for possible buffer overflow problems. Replaced most sprintf()'s
with snprintf(); for others cases, added terminating NUL bytes where
appropriate, replaced constants like "16" with sizeof(), etc.
These changes include several bug fixes, but most changes are for
maintainability's sake. Any instance where it wasn't "immediately
obvious" that a buffer overflow could not occur was made safer.
Reviewed by: Bruce Evans <bde@zeta.org.au>
Reviewed by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Mike Spengler <mks@networkcs.com>
simple-lock.
The reviewer raises the following caveat: "I believe these changes
open a non-critical race condition when adding memory to the pool
for the zone. I think what will happen is that you could have two
threads that are simultaneously adding additional memory when the
pool runs out. This appears to not be a problem, however, since
the re-aquisition of the lock will protect the list pointers."
The submitter agrees that the race is non-critical, and points out
that it already existed for the non-SMP case. He suggests that
perhaps a sleep lock (using the lock manager) should be used to
close that race. This might be worth revisiting after 3.0 is
released.
Reviewed by: dg (David Greenman)
Submitted by: tegge (Tor Egge)
in a way identically as before.) I had problems with the system properly
handling the number of vnodes when there is alot of system memory, and the
default VM_KMEM_SIZE. Two new options "VM_KMEM_SIZE_SCALE" and
"VM_KMEM_SIZE_MAX" have been added to support better auto-sizing for systems
with greater than 128MB.
Add some accouting for vm_zone memory allocations, and provide properly
for vm_zone allocations out of the kmem_map. Also move the vm_zone
allocation stats to the VM OID tree from the KERN OID tree.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
Distribute all but the most fundamental malloc types. This time I also
remembered the trick to making things static: Put "static" in front of
them.
A couple of finer points by: bde
plus the previous changes to use the zone allocator decrease the useage
of malloc by half. The Zone allocator will be upgradeable to be able
to use per CPU-pools, and has more intelligent usage of SPLs. Additionally,
it has reasonable stats gathering capabilities, while making most calls
inline.