multiple mutex pools with different options and sizes. Mutex pools can
be created with either the default sleep mutexes or with spin mutexes.
A dynamically created mutex pool can now be destroyed if it is no longer
needed.
Create two pools by default, one that matches the existing pool that
uses the MTX_NOWITNESS option that should be used for building higher
level locks, and a new pool with witness checking enabled.
Modify the users of the existing mutex pool to use the appropriate pool
in the new implementation.
Reviewed by: jhb
- Remove the buftimelock mutex and acquire the buf's interlock to protect
these fields instead.
- Hold the vnode interlock while locking bufs on the clean/dirty queues.
This reduces some cases from one BUF_LOCK with a LK_NOWAIT and another
BUF_LOCK with a LK_TIMEFAIL to a single lock.
Reviewed by: arch, mckusick
I'm not convinced there is anything major wrong with the patch but
them's the rules..
I am using my "David's mentor" hat to revert this as he's
offline for a while.
data structure called kse_upcall to manage UPCALL. All KSE binding
and loaning code are gone.
A thread owns an upcall can collect all completed syscall contexts in
its ksegrp, turn itself into UPCALL mode, and takes those contexts back
to userland. Any thread without upcall structure has to export their
contexts and exit at user boundary.
Any thread running in user mode owns an upcall structure, when it enters
kernel, if the kse mailbox's current thread pointer is not NULL, then
when the thread is blocked in kernel, a new UPCALL thread is created and
the upcall structure is transfered to the new UPCALL thread. if the kse
mailbox's current thread pointer is NULL, then when a thread is blocked
in kernel, no UPCALL thread will be created.
Each upcall always has an owner thread. Userland can remove an upcall by
calling kse_exit, when all upcalls in ksegrp are removed, the group is
atomatically shutdown. An upcall owner thread also exits when process is
in exiting state. when an owner thread exits, the upcall it owns is also
removed.
KSE is a pure scheduler entity. it represents a virtual cpu. when a thread
is running, it always has a KSE associated with it. scheduler is free to
assign a KSE to thread according thread priority, if thread priority is changed,
KSE can be moved from one thread to another.
When a ksegrp is created, there is always N KSEs created in the group. the
N is the number of physical cpu in the current system. This makes it is
possible that even an userland UTS is single CPU safe, threads in kernel still
can execute on different cpu in parallel. Userland calls kse_create to add more
upcall structures into ksegrp to increase concurrent in userland itself, kernel
is not restricted by number of upcalls userland provides.
The code hasn't been tested under SMP by author due to lack of hardware.
Reviewed by: julian
converting from individual vnode locks to the snapshot
lock, be sure to pass any waiting processes along to the
new lock as well. This transfer is done by a new function
in the lock manager, transferlockers(from_lock, to_lock);
Thanks to Lamont Granquist <lamont@scriptkiddie.org> for
his help in pounding on snapshots beyond all reason and
finding this deadlock.
Sponsored by: DARPA & NAI Labs.
are implemented here instead of depending on namespace pollution in
<sys/lock.h>. Fixed nearby include messes (1 disordered include and 1
unused include).
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
against VM_WAIT in the pageout code. Both fixes involve adjusting
the lockmgr's timeout capability so locks obtained with timeouts do not
interfere with locks obtained without a timeout.
Hopefully MFC: before the 4.5 release
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
initialization until after malloc() is safe to call, then iterate through
all mutexes and complete their initialization.
This change is necessary in order to avoid some circular bootstrapping
dependencies.
and initialized during boot. This avoids bloating sizeof(struct lock).
As a side effect, it is no longer necessary to enforce the assumtion that
lockinit()/lockdestroy() calls are paired, so the LK_VALID flag has been
removed.
Idea taken from: BSD/OS.
Add lockdestroy() and appropriate invocations, which corresponds to
lockinit() and must be called to clean up after a lockmgr lock is no
longer needed.
* lockstatus() and VOP_ISLOCKED() gets a new process argument and a new
return value: LK_EXCLOTHER, when the lock is held exclusively by another
process.
* The ASSERT_VOP_(UN)LOCKED family is extended to use what this gives them
* Extend the vnode_if.src format to allow more exact specification than
locked/unlocked.
This commit should not do any semantic changes unless you are using
DEBUG_VFS_LOCKS.
Discussed with: grog, mch, peter, phk
Reviewed by: peter
if LK_RECURSIVE is not set, as we will simply return that the
lock is busy and not actually deadlock. This allows processes
to use polling locks against buffers that they may already
hold exclusively locked.
lockmgr locks. This commit should be functionally equivalent to the old
semantics. That is, all buffer locking is done with LK_EXCLUSIVE
requests. Changes to take advantage of LK_SHARED and LK_RECURSIVE will
be done in future commits.
space. When doing this, it is possible to for another process to attempt
to get an exclusive lock on the vnode and deadlock the mmap/read
combination when the uiomove() call tries to obtain a second
shared lock on the vnode. There is still a potential deadlock
situation with write()/mmap().
Submitted by: Matt Dillon <dillon@freebsd.org>
Reviewed by: Luoqi Chen <luoqi@freebsd.org>
Delimmitted by tag PRE_MATT_MMAP_LOCK and POST_MATT_MMAP_LOCK
in kern/kern_lock.c kern/kern_subr.c