hash while holding the lock on a zone. Fix this by doing the allocation
seperately from the actual hash expansion.
The lock is dropped before the allocation and reacquired before the expansion.
The expansion code checks to see if we lost the race and frees the new hash
if we do. We really never will lose this race because the hash expansion is
single threaded via the timeout mechanism.
The extra microphone channel capability is part of the "normal" ac97
capabilities and not an extended ac97 capability. Now recording on
codecs without a seperate mic channel works.
MFC after: 1 week
o Use chunk instead of region when we talk about a memory range.
Region can be confused with region register and we already
call it chunk in machdep.c
o Update the twiddle every 16MB
Fortunately we have no large zones with maximums specified yet, so it wasn't
breaking anything.
Implement blocking when a zone exceeds the maximum and M_WAITOK is specified.
Previously this just failed like the old zone allocator did. The old zone
allocator didn't support WAITOK/NOWAIT though so we should do what we
advertise.
While I was in there I cleaned up some more zalloc logic to further simplify
that code path and reduce redundant code. This was needed to make the blocking
work properly anyway.
we can use td_ucred.
- In killpg1(), the proc lock is sufficient to check if p_stat is SZOMB
or not. We don't need sched_lock.
- Close some races in psignal(). In psignal() there is a big switch
statement based on p_stat. All the different cases are assuming that
the process (or thread) isn't going to change state out from under it.
To ensure this is true, just lock sched_lock for the entire switch. We
practically held it the entire time already anyways. This also
simplifies the locking somewhat and actually results in fewer lock
operations.
- Allow signotify() to be called with the sched_lock held since psignal()
now does that.
- Use td_ucred in a couple of places.
process so it can use td_ucred.
- Require the target process of donice() to be locked when donice() is
called.
- Use td_ucred.
- Lock the target process of p_cansee() and while reading the credentials
of a process.
- Change the logic of rtprio() slightly so it does it's copyin() if needed
prior to locking the target process.
- rtprio() no longer needs Giant. In theory with full KSE it would still
need Giant to protect p_ucred of curproc for the p_canfoo() functions
but p_canfoo() will be changing to using td_ucred of curthread before
full KSE hits the tree.
of a process pointer.
- Move the p_candebug() at the start of procfs_control() a bit to make
locking feasible. We still perform the access check before doing
anything, we just now perform it after acquiring locks.
- Don't lock the sched_lock for TRACE_WAIT_P() and when checking to see if
p_stat is SSTOP. We lock the process while setting p_stat to SSTOP
so locking the process is sufficient to do a read to see if p_stat is
SSTOP or not.
allocate a blank cred first, lock the process, perform checks on the
old process credential, copy the old process credential into the new
blank credential, modify the new credential, update the process
credential pointer, unlock the process, and cleanup rather than trying
to allocate a new credential after performing the checks on the old
credential.
- Cleanup _setugid() a little bit.
- setlogin() doesn't need Giant thanks to pgrp/session locking and
td_ucred.
FIFO or the in-RAM descriptors it will switch to RX_IDLE from where it
is not restarted.
We used to deal with RX_IDLE by doing a total reinit but this lost
our link and caused a potential 30sec autonegotiation against
switches. This was changed to a less heavyhanded approach, but this
failed to restart the receiver it it were in the RX_IDLE state.
This change adds the RX_IDLE and the RX_FIFO_OFLOW conditions as
triggers for interrupts and receive side processing, and restarts
the receiver when it is RX_IDLE.
Remove the #ifdef notyet'ed nge_rxeoc() function.
Sponsored by: Cybercity Internet, Denmark.
MFC after: 7 days
and acquire the proctree_lock if needed first. Then we lock the process
if necessary and fiddle with it as appropriate. Finally we drop locks and
do any needed copyout's. This greatly simplifies the locking.
belong to a user virtual address; while this happens to work on some
architectures, it can't on sparc64, since user and kernel virtual
address spaces overlap there (the distinction between them is done via
separate address space identifiers).
Instead, look up the page in the vm_map of the process in question.
Reviewed by: jake