The security_inode_init_security() function now takes an additional
qstr argument which must be passed in from the dentry if available.
Passing a NULL is safe when no qstr is available the relevant
security checks will just be skipped.
Closes#246Closes#217Closes#187
The inode eviction should unmap the pages associated with the inode.
These pages should also be flushed to disk to avoid the data loss.
Therefore, use truncate_setsize() in evict_inode() to release the
pagecache.
The API truncate_setsize() was added in 2.6.35 kernel. To ensure
compatibility with the old kernel, the patch defines its own
truncate_setsize function.
Signed-off-by: Prasad Joshi <pjoshi@stec-inc.com>
Closes#255
Some disks with internal sectors larger than 512 bytes (e.g., 4k) can
suffer from bad write performance when ashift is not configured
correctly. This is caused by the disk not reporting its actual sector
size, but a sector size of 512 bytes. The drive may behave this way
for compatibility reasons. For example, the WDC WD20EARS disks are
known to exhibit this behavior.
When creating a zpool, ZFS takes that wrong sector size and sets the
"ashift" property accordingly (to 9: 1<<9=512), whereas it should be
set to 12 for 4k sectors (1<<12=4096).
This patch allows an adminstrator to manual specify the known correct
ashift size at 'zpool create' time. This can significantly improve
performance in certain cases. However, it will have an impact on your
total pool capacity. See the updated ashift property description
in the zpool.8 man page for additional details.
Valid values for the ashift property range from 9 to 17 (512B-128KB).
Additionally, you may set the ashift to 0 if you wish to auto-detect
the sector size based on what the disk reports, this is the default
behavior. The most common ashift values are 9 and 12.
Example:
zpool create -o ashift=12 tank raidz2 sda sdb sdc sdd
Closes#280
Original-patch-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The previous commit 8a7e1ceefa430988c8f888ca708ab307333b4464 wasn't
quite right. This check applies to both the user and kernel space
build and as such we must make sure it runs regardless of what
the --with-config option is set too.
For example, if --with-config=kernel then the autoconf test does
not run and we generate build warnings when compiling the kernel
packages.
Gcc versions 4.3.2 and earlier do not support the compiler flag
-Wno-unused-but-set-variable. This can lead to build failures
on older Linux platforms such as Debian Lenny. Since this is
an optional build argument this changes add a new autoconf check
for the option. If it is supported by the installed version of
gcc then it is used otherwise it is omited.
See commit's 12c1acde76683108441827ae9affba1872f3afe5 and
79713039a2b6e0ed223d141b4a8a8455f282d2f2 for the reason the
-Wno-unused-but-set-variable options was originally added.
Sending pools with dedup results in a segfault due to a Solaris
portability issue. Under Solaris the pipe(2) library call
creates a bidirectional data channel. Unfortunately, on Linux
pipe(2) call creates unidirection data channel. The fix is to
use the socketpair(2) function to create the expected
bidirectional channel.
Seth Heeren did the original leg work on this issue for zfs-fuse.
We finally just rediscovered the same portability issue and
dfurphy was able to point me at the original issue for the fix.
Closes#268
This change fixes a kernel panic which would occur when resizing
a dataset which was not open. The objset_t stored in the
zvol_state_t will be set to NULL when the block device is closed.
To avoid this issue we pass the correct objset_t as the third arg.
The code has also been updated to correctly notify the kernel
when the block device capacity changes. For 2.6.28 and newer
kernels the capacity change will be immediately detected. For
earlier kernels the capacity change will be detected when the
device is next opened. This is a known limitation of older
kernels.
Online ext3 resize test case passes on 2.6.28+ kernels:
$ dd if=/dev/zero of=/tmp/zvol bs=1M count=1 seek=1023
$ zpool create tank /tmp/zvol
$ zfs create -V 500M tank/zd0
$ mkfs.ext3 /dev/zd0
$ mkdir /mnt/zd0
$ mount /dev/zd0 /mnt/zd0
$ df -h /mnt/zd0
$ zfs set volsize=800M tank/zd0
$ resize2fs /dev/zd0
$ df -h /mnt/zd0
Original-patch-by: Fajar A. Nugraha <github@fajar.net>
Closes#68Closes#84
Disable the gethostid() override for Solaris behavior because Linux systems
implement the POSIX standard in a way that allows a negative result.
Mask the gethostid() result to the lower four bytes, like coreutils does in
/usr/bin/hostid, to prevent junk bits or sign-extension on systems that have an
eight byte long type. This can cause a spurious hostid mismatch that prevents
zpool import on 64-bit systems.
As of gcc-4.6 the option -Wunused-but-set-variable is enabled by
default. While this is a useful warning there are numerous places
in the ZFS code when a variable is set and then only checked in an
ASSERT(). To avoid having to update every instance of this in the
code we now set -Wno-unused-but-set-variable to suppress the warning.
Additionally, when building with --enable-debug and -Werror set these
warning also become fatal. We can reevaluate the suppression of these
error at a later time if it becomes an issue. For now we are basically
just reverting to the previous gcc behavior.
Added insert_inode_locked() helper function, prior to this most callers
used insert_inode_hash(). The older method doesn't check for collisions
in the inode_hashtable but it still acceptible for use. Fallback to
using insert_inode_hash() when insert_inode_locked() is unavailable.
Compiling with 'LDFLAGS=-Wl,--as-needed' exposed the fact that
there were some library linking problems introduced by mount_zfs.
In particular, the libzfs library does use nvpair symbols, and
mount_zfs contains no dependencies on libzpool.
Closes#161Closes#162
To support automatically mounting your zfs on filesystem on boot
a basic init script is needed. Unfortunately, every distribution
has their own idea of the _right_ way to do things. Rather than
write one very complicated portable init script, which would be
invariably replaced by the distributions own anyway. I have
instead added support to provide multiple distribution specific
init scripts.
The correct init script for your distribution will be selected
by ZFS_AC_DEFAULT_PACKAGE which will set DEFAULT_INIT_SCRIPT.
During 'make install' the correct script for your system will
be installed from zfs/etc/init.d/zfs.DEFAULT_INIT_SCRIPT to the
usual /etc/init.d/zfs location.
Currently, there is zfs.fedora and a more generic zfs.lsb init
script. Hopefully, the distribution maintainers who know best
how they want their init scripts to function will feedback their
approved versions to be included in the project.
This change does not consider upstart jobs but I'm not at all
opposed to add that sort of thing.
Because we are dependent of the system mount/umount utilities to
ensure correct mtab locking, we should not suppress their error
output. During a successful mount/umount they will be silent,
but during a failure the error message they print is the only sure
way to know why a mount failed. This is because the (u)mount(8)
return code does not contain the result of the system call issued.
The only way to clearly idenify why thing failed is to rely on
the error message printed by the tool.
Longer term once libmount is available we can issue the mount/umount
system calls within the tool and still be ensured correct mtab locking.
Closed#107
Several issues related to strange mount/umount behavior were reported
and this commit should address most of them. The original idea was
to put in place a zfs mount helper (mount.zfs). This helper is used
to enforce 'legacy' mount behavior, and perform any extra mount argument
processing (selinux, zfsutil, etc). This helper wasn't ready for the
0.6.0-rc1 release but with this change it's functional but needs to
extensively tested.
This change addresses the following open issues.
Closes#101Closes#107Closes#113Closes#115Closes#119
The libspl and libzpool libraries were missing from the libzfs
Makefile.am. They should be explicitly listed to avoid build
issues when compiling static libraries and binaries.
Additionally, ensure libzpool is built before libzfs because
libzfs is dependent on libzpool. This was also exposed as an
issue when forcing static linking.
The open_bdev_exclusive() function has been replaced (again) by the
more generic blkdev_get_by_path() function. Additionally, the
counterpart function close_bdev_exclusive() has been replaced by
blkdev_put(). Because these functions are more generic versions
of the functions they replaced the compatibility macro must add
the FMODE_EXCL mask to ensure they are exclusive.
Closes#114
There are three improvements here to 'zpool import' proposed by Fajar
in Github issue #98. They are all good so I'm commiting all three.
1) Add descriptions for "hpet" and "core" blacklist entries.
2) Add "core" to the blacklist, as described in the issue accessing
this device will crash Xen dom0.
3) Refine probing behavior to use fstatat64(). This allows us to
determine if a device is a block device or a regular file without
having to open it. This is the safest appraoch when probing /dev/
because the simple act of opening a device may have unexpected
consequences.
Closes#98
Until code is added to support automatically sharing datasets
we should return success instead of failure. This prevents the
command line tools from returning a non-zero error code. While
a user likely won't notice this, test scripts like zconfig.sh
do and correctly fail because of it.
The new prefered inteface for evicting an inode from the inode cache
is the ->evict_inode() callback. It replaces both the ->delete_inode()
and ->clear_inode() callbacks which were previously used for this.
The fsync() callback in the file_operations structure used to take
3 arguments. The callback now only takes 2 arguments because the
dentry argument was determined to be unused by all consumers. To
handle this a compatibility prototype was added to ensure the right
prototype is used. Our implementation never used the dentry argument
either so it's just a matter of using the right prototype.
The const keyword was added to the 'struct xattr_handler' in the
generic Linux super_block structure. To handle this we define an
appropriate xattr_handler_t typedef which can be used. This was
the preferred solution because it keeps the code clean and readable.
The inclusion on dlsym(), dlopen(), and dlclose() symbols require
us to link against the dl library. Be careful to add the flag to
both the libzfs library and the commands which depend on the library.
ZFS even under Solaris does not strictly require libshare to be
available. The current implementation attempts to dlopen() the
library to access the needed symbols. If this fails libshare
support is simply disabled.
This means that on Linux we only need the most minimal libshare
implementation. In fact just enough to prevent the build from
failing. Longer term we can decide if we want to implement a
libshare library like Solaris. At best this would be an abstraction
layer between ZFS and NFS/SMB. Alternately, we can drop libshare
entirely and directly integrate ZFS with Linux's NFS/SMB.
Finally the bare bones user-libshare.m4 test was dropped. If we
do decide to implement libshare at some point it will surely be
as part of this package so the check is not needed.
By design the zfs utility is supposed to handle mounting and unmounting
a zfs filesystem. We could allow zfs to do this directly. There are
system calls available to mount/umount a filesystem. And there are
library calls available to manipulate /etc/mtab. But there are a
couple very good reasons not to take this appraoch... for now.
Instead of directly calling the system and library calls to (u)mount
the filesystem we fork and exec a (u)mount process. The principle
reason for this is to delegate the responsibility for locking and
updating /etc/mtab to (u)mount(8). This ensures maximum portability
and ensures the right locking scheme for your version of (u)mount
will be used. If we didn't do this we would have to resort to an
autoconf test to determine what locking mechanism is used.
The downside to using mount(8) instead of mount(2) is that we lose
the exact errno which was returned by the kernel. The return code
from mount(8) provides some insight in to what went wrong but it
not quite as good. For the moment this is translated as a best
guess in to a errno for the higher layers of zfs.
In the long term a shared library called libmount is under development
which provides a common API to address the locking and errno issues.
Once the standard mount utility has been updated to use this library
we can then leverage it. Until then this is the only safe solution.
http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
Recently helper functions were added to libzfs_util to load a kernel
module or execute a process. Initially this functionality was limited
to libzfs but it has become clear there will be other consumers. This
change opens up the interface so it may be used where appropriate.
If libselinux is detected on your system at configure time link
against it. This allows us to use a library call to detect if
selinux is enabled and if it is to pass the mount option:
"context=\"system_u:object_r:file_t:s0"
For now this is required because none of the existing selinux
policies are aware of the zfs filesystem type. Because of this
they do not properly enable xattr based labeling even though
zfs supports all of the required hooks.
Until distro's add zfs as a known xattr friendly fs type we
must use mntpoint labeling. Alternately, end users could modify
their existing selinux policy with a little guidance.
These compiler warnings were introduced when code which was
previously #ifdef'ed out by HAVE_ZPL was re-added for use
by the posix layer. All of the following changes should be
obviously correct and will cause no semantic changes.
If libblkid does not contain ZFS support, then 'zpool import' will scan
all block devices in /dev/ to determine which ones are components of a
ZFS filesystem. It does this by opening all the devices and stat'ing
them to determine which ones are block devices. If the device turns
out not to be a block device it is skipped.
Usually, this whole process is pretty harmless (although slow). But
there are certain devices in /dev/ which must be handled in a very
specific way or your system may crash. For example, if /dev/watchdog
is simply opened the watchdog timer will be started and your system
will panic when the timer expires.
It turns out the /dev/hpet causes similiar problems although only when
accessed under a virtual machine. For some reason accessing /dev/hpet
causes qemu to crash. To address this issue this commit adds /dev/hpet
to the device blacklist, it will be skipped solely based on its name.
Some sudo configurations may not include /sbin in the PATH.
libzfs_load_module() currently does not call modprobe with an absolute path, so
it may fail under such configurations if called under sudo. This change adds
the absolute path to modprobe so we no longer rely on how PATH is set.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
zpool status displays abbreviated vdev names without leading path components
and, in the case of whole disks, without partition information. Also, the
zpool subcommands 'create' and 'add' support using shorthand devices names
without qualified paths. Prior to this change, however, removing a device
generally required specifying its name as it is stored in the vdev label. So
while zpool status might list a cache disk with a name like A16, removing it
would require a full path such as /dev/disk/zpool/A16-part1, which is
non-intuitive.
This change adds support for shorthand device names with the remove subcommand
so one can simply type, for example,
zpool remove tank A16
A consequence of this change is that including the partition information when
removing a whole-disk vdev now results in an error. While this is arguably the
correct behavior, it is a departure from how zpool previously worked in this
project.
This change removes the only reference to ctd_check_path(), so that function is
also removed to avoid compiler warnings.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This change adds two helper functions for working with vdev names and paths.
zfs_resolve_shortname() resolves a shorthand vdev name to an absolute path
of a file in /dev, /dev/disk/by-id, /dev/disk/by-label, /dev/disk/by-path,
/dev/disk/by-uuid, /dev/disk/zpool. This was previously done only in the
function is_shorthand_path(), but we need a general helper function to
implement shorthand names for additional zpool subcommands like remove.
is_shorthand_path() is accordingly updated to call the helper function.
There is a minor change in the way zfs_resolve_shortname() tests if a file
exists. is_shorthand_path() effectively used open() and stat64() to test for
file existence, since its scope includes testing if a device is a whole disk
and collecting file status information. zfs_resolve_shortname(), on the other
hand, only uses access() to test for existence and leaves it to the caller to
perform any additional file operations. This seemed like the most general and
lightweight approach, and still preserves the semantics of is_shorthand_path().
zfs_append_partition() appends a partition suffix to a device path. This
should be used to generate the name of a whole disk as it is stored in the vdev
label. The user-visible names of whole disks do not contain the partition
information, while the name in the vdev label does. The code was lifted from
the function make_disks(), which now just calls the helper function. Again,
having a helper function to do this supports general handling of shorthand
names in the user interface.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
ZFS works best when it is notified as soon as possible when a device
failure occurs. This allows it to immediately start any recovery
actions which may be needed. In theory Linux supports a flag which
can be set on bio's called FAILFAST which provides this quick
notification by disabling the retry logic in the lower scsi layers.
That's the theory at least. In practice is turns out that while the
flag exists you oddly have to set it with the BIO_RW_AHEAD flag.
And even when it's set it you may get retries in the low level
drivers decides that's the right behavior, or if you don't get the
right error codes reported to the scsi midlayer.
Unfortunately, without additional kernels patchs there's not much
which can be done to improve this. Basically, this just means that
it may take 2-3 minutes before a ZFS is notified properly that a
device has failed. This can be improved and I suspect I'll be
submitting patches upstream to handle this.
This commit modifies libzfs_init() to attempt to load the zfs kernel module if
it is not already loaded. This is done to simplify initialization by letting
users simply import their zpools without having to first load the module.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Under Solaris, the slice number is chopped off when displaying the device name
if the vdev is a whole disk. Under Linux we should similarly discard the
partition number. This commit adds the logic to perform the name truncation
for devices ending in -partX, XpX, or X, where X is a string of digits. The
second case handles devices like md0p0. The third case is limited to scsi and
ide disks, i.e. those beginning with "sd" or "hd", in order to avoid stripping
the number from names like "loop0".
This commit removes the Solaris-specific code for removing slices, since we no
longer reasonably expect our changes to be merged in upstream. The partition
stripping code was moved off to a helper function to improve readability.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Top-level vdev names in zpool status output should follow a <type-id> naming
convention. In the case of raidz devices, the type portion of the name was
missing.
This commit fixes a bug in zpool_vdev_name() where in this snprintf call
(void) snprintf(buf, sizeof (buf), "%s-%llu", path,
(u_longlong_t)id);
buf and path may point to the same location. The result is that buf ends up
containing only the "-id" part. This only occurred for raidz devices because
the code for appending the parity level to the type string stored its result in
buf then set path to point there. To fix this we allocate a new temporary
buffer on the stack instead of reusing buf.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#57
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.
Add the initial products from autogen.sh. These products will
be updated incrementally after this point as development occurs.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This topic branch contains required changes to the user space
utilities to allow them to integrate cleanly with Linux.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This topic branch contains all the changes needed to integrate the user
side zfs tools with Linux style devices. Primarily this includes fixing
up the Solaris libefi library to be Linux friendly, and integrating with
the libblkid library which is provided by e2fsprogs.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Track various large hunks which have been dropped simply
because they are not relevant to this port.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Solaris recently introduced the idea of drive topology because
where a drive is located does matter. I have already handled
this with udev/blkid integration under Linux so I'm hopeful
this case can simply be removed but for now I've just stubbed
out what is needed in libspl and commented out the rest here.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The upstream ZFS code has correctly moved to a faster native sha2
implementation. Unfortunately, under Linux that's going to be a little
problematic so we revert the code to the more portable version contained
in earlier ZFS releases. Using the native sha2 implementation in Linux
is possible but the API is slightly different in kernel version user
space depending on which libraries are used. Ideally, we need a fast
implementation of SHA256 which builds as part of ZFS this shouldn't be
that hard to do but it will take some effort.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This branch contains the majority of the changes required to cleanly
intergrate with Linux style special devices (/dev/zfs). Mainly this
means dropping all the Solaris style callbacks and replacing them
with the Linux equivilants.
This patch also adds the onexit infrastructure needed to track
some minimal state between ioctls. Under Linux it would be easy
to do this simply using the file->private_data. But under Solaris
they apparent need to pass the file descriptor as part of the ioctl
data and then perform a lookup in the kernel. Once again to keep
code change to a minimum I've implemented the Solaris solution.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>