change removes the assignment to td->td_frame in some
implementations of cpu_set_upcall(). The assignment is redundant.
A previous call to cpu_thread_setup() already did the exact same
assignment. An added benefit of removing the redundant assignment is
that we can now change td_pcb without nasty side-effects.
This change officially marks the ability on ia64 for 1:1 threading.
Not tested on: amd64, powerpc
Compile & boot tested on: alpha, sparc64
Functionally tested on: i386, ia64
- Move struct sigacts out of the u-area and malloc() it using the
M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
and thread_stopped() are now MP safe.
Reviewed by: arch@
Approved by: re (rwatson)
syscall return values should be cleared. The system calls
getcontext() and swapcontext() want to return 0 on success
but these contexts can be switched to at a later time so
the return values need to be cleared in the saved register
sets. Other callers of get_mcontext() would normally want
the context without clearing the return values.
Remove the i386-specific context saving from the KSE code.
get_mcontext() is not i386-specific any more.
Fix a bad pointer in the alpha get_mcontext() code. The
context was being bcopy()'d from &td->tf_frame, but tf_frame
is itself a pointer, so the thread was being copied instead.
Spotted by jake.
Glanced at by: jake
Reviewed by: bde (months ago)
a pointer that is in user space. It will be used as the basic primitive
for a kernel supported user space lock implementation.
- Implement this function in x86's support.s
- Provide stubs that return -1 in all other architectures. Implementations
will follow along shortly.
Reviewed by: jake
a follow on commit to kern_sig.c
- signotify() now operates on a thread since unmasked pending signals are
stored in the thread.
- PS_NEEDSIGCHK moves to TDF_NEEDSIGCHK.
- Change all consumers to pass in a thread.
Right now this does not cause any functional changes but it will be important
later when signals can be delivered to specific threads.
switches. Not as lazy as it could be. Changing FPU state with sigcontext
still TODO.
fpu.c - convert some asm to inline C, and macroize fpu loads/stores
swtch.S - call out to save/restore fpu routines
trap.c - always call enable_fpu, since this shouldn't be called once
the FPU has been enabled for a thread
genassym.c - define for pcb fpu flag
- Get rid of the useless atop() / pmap_phys_address() detour. The
device mmap handlers must now give back the physical address
without atop()'ing it.
- Don't borrow the physical address of the mapping in the returned
int. Now we properly pass a vm_offset_t * and expect it to be
filled by the mmap handler when the mapping was successful. The
mmap handler must now return 0 when successful, any other value
is considered as an error. Previously, returning -1 was the only
way to fail. This change thus accidentally fixes some devices
which were bogusly returning errno constants which would have been
considered as addresses by the device pager.
- Garbage collect the poorly named pmap_phys_address() now that it's
no longer used.
- Convert all the d_mmap_t consumers to the new API.
I'm still not sure wheter we need a __FreeBSD_version bump for this,
since and we didn't guarantee API/ABI stability until 5.1-RELEASE.
Discussed with: alc, phk, jake
Reviewed by: peter
Compile-tested on: LINT (i386), GENERIC (alpha and sparc64)
Runtime-tested on: i386
statclock based on profhz when profiling is enabled MD, since most platforms
don't use this anyway. This removes the need for statclock_process, whose
only purpose was to subdivide profhz, and gets the profiling clock running
outside of sched_lock on platforms that implement suswintr.
Also changed the interface for starting and stopping the profiling clock to
do just that, instead of changing the rate of statclock, since they can now
be separate.
Reviewed by: jhb, tmm
Tested on: i386, sparc64
I'm not convinced there is anything major wrong with the patch but
them's the rules..
I am using my "David's mentor" hat to revert this as he's
offline for a while.
- remove dead code and fix warnings in pmap_zero_page/zero_page_area
- implement
pmap_clear_reference
pmap_ts_referenced
pmap_page_exists_quick
pmap_remove_all
- align pmap_qenter/qremove closer with i386 code
- fix vm_page locking in pmap_new_thread (from benno)
- add new parameter to pmap_clear_bit to return original
pte value
Approved by: benno
data structure called kse_upcall to manage UPCALL. All KSE binding
and loaning code are gone.
A thread owns an upcall can collect all completed syscall contexts in
its ksegrp, turn itself into UPCALL mode, and takes those contexts back
to userland. Any thread without upcall structure has to export their
contexts and exit at user boundary.
Any thread running in user mode owns an upcall structure, when it enters
kernel, if the kse mailbox's current thread pointer is not NULL, then
when the thread is blocked in kernel, a new UPCALL thread is created and
the upcall structure is transfered to the new UPCALL thread. if the kse
mailbox's current thread pointer is NULL, then when a thread is blocked
in kernel, no UPCALL thread will be created.
Each upcall always has an owner thread. Userland can remove an upcall by
calling kse_exit, when all upcalls in ksegrp are removed, the group is
atomatically shutdown. An upcall owner thread also exits when process is
in exiting state. when an owner thread exits, the upcall it owns is also
removed.
KSE is a pure scheduler entity. it represents a virtual cpu. when a thread
is running, it always has a KSE associated with it. scheduler is free to
assign a KSE to thread according thread priority, if thread priority is changed,
KSE can be moved from one thread to another.
When a ksegrp is created, there is always N KSEs created in the group. the
N is the number of physical cpu in the current system. This makes it is
possible that even an userland UTS is single CPU safe, threads in kernel still
can execute on different cpu in parallel. Userland calls kse_create to add more
upcall structures into ksegrp to increase concurrent in userland itself, kernel
is not restricted by number of upcalls userland provides.
The code hasn't been tested under SMP by author due to lack of hardware.
Reviewed by: julian