This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
to add actions that run when a TCP frame is sent or received on a TCP
session in the ESTABLISHED state. In the base tree, this functionality is
only used for the h_ertt module, which is used by the cc_cdg, cc_chd, cc_hd,
and cc_vegas congestion control modules.
Presently, we incur overhead to check for hooks each time a TCP frame is
sent or received on an ESTABLISHED TCP session.
This change adds a new compile-time option (TCP_HHOOK) to determine whether
to include the hhook(9) framework for TCP. To retain backwards
compatibility, I added the TCP_HHOOK option to every configuration file that
already defined "options INET". (Therefore, this patch introduces no
functional change. In order to see a functional difference, you need to
compile a custom kernel without the TCP_HHOOK option.) This change will
allow users to easily exclude this functionality from their kernel, should
they wish to do so.
Note that any users who use a custom kernel configuration and use one of the
congestion control modules listed above will need to add the TCP_HHOOK
option to their kernel configuration.
Reviewed by: rrs, lstewart, hiren (previous version), sjg (makefiles only)
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D8185
userland. It supports userland interfaces to UEFI Runtime Services. This is
indended to the the MI portion of EFI RuntimeServices support.
Differential Revision: https://reviews.freebsd.org/D8128
Reviewed by: kib@, wblock@, Ganael Laplanche
- Convert "options EVDEV" to "device evdev" and "device uinput", add
modules for both new devices. They are isolated subsystems and do not
require any compile-time changes to general kernel subsytems
- For hybrid drivers that have evdev as an optional way to deliver input
events add option EVDEV_SUPPORT. Update all existing hybrid drivers
to use it instead of EVDEV
- Remove no-op DECLARE_MODULE in evdev, it's not required, MODULE_VERSION
is enough
- Add evdev module dependency to uinput
Submitted by: Vladimir Kondratiev <wulf@cicgroup.ru>
like other PCI network drivers. The sys/ofed directory is now mainly
reserved for generic infiniband code, with exception of the mthca driver.
- Add new manual page, mlx4en(4), describing how to configure and load
mlx4en.
- All relevant driver C-files are now prefixed mlx4, mlx4_en and
mlx4_ib respectivly to avoid object filename collisions when compiling
the kernel. This also fixes an issue with proper dependency file
generation for the C-files in question.
- Device mlxen is now device mlx4en and depends on device mlx4, see
mlx4en(4). Only the network device name remains unchanged.
- The mlx4 and mlx4en modules are now built by default on i386 and
amd64 targets. Only building the mlx4ib module depends on
WITH_OFED=YES .
Sponsored by: Mellanox Technologies
- The original 'disengage' ATA controller model does not work properly
for all possible disk configurations. Use the newly added ATA disk
veto eventhandler to fit into all possible disk configuration.
- If the 'invalid LUN' happens on blkvsc controllers, return
CAM_DEV_NOT_THERE so that CAM will not destroy attached disks under
the blkvsc controllers.
Submitted by: Hongjiang Zhang <honzhan microsoft com>
Discussed with: mav
MFC after: 1 week
Sponsored by: Microsoft
Differential Revision: https://reviews.freebsd.org/D7693
- Added bhnd(4) bus APIs for per-core ioctl/iost register access.
- Updated reset/suspend bhnd(4) APIs for compatibility with ioctl/iost
changes.
- Implemented core reset/suspend support for both bcma(4) and siba(4).
- Implemented explicit release of all outstanding PMU requests at the bus
level when putting a core into reset.
Approved by: adrian (mentor, implicit)
Differential Revision: https://reviews.freebsd.org/D8009
Now that all of the necessary bits for ARMv6 support for CloudABI have
been checked in, let's hook the kernel module up to the build and
document its existence.
event generation is disabled by default in favour of sysmouse. This
behavoiur is controlled by kern.evdev.rcpt_mask sysctl, bit 2 should
be set to give priority to hw over sysmouse
Submitted by: Vladimir Kondratiev <wulf@cicgroup.ru>
Reviewed by: hans
Differential Revision: https://reviews.freebsd.org/D7863
event generation is disabled by default in favour of kbdmux. This
behavoiur is controlled by kern.evdev.rcpt_mask sysctl, bit 3 should
be set to give priority to hw over mux
Submitted by: Vladimir Kondratiev <wulf@cicgroup.ru>
Reviewed by: hans
Differential Revision: https://reviews.freebsd.org/D7957
Runtime services require special execution environment for the call.
Besides that, OS must inform firmware about runtime virtual memory map
which will be active during the calls, with the SetVirtualAddressMap()
runtime call, done while the 1:1 mapping is still used. There are two
complication: the SetVirtualAddressMap() effectively must be done from
loader, which needs to know kernel address map in advance. More,
despite not explicitely mentioned in the specification, both 1:1 and
the map passed to SetVirtualAddressMap() must be active during the
SetVirtualAddressMap() call. Second, there are buggy BIOSes which
require both mappings active during runtime calls as well, most likely
because they fail to identify all relocations to perform.
On amd64, we can get rid of both problems by providing 1:1 mapping for
the duration of runtime calls, by temprorary remapping user addresses.
As result, we avoid the need for loader to know about future kernel
address map, and avoid bugs in BIOSes. Typically BIOS only maps
something in low 4G. If not runtime bugs, we would take advantage of
the DMAP, as previous versions of this patch did.
Similar but more complicated trick can be used even for i386 and 32bit
runtime, if and when the EFI boot on i386 is supported. We would need
a trampoline page, since potentially whole 4G of VA would be switched
on calls, instead of only userspace portion on amd64.
Context switches are disabled for the duration of the call, FPU access
is granted, and interrupts are not disabled. The later is possible
because kernel is mapped during calls.
To test, the sysctl mib debug.efi_time is provided, setting it to 1
makes one call to EFI get_time() runtime service, on success the efitm
structure is printed to the control terminal. Load efirt.ko, or add
EFIRT option to the kernel config, to enable code.
Discussed with: emaste, imp
Tested by: emaste (mac, qemu)
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
come up as 't6nex' nexus devices with 'cc' ports hanging off them.
The T6 firmware and configuration files will be added as soon as they
are released. For now the driver will try to work with whatever
firmware and configuration is on the card's flash.
Sponsored by: Chelsio Communications
The cxgbev/cxlv driver supports Virtual Function devices for Chelsio
T4 and T4 adapters. The VF devices share most of their code with the
existing PF4 driver (cxgbe/cxl) and as such the VF device driver
currently depends on the PF4 driver.
Similar to the cxgbe/cxl drivers, the VF driver includes a t4vf/t5vf
PCI device driver that attaches to the VF device. It then creates
child cxgbev/cxlv devices representing ports assigned to the VF.
By default, the PF driver assigns a single port to each VF.
t4vf_hw.c contains VF-specific routines from the shared code used to
fetch VF-specific parameters from the firmware.
t4_vf.c contains the VF-specific PCI device driver and includes its
own attach routine.
VF devices are required to use a different firmware request when
transmitting packets (which in turn requires a different CPL message
to encapsulate messages). This alternate firmware request does not
permit chaining multiple packets in a single message, so each packet
results in a firmware request. In addition, the different CPL message
requires more detailed information when enabling hardware checksums,
so parse_pkt() on VF devices must examine L2 and L3 headers for all
packets (not just TSO packets) for VF devices. Finally, L2 checksums
on non-UDP/non-TCP packets do not work reliably (the firmware trashes
the IPv4 fragment field), so IPv4 checksums for such packets are
calculated in software.
Most of the other changes in the non-VF-specific code are to expose
various variables and functions private to the PF driver so that they
can be used by the VF driver.
Note that a limited subset of cxgbetool functions are supported on VF
devices including register dumps, scheduler classes, and clearing of
statistics. In addition, TOE is not supported on VF devices, only for
the PF interfaces.
Reviewed by: np
MFC after: 2 months
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7599
Adds support for probing and initializing bhndb(4) bridge state using
the bhnd_erom API, ensuring that full bridge configuration is available
*prior* to actually attaching and enumerating the bhnd(4) child device,
allowing us to safely allocate bus-level agent/device resources during
bhnd(4) bus enumeration.
- Add a bhnd_erom_probe() method usable by bhndb(4). This is an analogue
to the existing bhnd_erom_probe_static() method, and allows the bhndb
bridge to discover the best available erom parser class prior to newbus
probing of its children.
- Add support for supplying identification hints when probing erom
devices. This is required on early EXTIF-only chipsets, where chip
identification registers are not available.
- Migrate bhndb over to the new bhnd_erom API, using bhnd_core_info
records rather than bridged bhnd(4) device_t references to determine
the bridged chipsets' capability/bridge configuration.
- The bhndb parent (e.g. if_bwn) is now required to supply a hardware
priority table to the bridge. The default table is currently sufficient
for our supported devices.
- Drop the two-pass attach approach we used for compatibility with bhndb(4) in
the bhnd(4) bus drivers, and instead perform bus enumeration immediately,
and allocate bridged per-child bus-level resources during that enumeration.
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7768
This defines a new bhnd_erom_if API, providing a common interface to device
enumeration on siba(4) and bcma(4) devices, for use both in the bhndb bridge
and SoC early boot contexts, and migrates mips/broadcom over to the new API.
This also replaces the previous adhoc device enumeration support implemented
for mips/broadcom.
Migration of bhndb to the new API will be implemented in a follow-up commit.
- Defined new bhnd_erom_if interface for bhnd(4) device enumeration, along
with bcma(4) and siba(4)-specific implementations.
- Fixed a minor bug in bhndb that logged an error when we attempted to map the
full siba(4) bus space (18000000-17FFFFFF) in the siba EROM parser.
- Reverted use of the resource's start address as the ChipCommon enum_addr in
bhnd_read_chipid(). When called from bhndb, this address is found within the
host address space, resulting in an invalid bridged enum_addr.
- Added support for falling back on standard bus_activate_resource() in
bhnd_bus_generic_activate_resource(), enabling allocation of the bhnd_erom's
bhnd_resource directly from a nexus-attached bhnd(4) device.
- Removed BHND_BUS_GET_CORE_TABLE(); it has been replaced by the erom API.
- Added support for statically initializing bhnd_erom instances, for use prior
to malloc availability. The statically allocated buffer size is verified both
at runtime, and via a compile-time assertion (see BHND_EROM_STATIC_BYTES).
- bhnd_erom classes are registered within a module via a linker set, allowing
mips/broadcom to probe available EROM parser instances without creating a
strong reference to bcma/siba-specific symbols.
- Migrated mips/broadcom to bhnd_erom_if, replacing the previous MIPS-specific
device enumeration implementation.
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7748
routines available in t4_tom to manage the iSCSI DDP page pod region.
This adds the ability to use multiple DDP page sizes to the iSCSI
driver, among other improvements.
Sponsored by: Chelsio Communications
When fixing this module to build on PC98, I actually broke the build on
ARM64. On PC98 we need to pull in the sources from the MACHINE_CPUARCH
(i386), but on ARM64 we need to use the MACHINE, as MACHINE_CPUARCH is
set to aarch64 instead of just arm64.
- Added bhnd_pmu driver implementations for PMU and PWRCTL chipsets,
derived from Broadcom's ISC-licensed HND code.
- Added bhnd bus-level support for routing per-core clock and resource
power requests to the PMU device.
- Lift ChipCommon support out into the bhnd module, dropping
bhnd_chipc.
Reviewed by: mizhka
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7492
Where the cloudabi64 kernel can be used to execute 64-bit CloudABI
binaries, this one should be used for 32-bit binaries. Right now it
works on i386 and amd64.
The reason why the old vDSOs were written in C using inline assembly was
purely because they were embedded in the C library directly as static
inline functions. This was practical during development, because it
meant you could invoke system calls without any library dependencies.
The vDSO was simply a copy of these functions.
Now that we require the use of the vDSO, there is no longer any need for
embedding them in C code directly. Rewriting them in assembly has the
advantage that they are closer to ideal (less useless branching, less
assumptions about registers remaining unclobbered by the kernel, etc).
They are also easier to build, as they no longer depend on the C type
information for CloudABI.
Obtained from: https://github.com/NuxiNL/cloudabi
This driver only supports 10Mb Ethernet using PIO (the hardware supports
DMA, but the driver only does PIO). There are not any PCCard adapters
supported by this driver, only ISA cards. In addition, it does not use
bus_space but instead uses bcopy with volatile pointers triggering a
host of warnings. (if_ie.c is one of 3 files always built with
-Wno-error)
Relnotes: yes
The wl(4) driver supports pre-802.11 PCCard wireless adapters that
are slower than 802.11b. They do not work with any of the 802.11
framework and the driver hasn't been reported to actually work in a
long time.
Relnotes: yes
The si(4) driver supported multiport serial adapters for ISA, EISA, and
PCI buses. This driver does not use bus_space, instead it depends on
direct use of the pointer returned by rman_get_virtual(). It is also
still locked by Giant and calls for patch testing to convert it to use
bus_space were unanswered.
Relnotes: yes
- Added a generic bhnd_nvram_parser API, with support for the TLV format
used on WGT634U devices, the standard BCM NVRAM format used on most
modern devices, and the "board text file" format used on some hardware
to supply external NVRAM data at runtime (e.g. via an EFI variable).
- Extended the bhnd_bus_if and bhnd_nvram_if interfaces to support both
string-based and primitive data type variable access, required for
common behavior across both SPROM and NVRAM data sources.
- Extended the existing SPROM implementation to support the new
string-based NVRAM APIs.
- Added an abstract bhnd_nvram driver, implementing the bhnd_nvram_if
atop the bhnd_nvram_parser API.
- Added a CFE-based bhnd_nvram driver to provide read-only access to
NVRAM data on MIPS SoCs, pending implementation of a flash-aware
bhnd_nvram driver.
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D7489
This is a driver for a pre-ATAPI ISA CD-ROM adapter. As noted in
the manpage, this driver is only useful as a backend to cdcontrol to
play audio CDs since it doesn't use DMA, so its data performance is
"abysmal" (and that was true in the mid 90's).
The module works together with ipfw(4) and implemented as its external
action module.
Stateless NAT64 registers external action with name nat64stl. This
keyword should be used to create NAT64 instance and to address this
instance in rules. Stateless NAT64 uses two lookup tables with mapped
IPv4->IPv6 and IPv6->IPv4 addresses to perform translation.
A configuration of instance should looks like this:
1. Create lookup tables:
# ipfw table T46 create type addr valtype ipv6
# ipfw table T64 create type addr valtype ipv4
2. Fill T46 and T64 tables.
3. Add rule to allow neighbor solicitation and advertisement:
# ipfw add allow icmp6 from any to any icmp6types 135,136
4. Create NAT64 instance:
# ipfw nat64stl NAT create table4 T46 table6 T64
5. Add rules that matches the traffic:
# ipfw add nat64stl NAT ip from any to table(T46)
# ipfw add nat64stl NAT ip from table(T64) to 64:ff9b::/96
6. Configure DNS64 for IPv6 clients and add route to 64:ff9b::/96
via NAT64 host.
Stateful NAT64 registers external action with name nat64lsn. The only
one option required to create nat64lsn instance - prefix4. It defines
the pool of IPv4 addresses used for translation.
A configuration of instance should looks like this:
1. Add rule to allow neighbor solicitation and advertisement:
# ipfw add allow icmp6 from any to any icmp6types 135,136
2. Create NAT64 instance:
# ipfw nat64lsn NAT create prefix4 A.B.C.D/28
3. Add rules that matches the traffic:
# ipfw add nat64lsn NAT ip from any to A.B.C.D/28
# ipfw add nat64lsn NAT ip6 from any to 64:ff9b::/96
4. Configure DNS64 for IPv6 clients and add route to 64:ff9b::/96
via NAT64 host.
Obtained from: Yandex LLC
Relnotes: yes
Sponsored by: Yandex LLC
Differential Revision: https://reviews.freebsd.org/D6434
* make interface cloner VNET-aware;
* simplify cloner code and use if_clone_simple();
* migrate LOGIF_LOCK() to rmlock;
* add ipfw_bpf_mtap2() function to pass mbuf to BPF;
* introduce new additional ipfwlog0 pseudo interface. It differs from
ipfw0 by DLT type used in bpfattach. This interface is intended to
used by ipfw modules to dump packets with additional info attached.
Currently pflog format is used. ipfw_bpf_mtap2() function uses second
argument to determine which interface use for dumping. If dlen is equal
to ETHER_HDR_LEN it uses old ipfw0 interface, if dlen is equal to
PFLOG_HDRLEN - ipfwlog0 will be used.
Obtained from: Yandex LLC
Sponsored by: Yandex LLC
The only difference between 3 and 3B is the size of the RJ45 port.
And now we have a uboot port that expect pcduino3.dts to be present.
Reported by: imp
CloudABI executables already provide support for passing in vDSOs. This
functionality is used by the emulator for OS X to inject system call
handlers. On FreeBSD, we could use it to optimize calls to
gettimeofday(), etc.
Though I don't have any plans to optimize any system calls right now,
let's go ahead and already pass in a vDSO. This will allow us to
simplify the executables, as the traditional "syscall" shims can be
removed entirely. It also means that we gain more flexibility with
regards to adding and removing system calls.
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D7438
driver. This change significantly increases the overall RX aggregation
ratio for heavily loaded networks handling 10-80 thousand simultaneous
connections.
Remove the turbo LRO code and all references to it which has now been
superceeded by the tcp_lro_queue_mbuf() function.
Tested by: Netflix
Sponsored by: Mellanox Technologies
MFC after: 1 week